

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 81 | P a g e

Design And Analysis of Booth Multiplier Using FPGA

N.V.N.Prasanna Kumar
*

*
(Senior Assistant Professor, Department of ECE, Aditya Engineering College, Surampalem

Corresponding Author:N.V.N.Prasanna Kumar

ABSTRACT
Multipliers play an important role in today‟s digital signal processing and many other applications.

Multiplication can be either signed multiplication or unsigned multiplication. In the case of unsigned

multiplication, two binary numbers only with their magnitudes are involved in multiplication. In signed

multiplication both the sign and magnitude of the multiplier and multiplicand are multiplied. Braun multipliers

are used to perform unsigned multiplication. The signed multiplication was done by Baugh Wooley multiplier

and Booth multipliers. In this paper, the structural (gate level) implementation of booth multiplier is carried out

using Xilinx Spartan 3E FPGA board. It provides future scope in layout level or in back end level for post layout

simulation.

Keywords: Baugh Wooley multiplier, Booth multiplier, Braun multiplier, Modified Booth Encoding, Modified

Booth multiplier

--- ---------

Date of Submission: 15-12-2017 Date of acceptance: 28-12-2017

--- ----------

I. INTRODUCTION

1.1. Binary Multiplier

A Binary multiplier is an electronic

hardware device used in digital electronics or a

computer or other electronic device. It is built

using binary adders. The rules for binary

multiplication can be stated as follows

1. If the multiplier digit is a 1, the

multiplicand is simply copied down and

represents the product.

2. If the multiplier digit is a 0 the product is also 0.

1.2. Types Of Multipliers

1.2.1. Array Multiplier

The composition of an array multiplier is

shown in figure. There is a one-to-one topological

correspondence between this hardware structure and

the manual multiplication shown in fig 1.1.The

generation of partial products requires N x M two-bit

AND gates most of the area of the multiplier is

devoted to the adding of the N partial products,

which requires N - 1 M-bit adders. The shifting of the

partial products for their proper alignment is

performed by simple routing and does not require any

logic. The overall structure can easily be compacted

into a rectangle, resulting in a very efficient layout.

Due to the array organization, determining the

propagation delay of this circuit is not

straightforward. Consider the implementation of the

partial sum adders are implemented as ripple-carry

structures. Performance optimization requires that

the critical timing path be identified first. This turns

out to be non-trivial. In fact, a large number of paths

of almost identical length can be identified.

Fig.1.1: 4 × 4 bit-array multiplier

Two of those are highlighted in fig 2.2.

RESEARCH ARTICLE OPEN ACCESS

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 82 | P a g e

Fig.1.2: Ripple- carry based 4 × 4 multiplier

1.2.2 Wallace Tree Multiplier:

In Tree multipliers the partial-sum adders

can also be rearranged in a treelike fashion, reducing

both the critical path and the number of adder cells

needed. Wallace multiplier is summing the partial

product bits in parallel using a tree of Carry Save

Adders which became generally known as the

“Wallace Tree”, With Wallace method, a three step

process is used to multiply two numbers: One is to

form the bit products. The other is that the bit product

matrix is “reduced” to a two row matrix by using

Carry-save adders (Known as Wallace Tree). Lastly

the remaining two rows are summed using a fast

carry-propagate adder to produce the product.

Although this may seem to be a complex process, it

yields multipliers with delay proportional to the

logarithm of the operand size „n‟.

The partial-sum adders can also be

rearranged in a treelike fashion, reducing both the

critical path and the number of adder cells needed.

With this process, the number of adder cells required

can be reduced. This is illustrated in fig 1.3, where

the original matrix of partial products is reorganized

into a tree shape to visually illustrate its varying

depth. The first type of operator that can be used to

cover the array is a full adder, which takes three

inputs and produces two outputs: the sum, located in

the same column and the carry, located in the next

one. For this reason, the FA is called a 3-2

compressor. It is denoted by a circle covering three

bits. The other operator is the half-adder, which takes

two input bits in a column and produces two outputs.

Fig.1.3: Wallace tree multiplier

To arrive at the minimal implementation,

iteratively cover the tree with FAs and HAs, starting

from its densest part. In the first step, we introduce

HAs in columns 4 and 3. The reduced tree is shown

in Figure1.3.(b). A second round of reductions

creates a tree of depth 2 (Fig 1.3 c). Only three FAs

and three HAs are used for the reduction process. The

final stage consists of two-input adders, for which

any type of adder can be used. The presented

structure is called the Wallace tree multiplier, and its

implementation is shown in fig 1.3. The tree

multiplier realizes substantial hardware savings for

larger multipliers. The propagation delay is reduced

as well. There is numerous other ways to accumulate

the partial-product tree.

1.2.3. braun multiplier:

The simplest parallel multiplier is the Braun

array. All the partial products are computed in

parallel, and then collected through a cascade of

Carry Save Adders. The completion time is limited

by the depth of the carry save array, and by the carry

propagation in the adder. Note that this multiplier is

only suited for positive operands. The structure of the

Braun algorithm for the unsigned binary

multiplication is shown in figure 1.4.A and B are four

bit inputs, Sij represent the intermediate values. Here

16 AND gate‟s and 12 Full adders are employed to

obtain the final product.

The logic diagram of the Braun Multiplier is as

follows:

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 83 | P a g e

Fig. 1.4 Braun Multiplier

1.2.4 Baugh-Wooley Multiplier:

 The Baugh-Wooley multiplication algorithm

is an efficient way to handle the sign bits. This

technique has been developed in order to design

regular multipliers, suited for 2‟s complement

numbers. Let us consider two n bit numbers, A and

B, to be multiplied. A and B can be represented as

Where ai and bi represents i
th

 bits of A and B,

respectively, and an-1 and bn-1 are the sign bits. The

product, P=A*B, is then given by the following

equation:

P

=an-1bn-12
2n-2

+

------- (3)

Equation (3) indicates that the final product is

obtained by subtracting the last two positive terms

from the first two terms.

 Rather than to do subtraction we can obtain

the 2‟s complement of the last two terms and add the

all terms to get the final product. The last two terms

are n-1bits each that extend from the binary weight

from the position 2
n-1

 up to 2
2n-3

. On the other hand,

the final product is 2n bits and extends in binary

weight 2
0
up to 2

2n-1
.

Assuming X I one of the last two terms we can

represent it with zero padding‟s as

The above equation gives the value of X due

to the fact that a negative value is associated with the

MSB. The multiplication process for the Baugh-

Wooley is shown in figure 1.5.

Fig. 1.5 Multiplication process for the Baugh-

Wooley

When two 8 bit numbers are multiplied the

resultant product size will be the sum of the number

of bits in the given inputs. Then the product will be

maximum of size 16 bits. a and b are two 8 bit signed

inputs and P is the product obtained after

multiplication. The block diagram representation of

the 4-bit Baugh Wooley multiplier is shown in fig

1.6.

1.2.5 Booth's Multiplier:

Booth's multiplier works on two's

complement. It is similar to paper-pencil method,

except that it looks for the current as well as previous

bit in order to decide what to do.

It is done in the following steps

1. If the current multiplier digit is 1 and earlier digit

is 0 (i.e. a 10 pair) shift and sign extend the

multiplicand, subtract with previous result.

2. If it is a 01 pair, add to the previous result.

3. If it is a 00 pair, or 11 pair, do nothing.

Note that the multiplicand and multiplier are

8-bit two's complement number, but the result is a

16-bit two's complement number. “10” pair causes a

subtraction, aligned with 1, “01” pair causes an

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 84 | P a g e

addition, aligned with 0. In both cases, it aligns with

the one on the left. The algorithm starts with the 0
th

bit. Assume that there is a (-1)
th

 bit, having value 0.

Fig.1.6: Block Diagram of Baugh Wooley

1.2.6 Modified Booth Multiplier:

Modified Booth Encoding (MBE) is a

technique that has been introduced to reduce the

number of PP rows, still keeping the generation

process of each row both simple and fast enough. In

this method, the bits can be encoded by considering

three bits at a time. The most commonly used

technique is radix-4 MBE, since it allows for the

reduction of the size of the partial product array by

almost half, and it is very simple to generate the

multiples of the multiplicand. More specifically, the

classic two‟s complement n * n bit multiplier using

the radix-4 MBE scheme, generates a PP array with a

maximum height of [n/2]+1 rows, each row before

the last one being one of the following possible

values: all zeros, +/-X; +/-2X. By using Booth

Recoding table of Modified Booth technique, we can

generate partial products of minimum width.

i+1 I i-1 Partial product

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

 0*M

 1*M

 1*M

 2*M

–2*M

–1*M

–1*M

 0*M

Table 2.1 Modified booth encoding table

The steps involved in the generation of partial

products using Modified Booth algorithm are given

below:

1. Pad the LSB with one zero.

2. Pad the MSB with 2 zeros if n is even and 1 zero

if n is odd.

3. Divide the multiplier into overlapping groups of

3-bits.

4. Determine partial products from modified booth

encoding table.

5. Compute the Multiplicand Multiples

6. Sum Partial Products

II. IMPLEMENTATION
4.1 Booth Multiplication

The inputs to be multiplied called multiplier

and multiplicand are given. The MSB denotes the

sign of the number. If the multiplier(x) or the

multiplicand(y) or both are negative the 2‟s

complement block is enabled and the 2‟s

complemented multiplier is named x2, the 2‟s

complemented multiplicand is called y2. The

multiplier and its 2‟s complement are given to 8 bit

2*1 multiplexer the selection input is the sign bit of

the multiplier. The output of the multiplexer is

positive if the selection input is zero else it is

negative. The multiplexer output of the multiplier is

M1. Similarly the multiplicand and the 2‟s

complemented multiplicand are given to the 8 bit 2*1

multiplexer; the selection input is the sign bit of the

multiplicand. The output of the multiplicand is

positive if the selection input is zero else it is

negative.

The multiplexer output of the multiplicand is

called M2. The M2 is concatenated with 9 bits after

the LSB. The resultant number is called R2. The

value of the M2 is 2‟s complemented by using a 8 bit

2‟s complement block and then concatenated with 9

zeros after LSB and this number is named ad y_12.

 The number M1 is concatenated with 8

zero‟s before MSB and a single bit zero after LSB.

Taking a buffer named K2 whose current value is

zero and of size 17 bits. The M1 and K2 are given as

inputs to the 17 bit 2*1 multiplexer. The selection

line input of the Multiplexer is generated as follows:

A 3 bit down counter output is given to the input of

the 3 bit and gate the output of the and gate is zero

only for the first count and for remaining counts the

output is zero. In this way the 17bit 2*1 multiplexer

output is M1 for the first count and K2 for the

remaining count. The output of the multiplexer is K3.

K3 is a 17 bit register the K3(0) and K3(1) bits are

given as inputs to the 2 to 4 decoder The outputs of

the decoder are the enable inputs for 17 bit adders

and shifter. According to Booth algorithm if the

K3(1) and k3(0) are “00” or “11”then only shifting

operation have to be performed. If K3(1) and K3(0)

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 85 | P a g e

are “01” then addition operation accompanied with

shifting operation have to be performed, else

subtraction operation have to be performed. The y0

and y3 the outputs of the decoder are given to an OR

gate because if any of the outputs is HIGH then we

have to perform the shifting operation basing on

algorithm. The output is given as input to the Shifter.

The shifter performs the right shift arithmetic

operation on the given 17 bit input. The output of the

shifter is zero if the shifter is disabled. The output of

the decoder y1 is given as the enable input to the 17

bit adder the inputs of this adder are K3 and R1, since

addition of the R1 and to the left most part of the

K3.The result after the addition is given to the shifter

to perform the right arithmetic shift operation. The

output y2 of the decoder is given as the enable input

to the 17 bit adder whose inputs are K3 and y_12.

After the addition the number is given to shifter for

right arithmetic shift operation. The output of the

both adders is zero if they are disabled. In the end

after the addition the output of the adders are right

shifted by using the shifter. The results from the

shifters are added by using 17 bit adder and the final

result is placed in the K2 register. All this process

occurs for single count of clock in the counter. The

K2 value updated for every clock cycle. The number

of clock cycles depends upon the number of bit does

the input will have. As here we are interested in 8 bit

multiplier, the numbers of clock cycles are eight.

After completion of the 8 cycles the result or the

product will stored in K2. If only one input is

negative then the result value is the 2‟s complement

of the actual result to obtain the result we have to 2‟s

complement the result. Here we obtain a 17 bit

output, basing on the last bit must be discarded to

obtain the output.

Block Diagram Of 8 Bit Booth Multiplier Is Shown

In Figure 4.1:

Fig. 4.1 Block diagram of 8 Bit Booth Multiplier.

III. SIMULATION RESULTS:

The simulation is carried out using Xilinx software

for different combinations of inputs.

Case1: for two positive inputs:

The simulated output for two positive numbers is

shown in figure 5.1. The inputs of the design are as

shown below:

Multiplier x=001000002 (32)10,

Multiplicand y=001010002 (40)10.

The result final product is

 K2=000001010000000002 (1280)10.

Fig.5.1: Simulation result for Two Positive inputs

Case2: for one positive input and one negative

input:

The simulated output for one positive

number and one negative number is shown in

figure 5.2. The inputs of the design are as shown

below

Multiplier x=00011002 (-24)10,

Multiplicand y=100110002 (24)10.

The result final product is

K2=111111011100000002 (-576)10

N.V.N.Prasanna Kumar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 7, Issue 12, (Part -6) December 2017, pp.81-86

www.ijera.com DOI: 10.9790/9622-0712068186 86 | P a g e

Fig.5.2: Simulation result for Positive and negative input

Case3: for two negative inputs:

The simulated output for two negative numbers is

shown in figure 5.3. The inputs of the design are as

shown below.

Multiplier x= 10010012 (-17)10,

Multiplicand y= 10010012 (-17)10.

The result final product is

 K2=000000010010000102 (289)10.

Fig.5.3: Simulation result for two negative inputs

IV. CONCLUSION AND FUTURE

SCOPE
6.1 Conclusion:

The simulation results indicate that the

proposed method can perform the multiplication of

given inputs. The device is designed using Booth

multiplier algorithm. The design is implemented

for 8 bit multiplication of two inputs and the design

is synthesized. It is observed that the power

dissipation is reduced to 26.01mW. The area is

reduced with the reduction in number of partial

products compared with conventional booth

multiplier technique.

6.2 Future Scope:

The design is implemented in front end

environment. It can be further processed to back

end environment for fabricating the ASIC‟s. The

design can be optimized for better performance in

terms of its cost including power dissipation, delay

and area. Further more in order to reach the current

technological requirement, higher order multiplier

like 16bit, 32 bit, 64 bit multipliers can be

designed.

REFERENCES
[1]. Computer System Architecture(3

rd
 edition),

by M.Morris Mano

[2]. CMOS VLSI Design by Neil.H.E.Weste and

[3]. David Money Harris.

[4]. http://staff.ustc.edu.cn/~han/CS152CD/Cont

ent/C

[5]. OD3e/InMoreDepth/IMD3-Booths-

[6]. Algorithm.pdf

[7]. https://www.youtube.com/watch?v=1aTR9

WQF FtM

[8]. http://shodhganga.inflibnet.ac.in:8080/jspui/

bits

[9]. tream/10603/6521/10/10_chapter%205.pdf

N.V.N.Prasanna Kumar "Design And Analysis of Booth Multiplier Using FPGA. “International

Journal of Engineering Research and Applications (IJERA) , vol. 7, no. 12, 2017, pp. 81-86.

https://www.youtube.com/watch?v=1aTR9WQF
https://www.youtube.com/watch?v=1aTR9WQF

