
K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 76|P a g e

Based on machine learningAutonomous car using raspberry-pi.

K.N.V.Satyanarayana, B.Tapasvi, P.KanakaRaju, G.RameshBabu
Assistant professors,E.C.E.Department,S.R.K.R.engineeringcollege,Autonomous China Amiram,

ABSTRACT
In this paper we discuss about the design of Autonomous car based on machine learning using raspberry pi.

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without

being explicitly programmed. Using this concept of machine learning, a car can be automated (self driving). We

train the car with specific images and whenever it detects the trained images, it operates according to the trained

instruction. The microcontroller used in the car is raspberry pi which is used to control the L298 driver,

ultrasonic sensor and the raspberry pi camera. We use different components like pi camera which is used to train

and detect the objects, L298 driver which operates the dc motor and the ultrasonic sensor to calculate the

distance. This autonomous car is the prototype to the self driving cars which is the present growing advanced

technology in the present scenario.

Key Terms:Raspberry Pi, Picamera, Computer, Numpy, OpenCV, Pygame, PiSerial

--- ----------

Date of Submission: 9-12-2017 Date of acceptance: 23-12-2017

--- ----------

I. INTRODUCTION
A scaled down version of self-driving system

using a RC car, Raspberry Pi and open source

software. The system uses a Raspberry Pi with a

camera and an ultrasonic sensor as inputs, a

processing computer that handles steering, object

recognition (stop sign and traffic light) and distance

measurement.

I.Machine learning:

Machine learning is a type of artificial

intelligence (AI) that provides computers with the

ability to learn without being explicitly programmed.

Machine learning focuses on the development of

computer programs that can change when exposed to

new data. The process of machine learning is similar

to that of data mining. Both systems search through

data to look for patterns. However, instead of

extracting data for human comprehension -- as is the

case in data mining applications -- machine learning

uses that data to detect patterns in data and adjust

program actions accordingly. Machine learning

algorithms are often categorized as being supervised

or unsupervised. Supervised algorithms can apply

what has been learned in the past to new

data. Unsupervised algorithms can draw inferences

from datasets.Facebook's News Feed uses machine

learning to personalize each member's feed. If a

member frequently stops scrolling in order to read or

"like" a particular friend's posts, the News Feed will

start to show more of that friend's activity earlier in

the feed. Behind the scenes, the software is simply

using statistical analysis and predictive analytics to

identify patterns in the user's data and use to patterns

to populate the News Feed. Should the member no

longer stop to read, like or comment on the friend's

posts, that new data will be included in the data set

and the News Feed will adjust accordingly.

II. NEURAL NETWORKS
ML implements feed-forward artificial

neural networks or, more particularly, multi-layer

perceptrons (MLP), the most commonly used type of

neural networks. MLP consists of the input layer,

output layer, and one or more hidden layers. Each

layer of MLP includes one or more neurons

directionally linked with the neurons from the

previous and the next layer. The example below

represents a 3-layer perceptron with three inputs, two

outputs, and the hidden layer including five neurons:

All the neurons in MLP are similar. Each of

them has several input links (it takes the output

values from several neurons in the previous layer as

RESEARCH ARTICLE OPEN ACCESS

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 77|P a g e

input) and several output links (it passes the response

to several neurons in the next layer). The values

retrieved from the previous layer are summed up with

certain weights, individual for each neuron, plus the

bias term. The sum is transformed using the

activation function that may be also different for

different neurons.

In other words, given the outputs of the layer ,

the outputs of the layer are computed as:

Different activation functions may be used. ML

implements three standard functions:

 Identity function

(CvANN_MLP::IDENTITY):

 Symmetrical sigmoid

(CvANN_MLP::SIGMOID_SYM):

),

which is the default choice for MLP. The standard

sigmoid with is shown below:

 Gaussian function

(CvANN_MLP::GAUSSIAN):

 , which is not completely

supported at the moment.

In ML, all the neurons have the same activation

functions, with the same free parameters ()

that are specified by user and are not altered by the

training algorithms.

So, the whole trained network works as follows:

1. Take the feature vector as input. The vector size

is equal to the size of the input layer.

2. Pass values as input to the first hidden layer.

3. Compute outputs of the hidden layer using the

weights and the activation functions.

4. Pass outputs further downstream until you

compute the output layer.

5. Self Driving RC Car

6. Python + OpenCV Neural Network + Haar-

Cascade Classifiers

7. Objective

8. Modify a RC car to handle three tasks: self-

driving on the track, stop sign and traffic light

detection, and front collision avoidance.

9. System Design

10. The system consists of three subsystems: input

unit (camera, ultrasonic sensor), processing unit

(computer) and RC car control unit.

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 78|P a g e

Input Unit

A Raspberry Pi board (model B+), attached with a pi

camera module and an HC-SR04 ultrasonic sensor is

used to collect input data. Two client programs run

on Raspberry Pi for streaming color video and

ultrasonic sensor data to the computer via local Wi-Fi

connection. In order to achieve low latency video

streaming, video is scaled down to QVGA (320×240)

resolution.

Processing Unit

The processing unit (computer) handles multiple

tasks: receiving data from Raspberry Pi, neural

network training and prediction(steering), object

detection(stop sign and traffic light), distance

measurement(monocular vision), and sending

instructions to Arduino through USB connection.

TCP Server

A multithread TCP server program runs on the

computer to receive streamed image frames and

ultrasonic data from the Raspberry Pi. Image frames

are converted to gray scale and are decoded into

numpy arrays.

Neural Network

One advantage of using neural network is that once

the network is trained, it only needs to load trained

parameters afterwards, thus prediction can be very

fast. Only lower half of the input image is used for

training and prediction purposes. There are 38,400

(320×120) nodes in the input layer and 32 nodes in

the hidden layer. The number of nodes in the hidden

layer is chosen fairly arbitrary. There are four nodes

in the output layer where each node corresponds to

the steering control instructions: left, right, forward

and reverse respectively (though reverse is not used

anywhere in this project, it’s still included in the

output layer).

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 79|P a g e

Below shows the training data collection process.

First each frame is cropped and converted to a numpy

array. Then the train image is paired with train label

(human input). Finally, all paired image data and

labels are saved into anpz file. The neural network is

trained in OpenCV using back propagation method.

Once training is done, weights are saved into a xml

file. To generate predictions, the same neural network

is constructed and loaded with the trained xml file.

Object Detection

This project adapted the shape-based

approach and used Haar feature-based cascade

classifiers for object detection. Since each object

requires its own classifier and follows the same

process in training and detection, this project only

focused on stop sign and traffic light detection.

OpenCV provides a trainer as well as

detector. Positive samples (contain target object)

were acquired using a cell phone, and were cropped

that only desired object is visible. Negative samples

(without target object), on the other hand, were

collected randomly. In particular, traffic light

positive samples contains equal number of red traffic

lights and green traffic light. The same negative

sample dataset was used for both stop sign and

traffic light training. Below shows some positive and

negative samples used in this project.

To recognize different states of the traffic light(red,

green), some image processing is needed beyond

detection. Flowchart below summarizes the traffic

light recognition process.

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 80|P a g e

Firstly, trained cascade classifier is used to detect

traffic light. The bounding box is considered as a

region of interest (ROI). Secondly, Gaussian blur is

applied inside the ROI to reduce noises. Thirdly, find

the brightest point in the ROI. Finally, red or green

states are determined simply based on the position of

the brightest spot in the ROI.

Distance Measurement

Raspberry Pi can only support one pi camera module.

Using two USB web cameras will bring extra weight

to the RC car and also seems unpractical. Therefore,

monocular vision method is chosen.

This project adapted a geometry model of detecting

distance to an object using monocular vision method

proposed by Chu, Ji, Guo, Li and Wang (2004).

P is a point on the target object; d is the

distance from optical center to the point P. Based on

the geometry relationship above, formula (1) shows

how to calculate the distance d. In the formula (1), f

is the focal length of the camera; ∂ is camera tilt

angle; h is optical center height; (x0, y0) refers to the

intersection point of image plane and optical axis;

(x, y) refers to projection of point P on the image

plane. Suppose O1 (u0,v0) is the camera coordinate

of intersection point of optical axis and image plane,

also suppose the physical dimension of a pixel

corresponding to x-axis and y-axis on the image

plane are dx and dy. Then:

v is the camera coordinates on y-axis and can be

returned from the object detection process. All other

parameters are camera’s intrinsic parameters that can

be retrieved from camera matrix.

OpenCV provides functions for camera

calibration. Camera matrix for the 5MP pi camera is

returned after calibration. Ideally, a_x and a_y have

the same value. Variance of these two values will

result in non-square pixels in the image. The matrix

below indicates that the fixed focal length lens on pi

camera provides a reasonably good result in

handling distortion aspect. Here is an interesting

article discussing the focal length of pi camera with

stock lens and its equivalent to 35mm camera .

http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=1336478&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1336478
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
http://www.truetex.com/raspberrypi

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 81|P a g e

The matrix returns values in pixels and h is

measured in centimeters. By applying formula (3),

the physical distance d is calculated in centimeters.

RC Car Control Unit

The RC car used in this project has an

on/off switch type controller. When a button is

pressed, the resistance between the relevant chip pin

and ground is zero. Thus, an Arduino board is used

to simulate button-press actions. Four Arduino pins

are chosen to connect four chip pins on the

controller, corresponding to forward, reverse, left

and right actions respectively. Arduino pins sending

LOW signal indicates grounding the chip pins of the

controller; on the other hand sending HIGH signal

indicates the resistance between chip pins and

ground remain unchanged. The Arduino is

connected to the computer via USB. The computer

outputs commands to Arduino using serial interface,

and then the Arduino reads the commands and writes

out LOW or HIGH signals, simulating button-press

actions to drive the RC car.

III. RESULTS
Prediction on the testing samples returns an

accuracy of 85% compared to the accuracy of 96%

that the training samples returns. In actual driving

situation, predictions are generated about 10 times a

second (streaming rate roughly 10 frames/s).

Haar features by nature are rotation

sensitive. In this project, however, rotation is not a

concern as both the stop sign and the traffic light are

fixed objects, which is also a general case in real

world environment.

For distance measurement aspect, the

ultrasonic sensor is only used to determine the

distance to an obstacle in front of the RC car and

provides accurate results when taking proper sensing

angle and surface condition into considerations. On

the other hand, Pi camera provides “good enough”

measurement results. In fact, as long as we know the

corresponding number to the actual distance, we

know when to stop the RC car. Experimental results

of detecting distance using pi camera are shown as

below:

K.N.V.Satyanarayana. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.76-82

www.ijera.com DOI: 10.9790/9622-0712057682 82|P a g e

In this project, the accuracy of distance

measurement using monocular vision approach

could be influenced by the following factors: (1)

errors in actual values measurement, (2) object

bounding box variations in detecting process, (3)

errors in camera calibration process, (4) nonlinear

relationship between distance and camera

coordinate: the further the distance, the more rapid

change of camera coordinate, thus the greater the

error.Overall, the RC car could successfully navigate

on the track with the ability to avoid front collision,

and respond to stop sign and traffic light

accordingly.

REFERENCES
[1]. OpenCV Documentation - Haar Feature-

based Cascade Classifier for Object Detection

[2]. OpenCV Documentation - Cascade Classifier

Training

[3]. NaotoshiSeo - Tutorial: OpenCVhaartraining

(Rapid Object Detection With A Cascade of

Boosted Classifiers Based on Haar-like

Features)

[4]. Material for NaotoshiSeo’s tutorial

[5]. OpenCV Answers - “about

traincascadeparemeters, samples, and

other…”

[6]. OpenCV Answers - “memory consumption

while training > 50GB”

[7]. David J Barnes on Robotics & Mechatronics -

OpenCVHaarTraining - Object Detection

with a Cascade of Boosted Classifiers Based

on Haar-like Features - Part I

[8]. David J Barnes on Robotics & Mechatronics -

OpenCVHaarTraining - Object Detection

with a Cascade of Boosted Classifiers Based

on Haar-like Features - Part II

[9]. github.com/foo123/HAAR.js

[10]. github.com/mtschirs/js-objectdetect

[11]. github.com/inspirit/jsfeat

[12]. Computer Vision Software - FAQ:

OpenCVHaartraining

[13]. StackOverflow - haar training OpenCV

assertion failed

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

K.N.V.Satyanarayana "Based on machine learning Autonomous car using raspberry-pi Open

CV Python Neural network Autonomous car.” International Journal of Engineering Research

and Applications (IJERA) , vol. 7, no. 12, 2017, pp. 76-82.

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
http://note.sonots.com/SciSoftware/haartraining.html
http://note.sonots.com/SciSoftware/haartraining.html
http://note.sonots.com/SciSoftware/haartraining.html
http://note.sonots.com/SciSoftware/haartraining.html
https://code.google.com/p/tutorial-haartraining/
http://answers.opencv.org/question/7141/about-traincascade-paremeters-samples-and-other/
http://answers.opencv.org/question/7141/about-traincascade-paremeters-samples-and-other/
http://answers.opencv.org/question/7141/about-traincascade-paremeters-samples-and-other/
http://answers.opencv.org/question/16199/memory-consumption-while-training-50gb/
http://answers.opencv.org/question/16199/memory-consumption-while-training-50gb/
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection_09.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection_09.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection_09.html
http://blog.davidjbarnes.com/2010/04/opencv-haartraining-object-detection_09.html
https://github.com/foo123/HAAR.js
https://github.com/mtschirs/js-objectdetect
http://inspirit.github.io/jsfeat/
http://www.computer-vision-software.com/blog/2009/11/faq-opencv-haartraining/
http://www.computer-vision-software.com/blog/2009/11/faq-opencv-haartraining/
http://stackoverflow.com/questions/10863560/haar-training-opencv-assertion-failed
http://stackoverflow.com/questions/10863560/haar-training-opencv-assertion-failed

