
Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 54 | P a g e

Comparison between Image Compression Algorithms

Abdullatif zankawi. adel Alateyah

ABSTRACT
Data compression is an essential part of computerized applications and processes. Images make up a significant

portion of transmitted and stored data. There are various ways of image compression that have been studied and

improved upon. This paper focuses on three main image compression algorithms: Run Length Encoding,

Huffman Encoding, and JPEG compression. While there are a large number of available image compression

algorithms, each of the aforementioned methods is selected due to their widespread usage, compression

characteristics, and representation of different aspects in image compression. These three compression

techniques are discussed and compared with each other, highlighting advantages and optimal conditions.

Keywords: Image Compression, Run Length Encoding, Huffman Encoding, JPEG Compression

--- ----------

Date of Submission: 13-12-2017 Date of acceptance: 22-12-2017

--- ----------

I. INTRODUCTION
In today's highly digital world, the

exchange of information has evolved into various

innovative methods and practices. As such, the

accurate and efficient transfer of data has become a

primary concern. The data can be transmitted

through other forms, such as text or sound files, but

one of the most common file type is the image.

Digital images are used in various fields, including

storage of imaged medical records and archiving

copies of evidence for forensic and federal

purposes. In web pages, majority of the downloaded

bytes are constituted by images (Grigorik) which

take up the clients’ bandwidths, slowing down the

browser’s speed in rendering the site’s content.

In order to transmit images in a more cost-

effective manner, several streamlining techniques

have been applied to these files. One such

optimization is to reduce the size of an image

through compression. Image compression is defined

as the application of an encoding method onto an

image such that it takes up less storage space than

the original file. Using compression, the redundancy

within the image is reduced, allowing for more

efficient data storage and transmission (Wei).

Image optimization is a fusion of art and

science, the search for a technique to compress a

file given a specific image. Since a universal

compressor does not exist, compression techniques

must adapt to their input. There are various aspects

within a file that have to be taken into

consideration, including format, quality,

dimensions, and image content (Grigorik).

II. OBJECTIVE
The objective of this paper is to discuss three

primary image compression algorithms and to

determine which methods are best suited to certain

situations. In order to fully understand these

algorithms, the underlying concepts of image

compression must also be discussed. These include

the redundancies found in image data, as well as the

types of compression techniques available for use.

III. BACKGROUND
a. Principles of Image Compression

The process of image compression can be

defined as the representation of an image in a more

compact form. Compression is done with the goal

of having a resulting image that consumes less

storage space than the original file. This reduction is

achieved through removal of information which are

deemed unimportant or redundant, allowing the file

to be represented with a smaller amount of bytes.

Redundancy is a key point in image

compression. Redundancy may occur from the

source or receiver of image information. Source

images are known to have repeating chunks of data;

groups of pixels or strings of information may be

duplicated throughout the image file. As such, these

redundancies can be removed in order to reduce the

amount of information on the image file. The

redundancy can also stem from the receiver of the

information. If the receiver is not able to determine

the difference between two data points, then these

points should be considered as having the same

value, which can thus be classified as a redundancy.

There are three basic ways in which

compression can be attained through redundancy

RESEARCH ARTICLE OPEN ACCESS

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 55 | P a g e

removal. These methods either remove duplicate

pixel information, reduce data representation

strings, or integrate visually indistinguishable

information.

Pixel Redundancy

Pixel redundancy, also known as spatial

redundancy, relies on the statistical dependence of

adjacent pixels with each other. In most images, it

can be observed that the constituting pixels possess

an evident correlation with their neighboring pixels.

If data can be inferred from the previous pixel, then

some part of the current pixel must contain

redundant information, and is a candidate for data

disposal. Reduction can be done by transforming

the original data contained within the image file.

Instead of holding its original information, an image

pixel can instead be represented by the difference

between itself and the previous pixel. From this

compressed form, the image can be reconstructed

using a reference pixel. Images which can be

completely reconstructed through this method are

noted as having a reversible mapping (Wahba and

Maghari).

Coding Redundancy

The information contained within an image

is represented through code - a collection of

symbols each having a predefined value. Code

words are used to define a specific portion of the

image, often with a fixed length or number of bits.

Often times, the pixel information takes up less

space than the allotted number of bits on the

storage. In order to reduce the file size, code words

are abbreviated to represent more information. A

common technique is to utilize lookup tables to map

a set of code words to the original data. The process

is streamlined by pulling statistics from the original

file, such as the frequency of each block of

information. Code words of different lengths is

used, usually assigning shorter code words for

information that recurs more often.

Visual Redundancy

Redundancy can also be noted from the

receiver’s standpoint. Majority of image files are

viewed by humans, so in most cases the Human

Visual System (HVS) acts as the signal receiver of

the information (Dhawan). Human vision has been

proven, through various scientific experiments, to

respond with varying sensitivity to different aspects

of visual information. The human eye is able to

dictate which parts of an image are deemed

unimportant to the scene’s overall content, which

can thus be discarded. Pixels which may have

different encoded values or digital representations

may be considered as virtually equal by the human

visual system. In these cases, the information can be

classified as redundant, as there is fundamentally no

difference from the receiver’s point of view. Image

compression takes advantage of this and attempts to

reduce visually redundant information.

b. Types of Image Compression

Depending on the type of algorithm used,

the image compression may be either lossless or

lossy. As suggested by its name, lossless

compression produces the image’s original value -

without any loss of data - once decompressed. This

type of compression is often used for images that

contain text data, wherein the exact representation

of the original form is necessary. Lossy algorithms,

on the other hand, decompress to an approximation

of the image’s original value. It is mostly applied on

photo, audio, and video files, as loss of resolution or

quality is less noticeable for these examples.

Lossless Image Compression

The first type of image compression is

labeled as “lossless”. The principal objective of

lossless image compression is to reduce the number

of bits that represent the image file in storage,

without losing any data. When using a lossless

compression technique, it is expected that the

image’s decompression process reconstructs the

exact image before its compression. An illustration

of lossless compression can be seen in the Morse

Code, wherein each letter corresponds to a series of

dots and dashes. A message encoded using the

Morse Code will produce the exact same message

once decoded.

Lossless image compression is often

required in medical applications in order to prevent

liabilities and disputes over incorrect data. A slight

inaccuracy in the image rendered could cause

crucial errors in diagnosis, thus the requirement for

compression that fully preserves complete

information. Images which are expected to undergo

significant editing or multiple compressions also

often use lossless compression. The number of

accumulated errors through lossy changes or

processes may exceed the acceptable range for

compression.

In some cases, it is difficult to identify a

pattern or portion of an image that can be discarded.

Non-natural images, which often use indexed

colors, are structured in such a way that even a

minor error in value could translate into a

substantial change in the color representation

(Taubman and Marcellin). Examples of these are

computer-generated text and graphic images such as

lineart and comics, which are more convenient to

represent using lossless compression techniques.

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 56 | P a g e

Lossy Image Compression

A lossy image compression identifies data

which can be discarded with no significant impact

on the final output. Essentially, pixel information

which can be considered as “unimportant”

(Mahoney) or irrelevant are removed when using

this compression method. Lossy compression

algorithms can be likened to creating an abridged

version of a novel. The process identifies key points

of the original data, generating a more compact

book but with the necessary information given to

the reader. Lossy compression is often useful in

removing imperceptible details in audio and video

clips.This technique is applied by older color

televisions, wherein the color signal is transmitted

with less resolution than its monochrome

counterpart. This is due to the fact that the human

eye is more sensitive to brightness than color

differences, and thus would need less information to

process the former than the latter. In lossy image

compression, the original message cannot be

completely reconstructed thus labelling it as an

“irreversible compression” (Kodituwakku).

However, studies within the lossy compression

topic have been continuously aiming at “visually

lossless” compression, which produces images at

the compression quality of lossy compression but

with the least amount of distortion.

The system for lossy image compression is

composed three parts: the source encoder, the

quantizer, and the entropy encoder. The source

encoder transforms the original information of the

image, often using a linear conversion such as the

Discrete Fourier Transform (DFT). Then the

quantizer applies further compression by reducing

the precision of the values generated by the

transform. Finally, an entropy encoder, such as the

Huffman encoder, creates a more compact version

of these quantized values (Dhawan).

IV. IMAGE COMPRESSION

ALGORITHMS
a. Run LengthEncoding

One of the most basic methods of lossless

compression is through Run Length Encoding.

Given a sequence of data, RLE identifies any

repeated bytes and represents the entire chunk with

the repeated byte and its number of repetitions. Run

Length Encoding algorithms are best suited for

images with distinct portions having the same

sample values. These images are often represented

through “black” and “white” runs, wherein the state

of the pixel is either 0 or 1.

Examples of these images include graphics, binary

images, and images created through computer

programs (Taubman and Marcellin). Essentially,

image data containing minimal correlation between

pixels can be compressed appropriately by the Run

Length Encoding algorithm. Run Length Encoding

is known to be inefficient at times, but is used by

other algorithms as well.

Illustration

The algorithm used by Run Length

Encoding checks for any repeating symbols and

classifies these portions as “runs”. Therefore for any

string of symbols, RLE produces a series comprised

of runs and literal text, also referred to as “non-

runs”. To illustrate, below is a sample

representation of an image with a black X shape on

a white background.

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 0 0 0 0

The image can be represented as

011110111101111011110000. Since Run Length

Encoding identifies adjacent occurrences with equal

value and replaces them with a single symbol and

count, the resulting code of this image would be

something like 0[1,4]0[1,4]0[1,4]0[1,4][0,5]. Note

that the bits enclosed in brackets are those

representing the runs, while bits without brackets are

the non-runs.

Implementation

Since the algorithm for Run Length

Encoding is straightforward, it is one of the easiest

compression methods to implement. Non-runs are

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 57 | P a g e

encoded as they are, while runs are converted into

three-byte groups. The first byte is a predefined

special character denoting that the group is a run,

often the least used or non-existent symbol in the

language set. The second byte is the character to be

repeated, while the third byte represents the number

of times the character is to be repeated. For the

example mentioned earlier, the actual encoding

would be as follows:

0 * 1 4 0 * 1 4 0 * 1 4 0 * 1 4 * 0 5

 run of 4 “1”s run of 4 “1”s run of 4 “1”s run of 4 “1”s run of 5 “0”s

Assuming each symbol is allotted a byte, the size is reduced from the original 25 bytes

(011110111101111011110000) to 19 bytes (0*140*140*140*14*05).

Due to its simplicity, Run Length Encoding can also prove to be inefficient in some cases. Take for example the

following image and its representation in zeroes and ones.

0 0 1 1 0 0

1 1 0 0 1 1

0 0 1 1 0 0

1 1 0 0 1 1

The original size is 24 bytes

(001100110011001100110011) while the output of

the Run Length Encoding algorithm is 36 bytes

(*02*12*02*12*02*12*02*12*02*12*02*12). It

can be seen that coding characters with only two

repetitions would actually increase the file size.

b. HuffmanEncoding

Named after its developer, David Huffman, the

Huffman Encoding algorithm is one of the most

widely used component in compression techniques

such as GZIP and JPEG (Blelloch). The basic

concept of the Huffman Encoding algorithm is to

represent more common data with shorter keywords

in order to reduce the size of a file. It relies on a

finite set of symbols mapped with their weights or

probabilities within the given message. Unlike the

previous compression technique, Run Length

Encoding, the Huffman algorithm does pre-

processing of the image data in order to assign the

weights accurately. A binary tree is then constructed

using this mapping, the process of which is

expounded in the following section. As only the

leaves of the binary tree are assigned values, the

Huffman algorithm also removes the need for

codeword boundaries, a common problem with

variable-length codes (Wahba and Maghari).

Illustration

Consider an image composed of a finite set

of colors, represented by the letters A to E in the

image below. The Huffman Encoding algorithm

expects a value associated to each symbol. In this

case, the number of times the symbol appears in the

message is used as the weight.

A A B B C

E D E D D

D C A C D

Symbol Weight

A 4

B 2

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 58 | P a g e

E E E A E

C E E C E

C 5

D 5

E 9

Implementation

The construction of the binary tree follows

a simple set of instructions. First, a tree with only a

root node is created for each symbol. From this

forest, the two trees with the least weight are

combined into a larger tree. Often times, the tree

with the lower weight is placed on the left branch,

but this ultimately does not matter. The resulting

tree will be then assigned a weight equal to the sum

of the weights of its component trees and returned

into the forest. The process is repeated, once again

combining the two least-weight trees, until all nodes

are part of the entire tree. Once the binary tree is

completed, all left branches are assigned 0 while all

right branches are assigned one. From the previous

example, the binary tree is created through the

following steps:

Symbol Weight

E 9

C 5

D 5

A 4

B 2

Symbol Weight

E 9

B & A 6

C 5

D 5

Symbol Weight

C & D 10

E 9

B & A 6

Symbol Weight

C & D 10

(B & A) & E 15

Final Tree:

Symbol Weight

(C & D) & ((B & A) & E) 10

Visually, the binary tree would be constructed like the following, with the branch and node values assigned.

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 59 | P a g e

Symbol Huffman Code

A 101

B 100

C 00

D 01

E 11

Finally, the Huffman Code is used to transmit the

original image. Assuming each original symbol is

allotted 8 bits, the size is reduced from the original

200 bits (25 symbols) to 56 bits

(10110110010000110111010101001010001111111

101110011110011), although for image

compression, the data must still be grouped into

bytes (Mahoney). Even with the binary tree

included in the compressed file, a significant

amount of space is still saved by the Huffman

Encoding algorithm.

c. JPEG Compression

For images in color or grayscale, the JPEG

compression algorithm is commonly used. It is a

lossy type of compression designed to work with

photographs and artwork in a natural or real-world

environment. The compression scheme of JPEG

relies on the limitations of the human visual system.

Depending on how pixels are spaced out, the human

eye’s sensitivity to brightness changes accordingly.

Color variation is also perceived less when the

details are grouped closely together (Mahoney).

The JPEG compression algorithm starts by

converting the RGB color input into the YCbCr

space. The chroma components may be scaled down

due to the previously mentioned human visual

limitations. The converted image is then partitioned

into 8x8 blocks without overlapping. For each

block, a discrete cosine transform is applied,

converting the color levels into coefficients in the

frequency domain (Dhawan). Normalization of

these coefficients is done afterwards. In this step,

information is discarded, thus making the JPEG

compression a lossy algorithm. The resulting

quantized coefficients are traversed in a zigzag

pattern, and further compressed using a lossless

algorithm. In order to decode the compressed file,

the compression steps are simply reversed.

In JPEG compression algorithms, image

quality is traded off for size. Since most

photographic images have a large number of

visually-redundant data, the loss in quality is not

easily detected by the human vision, and can be

labelled as visually lossless. However, in higher

compression ratios, the boundaries of the 8x8

blocks become more apparent and the algorithm

produces less satisfactory output images (Blelloch).

Illustration

Compression is done in 8x8 blocks, which

are represented by the intensity of each of the 64

pixels within the block. For convenience, the

following representation uses a 4x4 block with

sample values of intensity. Preprocessing can also

include subtracting 127 from each element of the

array, transforming the domain from the original

intensity values [0, 255] to one that is centered

around zero [-127, 128].

3 19 10 190

49 62 231 166

26 114 99 85

-124 -108 -117 63

-78 -65 104 39

-101 -13 -28 -42

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 60 | P a g e

37 120 148 132

-90 -7 21 5

Implementation

The discrete cosine transform is applied to

the preprocessed values. The formula of the DCT is

C = UBU
T
, where B is the 8x8 block, and U is an

8x8 matrix with predefined values and U
T
 is the

transpose of matrix U. After the application of DCT,

the values within the resulting array C are quantized

and truncated in order to discard unimportant data,

such as those not perceived by the human eye.

The DC component of the array, or the

value in the upper leftmost portion, is compressed

separately from the other elements. The difference

between the current 8x8 block’s DC component and

the previous one is encoded using a Huffman or

arithmetic algorithm. The rest of the block, or the

AC components, are retrieved in a zigzag formation

in order to form a linear sequence. Zigzag is done

with the purpose of keeping similar values near each

other in the resulting sequence. A continuous stream

of zeroes are expected within the linear order, which

makes it suitable for run length encoding

algorithms. For further compression, the sequence is

encoded via Huffman or arithmetic coding, and

whichever one is used is specified in the header of

the encoded file.

V. RECOMMENDATION
Since this paper only focuses on three

major algorithms, any further study could include

other methods of image compression. More

powerful image compression algorithms have been

established; these could provide material for future

studies. Variations of the three major algorithms to

adapt to certain images and settings can also be

discussed in future papers. Possible improvements

to existing algorithms may also be investigated.

This paper also concentrates on the

theoretical aspect of the image compression

algorithms. Further analysis can be made in this

study through the inclusion of actual compression

and decompression testing. Standard test images of

various aspects (full color, grayscale, or binary) can

be run through the algorithms. Differences in image

format, quality, size, and content can also be used as

variables in the study. Results such as compression

speed and compression ratios can be compared

within one method against each various images or

within various algorithms across constant test

images. An implementation of such tests could

possibly support the discussions regarding images

best suited for specific algorithms. The image

compression algorithms may be implemented

manually or run through an available compression

library.

VI. CONCLUSION
Each image compression method has its

own strengths and weaknesses. The Run Length

Encoding algorithm, which aims to reduce pixel

redundancy, is straightforward and easy to

implement. Its advantages lie with binary images,

since those files have a higher possibility of

containing longer runs. Computer-generated text

images and graphics are also suited for the Run

Length Encoding algorithm due to the lack of

context between neighboring pixels. However, due

to its simplicity, the Run Length Encoding

algorithm may end up increasing the file size for

special cases. It is also a key component in many

other compression techniques.

The Huffman Encoding algorithm is also a

simple algorithm, although it requires pre-

processing of the input image. This method is

suitable for images composed of a finite set of

symbols with known probabilities for each one. It

also does not require special characters as codeword

boundaries making its compression considerably

compact, removing coding redundancies. The

complications with Huffman Encoding arise when

the symbol alphabet is significantly large. Varying

symbol probabilities also require recalculation for

the algorithm to be most efficient. Like the Run

Length Encoding algorithm, the Huffman Encoding

is also used in numerous image compression

methods.

Finally, the JPEG compression algorithm is

best suited for photos with many colors. Its strength

lies in its ability to greatly reduce noise within the

image, and remove visual redundancies. Unlike the

previous two algorithms, JPEG compression is

lossy, so the exact original image can never be

restored. However, in most compression ratios, the

loss is imperceptible to the human eye, making the

compression visually lossless. JPEG compression

can also make use of the either of the two previous

algorithms discussed. Ultimately, the three

compression algorithms are suited to different types

of images, and target different types of redundancies

in image files. The situation and input must be taken

into account so that the algorithms can be used

where they can be most efficient.

Abdullatif zankawi. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -5) December 2017, pp.54-61

www.ijera.com DOI: 10.9790/9622-0712055461 61 | P a g e

REFERENCES
[1]. Blelloch, Guy E. "Introduction to data

compression." Computer Science

Department, Carnegie Mellon University

(2001).

[2]. Dhawan, Sachin. "A review of image

compression and comparison of its

algorithms."International Journal of

Electronics & Communication Technology,

IJECT 2.1 (2011): 22-26.

[3]. Gonzales, Rafael C., and Richard Eugene

Woods.Digital Image Processing.Pearson

Education, 2009.

[4]. Grigorik, Ilya. “Image Optimization.”Web

Fundamentals, Google Developers, 26 Sept.

2017.

[5]. Kodituwakku, S. R., and U. S.

Amarasinghe."Comparison of lossless data

compression algorithms for text data."Indian

journal of computer science and engineering

1.4 (2010): 416-425.

[6]. Ludman, Lonnie C. Fundamentals of Digital

Signal Processing. Wiley, 1986.

[7]. Mahoney, Matt. Data Compression

Explained. mattmahoney.net/dc/dce.html.

[8]. Taubman, David, and Michael

Marcellin.JPEG2000 Image Compression

Fundamentals, Standards and Practice:

Image Compression Fundamentals,

Standards and Practice. Vol. 642, Springer

Science & Business Media, 2012.

[9]. Wahba, Walaa Z., and Ashraf YA Maghari.

"Lossless Image Compression Techniques

Comparative Study." International Research

Journal of Engineering and Technology

(IRJET), e-ISSN (2016): 2395-0056.

[10]. Wei, Wei-Yi."An introduction to image

compression."National Taiwan University,

Taipei, Taiwan, ROC (2008).

Abdullatif zankawi. adel Alateyah "Comparison between Image Compression Algorithms .”

International Journal of Engineering Research and Applications (IJERA) , vol. 7, no. 12, 2017,

pp. 54-61.

