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ABSTRACT 
This paper describes the procedures adopted, and the results found, in the numerical resolution of a problem of 

plate flexion, through the finite difference method. The two-dimensional problem was proposed as being a plate 

that is partially subjected to a uniformly distributed load, and rests on an elastic base, set at its ends and 

supported on its sides. Given the boundary conditions, an algorithm with the finite difference method was 

developed. The programming language used was SciLab, and the results were expressed both numerically and 

graphically. Theoretical fundamentals, program elements and the analysis of their performance are expressed in 

detail in the following text, including elements that facilitate the use in engineering classes, following a didactic 

approach, so that it can be reproduced in classrooms of courses of engineering. 
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I. INTRODUCTION 
The finite difference method is a numerical 

alternative to approximate resolution of relatively 

complex problems, which have no analytical 

solution, or when it is difficult to solve. In summary, 

the method transforms the differential equations that 

govern the phenomenon, into an algebraic system of 

equivalent differential equations. It is from the 

Taylor series that the base equations employed are 

deduced [1][2]. 

Classically, the Taylor series approximates 

a function of x, from the successive sum of its 

derivatives, given two points of the curve, separated 

by a Δx forwards or backwards. So we have: 

 

 
The series has infinite terms, being 

necessary to truncate it in some point, according to 

the wanted precision. Initially, let's stop at the 

second term. Regrouping the plots, we can express 

the approximation of the first derivative as follows: 

 
The two expressions are equally valid. The 

first is known as the descending form (difference to 

the back), and the second as the ascending form 

(difference the front). The first form is more used, 

since, physically, we know the recent past of a 

function, but the future is always an unknown. 

Summing up the two expressions, we obtain the 

"centered" form of the series (or central finite 

difference), finally expressing the first derivative as: 

 
If we repeat the procedure, but now 

truncating the series in the second derivative, we 

will obtain the difference equation, and replacing 

what we already know in relation to the central form 

of the first derivative: 

 
In an analogous way, we can perform this 

procedure to approximate the derivative of any 

order, of a given function. To conclude, the 

approximate third and fourth order expressions can 

be represented by: 

 

 
With these equations, we can apply the 

finite difference method to the proposed problem, 

which is governed by a partial fourth-order 

differential equation. 

 

II. PROBLEM DEFINITION: BENDING PLATE  

A given structuring element can be defined 

as being one-dimensional, two-dimensional, or 

three-dimensional, although everything in the 

physical world is in fact three dimensions. Basically, 

when the dimensions in a given coordinate is much 

smaller than the others, it is considered negligible. In 

the case of plates, the thickness (or height) is much 
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smaller than the length and width, the plate being a 

Bidimensional element. From the general theory of 

plates the following equation is obtained: 

 

 
 

Where: ω represents the transverse 

displacement of a point on the plate. P is a function 

of x and y, and gives us the intensity and shape of 

the charge applied to that plate. k is the elastic 

constant of the base on which the plate rests. Finally, 

D is the flexural rigidity of the plate, which is given 

by the equation:  being E the Young's 

modulus, δ the plate thickness and υ the Poisson 

coefficient. With the exception of transverse 

displacement, all these variables must be provided to 

solve the problem. Rearranging the equation we 

have: 

 
Now each term of the derivatives of w will 

be expressed by the equivalent center difference 

equation: 

 

 

 

 
Adding the terms, the initial equation 

expressed by central differences have the form: 

 

 

 

 

 
This is the cell that will be run in the 

program in order to solve our problem. 

Geometrically, we can represent this cell according 

to the following figure: 

 
Fig.1. Schematic diagram of cell 

 

A. Contour and Charging Conditions 

The boundary conditions of our plate as 

well as the way the charge is distributed on it are 

expressed in the figure of the problem itself (figure 

02). The lower edge AB and the upper edge DC are 

embedded, and the edges AD and BC are on simple 

support. The charge is uniformly distributed, but acts 

only on the lower half of the plate. 

 
Fig. 2. Design of the proposed problem 

 

It is important to note that the base cell 

arises from a fourth-order equation, and it is 

necessary for the calculation of the transverse 

displacement w two adjacent points in the i-direction 

and in the j-direction. Therefore, the artifice of 

"fictitious points" is necessary. The value of the 

dummy points are not necessarily zero. They follow 

the curvature of the surface and are therefore a 

function of the contour condition and the first edges 

analyzed. In simplified 

form, (support) and 

 (clogged). 

 

III. PROGRAM CONSTRUCTION 
The program for cell implementation was 

developed in SciLab environment. Scilab is a high-

level, interpretive programming language with 

numerous numeric tools, with many similarities to 

MatLab® [3]. The software is free, open source, 

does not require a license for use and installation, 

and can be distributed freely, so it is very much used 

in universities and other industrial applications. It 

was developed by the French consortium "Scilab", 

and it is constantly updated, especially with regard 

to new toolbox for various applications. The version 

used was 5.4.0, and can be downloaded at 

www.scilab.org/download. 
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To simplify, we can divide the program into 

four parts: (i) Acquisition of input values; (ii) 

construction of the Matrix of coefficients, called 

matrix A; (iii) construction of the matrix of 

independent terms, called matrix u; and (iv) 

calculations of the values of w. The results can be 

seen numerically, but it was opted to visualize by 

means of graphs able to translate in a more didactic 

way the behavior of the values reached. 

Initially, it was not known the contour 

conditions, even the information being in the figure, 

ended up going unnoticed. So the program was 

created with the possibility of including the 

boundary conditions. It was preferred to maintain 

this functionality. 

SciLab, like MatLab®, receives the input 

data by command lines. However, the x_mdialog 

function exists. With it, it is possible to open dialog 

boxes, requesting actions or adding values or strings, 

leaving the program more interactive. For example, 

in the program we have the lines, below, that 

generate the window of figure 03: 

-->sig = x_mdialog('entre com os dados', txt, 

['40';'40';'1']); 

-->L = evstr(sig(1)); 

-->C = evstr(sig(2)); 

-->h  = evstr(sig(3)); 

 

The dialog box, which prompts you for 

board width, board length, and discretization value 

h. The values will be saved in the variables L, C and 

h, respectively. The same occurs with the boundary 

conditions, and the values of the elastic constant k, 

the load p, and the rigidity D. 

 
Fig. 3. Program Dialog Box 

 

After the data entry procedures, the 

coefficient matrix A is constructed. This matrix has 

the coefficients of the cell, distributed in band along 

the matrix. For this, a routine was constructed 

capable of generating a line of coefficients, and it 

moves a column to each line. This is the largest 

array of the program. If the system is discretized in a 

grid of m columns, by n lines, we have a square 

matrix A of size mnXmn. The results will be 

detailed later with m = 40 and n = 40, so matrix A 

has dimensions of 1600x1600. 

After the construction of the Matrix, we 

have in the next step the construction of the vector-

column of independent values U. This construction 

takes into account the value of the boundary 

conditions, the data of the dummy points and the 

load q applied on the plate. Recalling that for values 

of i above half of the plate, the applied load is equal 

to zero. The base cell equation was applied to the 

development of these values. The initial construction 

took place in Matrix U1, then we aligned the terms 

of this matrix into a single column, called u. Finally, 

the most important point: the account itself, 

expressed by the line:   w = inv (A) * u 

At this point, a computational limit was 

realized to perform this operation, because matrices 

A slightly larger than 1600x1600 "burst" the variable 

stack memory, interrupting the inversion / 

multiplication operation, showing the error message 

expressed in figure 04. This 40x40 limit was found 

empirically. 

 

 
Fig. 04. Calculation memory exceeded, in 

discretizations greater than 40x40 

 

With this, we already have the results of the 

values of w. These values could be expressed in a 

column-vector, or expressed in an array, positioned 

similarly to their location on the board. This matrix 

is the matrix V. The results were expressed in 

graphs, which have a better didactics of results 

analysis. 

 

IV. RESULTS 
The matrix V is created from the values of 

w. The results can be analyzed numerically, 

observing the matrix. However, an analysis in a 

relatively large array is not simple to view, and the 

smaller the discretization value h, the larger the 

array size, and the better the resolution and accuracy 

of the problem. So the option to graphically view the 

results. 

For the purpose of examples, we will now 

adopt the following loading values (10³), stiffness 

(10
6
) and elastic constant (10³), which are requested 

through the dialog box next to it, once the boundary 

conditions are entered. 
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A. Resolution x Discretization 

The lower the value of h, the better the 

result, however, the greater computational power 

will be required to perform the calculations, because 

the higher the coefficient matrices, independent 

terms and also results. As already reported, a 

computational impediment lies in the memory 

capacity of the stack. The highest resolution was 

reached at 40x40. You can see below the 

improvement of the result with the discretization, in 

graph (figure 05): 

 

 
Fig. 5. Results of different discretizations 

 

Thus, the best response occurs in the lower 

discretization. All the results of this point in day will 

be in grids of 40x40. The graphs of figure 5 were 

obtained with the mesh (V) command. In some 

cases, it is more convenient to express the results on 

contours, or equipotential surfaces. In Figure 06, the 

equivalent result is expressed in 2D graphs: 

 

 
Fig. 06. Equivalent 2D chart and contour lines 

 

B. Analysis of results 

By analyzing the graphs, you can see the 

behavior of the board. Only half of the plate is 

loaded, the maximum deformation in the region 

close to the point (10,10). The region that is not 

subjected to the load also deforms due to the 

bimomento. By "climbing" on one side, we have the 

"get down" on the other side of the board. 

We imagine some extreme situations to 

observe the behavior of the program and observe if 

the numerical / graph result matches the expected 

situation. For example: what is the behavior of the 

program if we enter p = 0 (no load). The result is 

expressed in figure 07: 

Fig. 7. Result for P = 0 (without load) - There is 

no transverse displacement 

 

As expected, if there is no loading, there 

should be no deformation. The graphical response of 

the built program shows a simple flat plate with no 

deformation. Next, we insert in the variables, the 

value of the elastic constant as being zero. The result 

is shown in figure 8: 

 
Fig. 8. Result for k = 0 (no load) - Increased 

strain amplitude 

 

By making k = 0, we have the maximum 

deformation of the plate, under conditions p = 10³ 

and D = 10
6
. By increasing the value of k, we only 

reduce the amplitude of the deformation, keeping the 

deformation "standard" practically constant. 

Now we can question what happens to the 

deformation by changing the rigidity of the plate, 

making it equal to zero. First of all, this is an 

IMPOSSIBLE situation, there is no way for a zero 

rigid board. In addition, in program calculations, the 
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value of D appears in the denominator, being 

mathematically impossible to divide by zero, 

generating an error in the program. But, just for 

comparative purposes, let's make a D small enough 

to realize the behavior of the graphical output of the 

program. 

 
Fig. 9. Very small stiffness - high deformation, 

little interaction 

It is easy to see that the structure has 

deformed following the load distribution along the 

half of the plate. Practically there was no interaction 

between an application point and its neighborhood. 

With these punctual analyzes, it is possible 

to perceive that the result of the program 

corresponds to the corresponding physical situation. 

It is important to note that 40x40 square matrices 

were assembled. The program seamlessly runs non-

square systems, for example a 20x60, or 10x70 card. 

The problem is that under these conditions, one 

dimension will have good resolution and the other 

will have low resolution. The best format found for 

viewing has been the one explored so far. In Figure 

10, I highlight some results with non-symmetric 

plates (width ≠ length), for the same input data (p = 

10³, D = 10
6
, k = 10³). 

 

 

 

 

 
Fig. 10. Some results for non-symmetric plates (width ≠ length) 

 

C. Convergence 

A numerical method is said to converge 

when Δx and Δt tend to zero, and the numerical 

solution increasingly approaches the real solution 

[4]. The proposed problem has no time dependence, 

being a temporally static problem. Therefore, it 

automatically converges in time, since Δt = 0 in any 

situation. The Taylor series is convergent, since it is 

contained within the radius of convergence, which 

does not directly guarantee that the method 

converges. However, convergence was observed for 

all proposed situations. 

 

V. CONCLUSION 
The program developed fulfilled its 

objectives: to solve the problem proposed in the 

classroom and to provide a meaningful learning 

regarding the discipline of numerical methods, being 

the challenge to the level of the desired level of 

study in a graduation. 

 

 

For the test situations, the program 

responded satisfactorily, achieved consistent results 

and proved versatile in its application. The 

numerical method is efficient in solving this type of 

problem. Only the software used did not 

immediately respond to more ostensive use, with 

even smaller discretizations. 
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