RESEARCH ARTICLE

OPEN ACCESS

Power Factor Correction and Speed Control of BLDC Motor Drive Fed by Zeta Converter

*Nooka Yamuna¹,Mouliswararao Reddy²,B.Srikanth³

¹P.G. Student, ²Asst.Professor, Asst.Professor, Department of EEE, AITAM Engineering College (Autonomous), Andhra Pradesh, India³ Corresponding Author: *Nooka Yamuna

ABSTRACT

This paper proposes a brushless dc (BLDC) motor fed by zeta converter for power factor correction (PFC). A single phase supply followed by an uncontrolled bridge rectifier and a Zeta DC-DC converter is used to control the voltage of a DC link capacitor .The PFC-based zeta converter is designed to operate in discontinuous inductor current mode thus utilizing a voltage follower approach which requires a single voltage sensor for DC link voltage control and PFC operation. The speed variation in the BLDC motor is achieved by varying the DC link voltage. The DC link voltage is calculated corresponding to the duty cycle of the converter switch. The proposed drive with zeta converter is realized as an efficient method for power factor correction in low-power applications also. A MATLAB/Simulink is used to simulate the developed model to achieve the range of speed control with high power factor and improved Power Quality at the supply.

Keywords: Brushless DC motor (BLDCM), DC link voltage, PID controller, PFC (Power Factor Correction), Zeta converter.

Date of Submission: 30-11-2017	Date of acceptance: 11-12-2017

I. INTRODUCTION

Brushless DC motor (BLDCM) is well suited in large number of applications. Due to it's higher in efficiency, reliability, and torque and lower in noise level, maintenance requirements, electromagnetic interference (EMI) and of long life time. It is also named as electronically commutated motor. Since it has no brushes and commutator, rather an electronic commutation through VSI is used with switching sequence of VSI's switches depending up on the rotor position as sensed by Hall Effect position sensors. This motor is a trapezoidal back-EMF motor which has permanent magnets on the rotor and three phase windings on the stator. Brushed DC motor is increasingly being used in military, industrial and commercial applications.

To provide a regulated output dc voltage in power systems, a DC/DC converter is being used. There are four main types of converters, usually called the Buck, Boost, Buck-Boost and cuk converter.CUK, SEPIC and Zeta converters are the new classes of DC-DC converters. Among them, Zeta converter is the proposed in this paper. The proposed PFC-based zeta converter feeds a BLDC motor drive. The speed of BLDC motor is being controlled by varying the dc-link voltage of VSI. The PFC zeta converter acts as an inherent PF corrector as it is designed to operate in DICM. A Single voltage sensor is used to realize the complete operation of BLDCM. To reduce the switching losses an electronic commutation of BLDC motor is used. [1]

II. MATHEMATICAL MODEL OF BLDC MOTOR DRIVE SYSTEM

A 3 phase - Y connected trapezoidal back-EMF type BLDC is modeled. Trapezoidal back-EMF is referring that mutual inductance between stator and rotor has trapezoidal shape. Therefore a b c phase variable model is more applicable than d-q axis. With the intention of simplifying equations and overall model the following assumptions are made:

- Magnetic circuit saturation is ignored.
- Stator resistance, self and mutual inductance of all phases are equal and constant.
- Hysteresis and eddy current losses are eliminated.
- All semiconductor switches are ideal.

The electrical and mechanical mathematical equations of BLDC are:

$$V_a = Ri_a + (L - M)\frac{di_a}{dt} + E_a$$

[2.1]
$$V_b = Ri_b + (L - M)\frac{dt_b}{dt} + E_b$$

[2.2]

$$V_c = Ri_c + (L - M)\frac{di_c}{dt} + E_c$$

[2.3]

Å

Back EMF equations of each phase

$$E_a = K_e \omega_m F(\Theta_e)$$

$$E_e = K_e \omega_m F(\Theta_e)$$

$$[2.4]$$

$$[2.5]$$

$$E_c = K_e \omega_m F(\Theta_e - \frac{4\pi}{3})$$
[2.6]

Torque equations of each phase

$$T_a = K_t i_a F(\Theta_e)$$
[2.7]

$$T_b = K_t i_b F(\Theta_e - \frac{2\pi}{4\pi})$$
[2.8]

$$T_c = K_t i_c F(\Theta_e - \frac{\pi}{3})$$
[2.9]

Electromagnetic Torque equation

$$T_e = T_a + T_b + T_c [2.10]$$

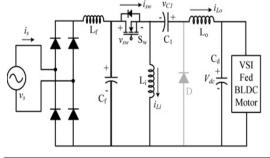
$$T_e - T_l = J \frac{d^2 \Theta_m}{dt^2} + \beta \frac{d \Theta_m}{dt}$$
[2.11]

$$\Theta_e = \frac{p}{2}\Theta_m \qquad [2.12]$$

Angular rotor speed

$$\omega_m = \frac{d\Theta_m}{dt}$$
[2.13]

III. ZETA CONVERTER


Analysis of the zeta converter operating in discontinuous conduction mode is used for power factor correction. The main advantage of zeta converter is that it is a naturally isolated structure, which allows a regulated output voltage with only one power processing stage. With the exception of the zeta converter all others (buck, boost, buckboost, cuk and sepic) have been employed to correct the power factor of power supplies. However they have their intrinsic limitations.

Operation of zeta converter:

The zeta converter is operated in Discontinuous inductor current mode (DICM) to achieve wide range of speed control and power factor correction.

Mode I:

In this model, switch S_w is ON position. When inductors L_i and L_o are getting charged, the

intermediate capacitor C_1 is discharged . The dc link capacitor C_d gets charged. In mode1, diode D is in off condition because positive polarity of the capacitor V_{c1} is applied to diode. When the diode D is said to be in OFF condition a voltage applied to capacitor is $V_{c1}.$

Mode II :

In mode 2, switch S_w is OFF position. So there is no supply to the remaining part of the circuit. In mode 2, inductor L_i and Lo are discharged. the diode D starts conducting. Hence the voltage across C_1 and V_{dc} gradually increases. **Mode III:**

In mode 3, the switch S_w is in OFF position and this mode is said to be in discontinuous mode of operation. The inductor Li completely discharges and the inductor current becomes zero. When the inductor current becomes zero, the capacitor V_{dc} acts as source for VSI which is connected to BLDC. By this way voltage V_{dc} also decreases in this mode.

IV. PROPOSED TOPOLOGY FOR BLDC MOTOR DRIVE SYSTEM

The complete operation of BLDC motor drive is realized using a single voltage sensor. A electronic commutation of BLDC motor is utilized for reducing the switching losses.[2]

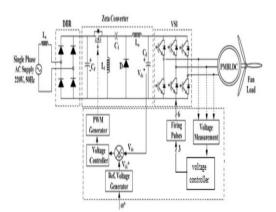


Fig 4.1 Proposed PFC zeta converter fed BLDC motor drive

Design of PFC zeta converter:

In switching period, the current flowing through inductor is discontinuous.

The duty ratio D for the zeta converter is

$$D = \frac{V_{dc}}{V_{dc} + V_{in}}$$
[4.1]

The permitted ripple current in input inductor L_i and output inductor $L_{\rm o}$ the inductor value L_i and $L_{\rm o}$ are given as

$$L_{i} = D.V_{in}/2I_{in}f_{s}$$

$$L_{0} = (1-D)V_{dc} / \{f_{s}.(\Delta i_{Lo})\}$$

$$[4.2]$$
Where f_{c} is the switching frequency

The value of intermediate capacitor C_1 is

www.ijera.com

 $\begin{array}{ll} C_1 = D.I_{dc}/\{f_s.(\Delta V_{C1})\} & [4.4] \\ \text{Here } \Delta V_{C1} \text{ is the permitted ripple in } C_1. \\ \text{The value of DC link capacitor } C_d \text{ is written as} \\ C_d = I_{dc}/(2.\omega.\Delta V_{dc}) & [4.5] \end{array}$

Design of dc filter (L_f and C_f):

The filter capacitance at maximum is

$$C_{max} = \frac{l_m}{\omega_L V_m} (\tan \theta) = \frac{(P_o^{\sqrt{2}}/V_s)}{\omega_L V_m} \tan \theta$$
[4.6]

The additional value of inductance required is

$$L_f = L_{req} + L_s \Rightarrow \frac{1}{4\pi^2 f_c^2 C_f}$$
[4.7]

Control of proposed BLDC motor drive:

The front-end PFC converter is controlled by approach called voltage follower and the converter generates the PWM pulses for the PFC converter switch for dc-link voltage control. The PFC zeta converter is operated in DICM by single voltage control loop.

Reference dc-link voltage
$$V_d^*$$

 V_{dc}^* ,=k_v ω^*

$$\omega^*$$
 [4.8]

Generated voltage error signal,

 $V_e(k) = V_{dc}^*(k) - V_{dc}(k)$ [4.9] Voltage error signal is generated by comparing reference dc-link voltage(V_{dc}^*) with sensed dc-link voltage(V_{dc})

Generated output voltage(V_{cc}),

$$V_{cc}(k) = V_{cc}(k-1) + k_p \{V_e(k) - V_e(k-1)\} +$$

$$k_t V_{\rho}(k)$$

Controlled output voltage is generated by giving error voltage signal to PI controller

The PWM pulses is generated by comparing the output of voltage controller with a high-frequency saw-tooth signal(m_d)

$$\begin{bmatrix} m_d(t) < V_{cc}(t), \text{ then } s_w = \text{on} \\ m_d(t) \ge V_{cc}(t), \text{ then } s_w = \text{off} \end{bmatrix}$$

V. MATLAB SIMULATION CIRCUIT FOR BLDC MOTOR WITH ZETA CONVERTER

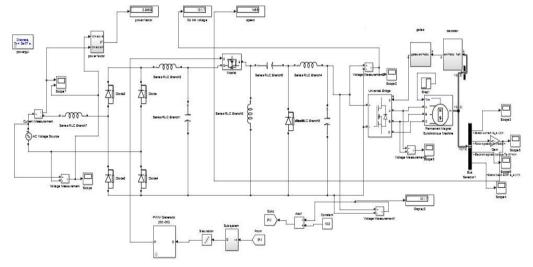


Figure:5.1 MATLAB Simulation circuit for BLDC motor with zeta converter

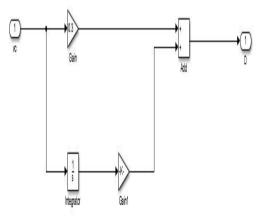
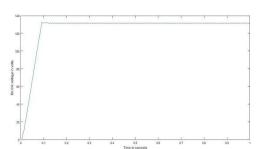



Figure: 5.2 Sub system of PI controller

VI. RESULT ANALYSIS

Simulation results were obtained using the proposed strategy to the BLDC motor has the following constants and ratings Four pole, $V_{rated} = 200$ V, R_{ph} (phase resistance) = 0.7Ω , L_{ph} (phase inductance) = 2.72mH, K_b (back emf) =88v/Krpm, Torque constant(K_t)=0.84Nm/A J(moment of inertia) =0.8Kg-m² Controller gains: $K_p = 0.3$ and $K_i = 0.001$ Zeta converter parameters: input inductor (L_i)=1000µH, Intermediate capacitor (C_1)=400 nF, Output Inductor (L_o)=3mH, DC link capacitor=2000µF, DC filter inductance(L_f)=1.21mH, DC filter capacitance (C_f) =330nF.

Fig:6.1 DC link voltage for input voltage v_s is 220v

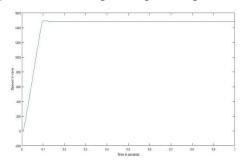
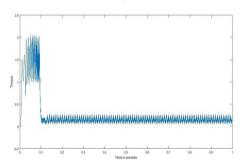



Fig:6.2 Speed of BLDC motor when operating at 220v

Fig: 6.3 Electromagnetic Torque (T_e) of BLDC motor when operating at 220v

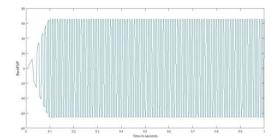


Fig:6.4 Back emf (E_b) of BLDC motor when operating at 220v Simulated Results for various speeds and DC

link voltages

Actual	Power
speed of	factor(cos\u00c6)
the	
motor(Nr)	
in rpm	
1486	0.958
	speed of the motor(Nr) in rpm

122.8	1388	0.969
114	1289	0.962
105.3	1189	0.944
96.3	1090	0.921
87.7	991	0.900

VII. CONCLUSION

A Simple control using a voltage follower approach has been used for voltage control and power factor correction of a PFC zeta converter fed BLDC motor drive. The speed of BLDC motor has been controlled by varying the dc-link voltage of VSI via the PFC zeta converter. The PFC zeta converter has been designed to operate in DICM, which required a voltage follower for dc-link voltage control. The PFC zeta converter fed BLDC motor drive has been simulated and results were obtained. The zeta converter is found to be effective in improving the power factor of the BLDC motor drive. The proposed drive system has been found suitable to various adjustable speed drives for many low power applications.

REFERENCES

- [1] Bhim Singh, VashistBist, "A Single Sensor based zeta converter Fed BLDC motor drive for fan applications," 2012 IEEE Fifth Power India conf.,19-22 December 2012, pp.1-6
- [2]. [2]Bhim Singh, VashistBist, "Power quality improvements in a zeta converter for brushless DC motor drives," IET Sci. Meas. Technol., 2015, Vol. 9 (3), pp. 351–361.
- [3]. [3] S Nagapavithra, Dr.S Umamaheswari "Zeta converter fed BLDC Motor for power factor correction and control."IEE Conference on ICEDSS,4-5 march 2016,Namakkal,India.
- [4]. [4] Akash Ghodake, Dr.M.S.Chavan "A Review paper on Zeta converter fed BLDC motor Drive," ICRIEM,-16 ISBN;978-81-932074-5-1,pp 465-469
- [5]. [5] Anitha, R. Uthra and AkshayaSaraswathi, "Zeta Converter Fed Brushless DC Motor Drive for power Factor Correction in Low Power Applications" IJCTA,2016,Vol(14),pp 6583-6591
- [6]. [6] Rahul P.Argelwar, V.S.Nandanwar, Sapna Verma, "PFC Zeta Converter Fed BLDC Motor Drive for Fan Applications" IJRAT, 2014, Vol2(2)
- [7]. [7] Sreedevi K J, C Sojy Rajan, "A New pulse width modulated PFC zeta converter fed Sensorless BLDC motor Drive with position feedback," IJSR,2014,vol(3)issue 7,pp 723-729

www.ijera.com

[8]. [8] Reshma Shabi, Dhanya B Nair, "Power factor corrected zeta converter Based switched mode power supply, IJIREEICE,2016 vol(4) issue 9,pp 68-72

BIOGRAPHY

Ms.N. Yamuna received his B.Tech Degree in Electrical and Electronics Engineering from ASRIET, West Godavari, Tadepalligudem, Andhra Pradesh, India in 2014. Currently pursuing M.Tech in Aditya Institute of Technology and Management, (Autonomous), Tekkali, Andhra Pradesh, India.

Mr.MouliswararaoReddy completed his graduation in Electrical and Electronics Engineering from JNTU Kakinada in 2006 and received his M.tech in Power Electronics drives from JNTU industrial Kakinada University, India in 2012.He had a teaching experience of 5years and published many papers in national and international journals and conferences. He presently working as an Assistant Professor in the Department of Electrical and Electronics Engineering, AITAM College of Engineering, Tekkali, Andhra Pradesh, India. His areas of interest are machine modeling and power electronics drives.

Mr. B.Srikanth completed his graduation in Electrical and Electronics Engineering from JNTU Hyderabad in 2005 and received his M.tech .in Power Electronics industrial drives from JNTU Anantapur University, India in 2008. He had a teaching experience of 8 years and published many papers in national and international journals and conferences. He presently is working as an Assistant Professor in the Department of Electrical and Electronics Engineering, AITAM College of Engineering, Tekkali, Andhra Pradesh, India.

International Journal of Engineering Research and Applications (IJERA) is **UGC approved** Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV 80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

*Nooka Yamuna. "Power Factor Correction and Speed Control of BLDC Motor Drive Fed by Zeta Converter ." International Journal of Engineering Research and Applications (IJERA) , vol. 07, no. 12, 2017, pp. 62-66.

www.ijera.com

DOI: 10.9790/9622-0712036266
