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ABSTRACT 

This paper concerns with the problem of obtaining non-zero distinct integral points on the hyperbola.Two 

different sets of solutions satisfying the hyperbola under consideration are presented. Knowing a solution, a 

general formula for generating a sequence of solutions is presented.  
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I. INTRODUCTION 
It is well known that binary quadratic 

Diophantine equation both homogeneous and non 

homogeneous are rich in variety [1-4]. Particularly 

in [5-14], the binary quadratic non-homogeneous 

equations representing hyperbolas respectively are 

studied for their non-zero integral solutions. 

However, in [15] it is shown that the hyperbola 

represented by 3𝑥2 + 𝑥𝑦 = 14 has only finite 

number of integral points. These results motivated 

us to search for other choices of hyperbolas having 

infinitely many non-zero integral solutions. It is 

towards this end, in this communication, we study 

the hyperbola given by 3𝑥2 − 4𝑦2 = 3 for its non-

trivial integral solutions. The recurrence relations 

satisfied by the solutions 𝑥 and y are given. Also a 

few interesting properties among the solutions are 

exhibited. 

 

I.Notations 

𝑡𝑚,𝑛 = 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘 𝑛 

      𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 𝑚 = 𝑛  1 +
 𝑛 − 1 (𝑚 − 2)

2
 . 

𝑝𝑛
𝑚 = 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘 𝑛 𝑤𝑖𝑡𝑕 

𝑠𝑖𝑑𝑒𝑠 𝑚 =
1

6
𝑛 𝑛 + 1   𝑚 − 2 𝑛 +  5 − 𝑚  .  

𝑂𝑏𝑙𝑛 = 𝑂𝑏𝑙𝑜𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘 𝑛 = 𝑛 𝑛 + 1 . 
𝑃𝑃𝑛 = 𝑃𝑒𝑛𝑡𝑎𝑔𝑜𝑛𝑎𝑙 𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝑟𝑎𝑛𝑘 𝑛 =
𝑛2(𝑛+1)

2
. 

 

II. METHOD OF ANALYSIS 
To start with, the binary quadratic equation given 

by 

 3𝑥2 − 4𝑦2 = 3   (1) 

 

represents a hyperbola. 

 

Setting, 𝑥 = 𝑋 + 4𝑇, 𝑦 = 𝑋 + 3𝑇          (2)     

  

in (1), it simplifies to the equation 

𝑋2 = 12𝑇2 − 3                  (3) 

 

The smallest positive integer solution of (𝑇0 , 𝑋0) of 

(3) is 

𝑇0 = 1 , 𝑋0 = −3 

 

To obtain, the other solutions of (3), consider the 

Pellian equation 

𝑋2 = 12𝑇2 + 1 

Whose general solution (𝑇 𝑛 , 𝑋 𝑛) is given by 

𝑋 𝑛 +  12𝑇 𝑛 = (7 + 2 12)𝑛+1 
Since irrational roots occur in pairs, we have 

𝑋 𝑛 −  12𝑇 𝑛 =  7 − 2 12 
𝑛+1

,     𝑛 = 0,1,2, … 

From the above two equations, we get 

𝑋 𝑛 =
1

2
  7 + 2 12 

𝑛+1
+ (7 − 2 12)𝑛+1  

𝑇 𝑛 =
1

2 12
  7 + 2 12 

𝑛+1
− (7 − 2 12)𝑛+1  

     𝑛 = 0,1,2… 

       Applying Brahmagupta Lemma between the 

solutions(𝑇0, 𝑋0) and (𝑇 𝑛 , 𝑋 𝑛), the general solution  

(𝑇𝑛+1, 𝑋𝑛+1) of (3) is found to be 

𝑇𝑛+1 =    𝑋 𝑛 − 3𝑇 𝑛  

𝑋𝑛+1 = −3𝑋 𝑛 + 12𝑇 𝑛 ,    
   𝑛 = −1,0,1, … 

Substituting these values in (2), the sequence of 

integral solutions of (1) can be written as  

𝑥𝑛+1 = 𝑋 𝑛  

𝑦𝑛+1 = 3𝑇 𝑛 ,     𝑛 = −1,0,1, … 
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The values of x and y satisfies the recurrence 

relations 

𝑥𝑛+3 − 14𝑥𝑛+2 + 𝑥𝑛+1 = 0 

𝑦𝑛+3 − 14𝑦𝑛+2 + 𝑦𝑛+1 = 0 

A few interesting properties among the solutions are 

presented below: 

1. The 𝑥-values are odd and 𝑦-values are even. 

2. 𝑦𝑛+1 ≡ 0 𝑚𝑜𝑑 6 ,     n=0,1,2,… 

3. 𝑥2𝑛−1 ≡ 0 𝑚𝑜𝑑 7 ,   n=1,2,…  

4. Each of the following expression 

 represents a Nasty number: 

(i)  𝑦𝑛+2 − 13𝑦𝑛+1 − 12𝑦𝑛  

(ii)𝑥𝑛+2 − 13𝑥𝑛+1 − 12𝑥𝑛  

(iii) 𝑥𝑛+3 − 15𝑦𝑛+2 − 13𝑥𝑛+1 

(iv)𝑦𝑛+3 − 11𝑦𝑛+2 − 40𝑦𝑛+1 − 10𝑦𝑛  

(v)  𝑦𝑛+2 − 12𝑦𝑛+1 − 26𝑦𝑛  

5. 𝑦𝑛+3 − 14𝑦𝑛+2 + 2𝑥𝑛+1 is a cubical 

 integer. 
6. 𝑦𝑛+3 − 10𝑦𝑛+2 − 54𝑦𝑛+1 − 8𝑦𝑛 ≡ 0 (𝑚𝑜𝑑 6) 

7. (𝑜𝑏𝑙𝑥)2(𝑝𝑝𝑥)2 − 25(𝑝𝑥
2)2 ≡ 0(𝑚𝑜𝑑 3) 

8. 6( 𝑝𝑥
5) − 4 𝑡3,𝑥 ≡ 0(𝑚𝑜𝑑 2) 

9.  𝑝𝑦
3 + 6 𝑡3,𝑦+1 ≡ 0(𝑚𝑜𝑑 3) 

10. Choose 𝑟 = 𝑠, 𝑠 = 𝑥 − 𝑦 Treat r and s as 

the generators of the Pythagorean 

triangle 𝛼, 𝛽, 𝛾  where 𝛼 = 2𝑟𝑠, 𝛽 = 2𝑟2 −
𝑠2, 𝛾 = 𝑟2 + 𝑠2 Then this Pythagorean 

triangle is such that    𝛽 + 4𝛼 − 3𝛾 = 3. 
11. If we take the smallest positive integer 

solution  (𝑇0 , 𝑋0) of (3) is 𝑇0 = 1, 𝑋0 = +3 

               The result does not change. 

 

        It is worth mentioning that, instead of (2) one 

may also consider the linear transformations 

𝑥 = 𝑋 − 4𝑇 , 𝑦 = 𝑋 − 3𝑇 

For this case, the corresponding integral solutions of 

(1) are represented by 

𝑥𝑛+1 = 𝑋𝑛+1 − 4𝑇𝑛+1 = −7𝑋 𝑛 + 24𝑇 𝑛  

𝑦𝑛+1 = 𝑋𝑛+1 − 3𝑇𝑛+1 = −6𝑋 𝑛 + 21𝑇 𝑛  ,       

                                                𝑛 = −1,0,1, … 

 

III. GENERATION OF SOLUTIONS 
 Let (𝑥0 , 𝑦0)be any given solution of (1) 

Assume 𝑥1 = 𝑥0+h, 𝑦1 = 𝑕 − 𝑦0  (4)      

to be the second solution of (1). 

Substitution of (4) in (1) leads to  

𝑕 = 6𝑥0 + 8𝑦0  

Employing the value of h in (4), one obtains 

                             𝑥1 = 7𝑥0+8𝑦0 

𝑦1 = 6𝑥0 + 7𝑦0  

Representing the above solution in matrix form, we 

have 

  (𝑥1, 𝑦1)𝑡= A (𝑥0, 𝑦0)𝑡  
Where t is the transpose and A is the second order 

matrix given by 

  A = 
7 8
6 7

  

Repeating the above process, we get the generalized 

form of the matrix 

           (𝑥𝑛 , 𝑦𝑛)𝑡  = 𝐴𝑛(𝑥0 , 𝑦0)𝑡                  (5) 

 

Wherein 𝐴𝑛 =  

1

2
(𝛼𝑛 + 𝛽𝑛)

1

 3
(𝛼𝑛 − 𝛽𝑛)

 3

4
(𝛼𝑛 − 𝛽𝑛)

1

2
(𝛼𝑛 + 𝛽𝑛)

  

which 𝛼𝑛𝛽𝑛 = 1 

       Thus, substituting n= 1,2,3… inturn in (5), one 

can generate infinitely many integral solution 

satisfying (1). 

 

IV. CONCLUSION 

To conclude, one may search for any other binary 

quadratic equations and their corresponding 

properties. 
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