RESEARCH ARTICLE

OPEN ACCESS

User behaviors attributes of database anomaly detection model

SaifAldeen Salim Ahmed

University : University of Technology in Iraq College : Computer Science department : Information System

ABSTRACT

This paper includes the description of designing a data-base anomalydetection system, which is capable of being more precise in depicting the behaviors of individuals and improving data-base abnormal detecting correctness. In designing the system, the Apriori proach is used first and depends on the k-means clustering and the Apriori methods. It is capable of more efficiently exploiting users' behaviors, and the data-base abnormal more efficient detecting. The relevant studies show that Apriori method according to time efficiency and precision of detection is more optimal than the soleutilization according to association rules mining approaches Apriori method. **Keywords**: Anomaly detection structure, Apriori, users' behaviors.

Date of Submission: 02-11-2017

Date of acceptance: 08-12-2017

I. INTRODUCTION

Due to the improvement of intruder detecting and data mining approaches, the data-base auditregistrythat's considered to be a form of passive security element has been altered (1). It's a significant wayof ensuring the security of data-base whichdataexception is efficientlyfound base by users'behaviorsprofiles of the data-base mining (2). The abovementionedusers'behaviors profilesis the accessingtospecific resourceswhich repetitive includes the data-base, data-tables etc. This repetitive operating of resources is properties of the users'behaviorspatterns.

Nowadays, there existbasically3elements of deficiencyexist in the userbehaviors profiles mining. Initially, because of thedifferentkinds of audit registries in the DBMS,it's quitehardselectingwhich audit logsmaybe efficientlyutilizedfor mining the behaviors profile of the users.

Secondly, due to the fact that the existing algorithms are not capable of properly describing the behaviors profile of the user, causing higher false positiverate of data-base anomalous detecting. Thirdly, even thoughpart of theexisting approachesare capable of achieving the mining the behaviorsprofile of users, when meaning the huge accessingregistries user data-base they arenoticeablyinefficient(3).This

researchbasicallyperforms the next2mainexperimentsfor solving the abovementionedissues: First: A data-base structure ismodeled for anomaly detecting. Second: Aprioriapproachbased on this structure is suggested which is a moresufficient detecting of abnormal database approach.

II. RELATED WORKS

There are numerousresearchesthat propose using of data mining approaches in registry file analyzing procedure or the detection of security risks generally. One of the 1stmethodsthat utilize data mining approachesinintruder detecting was suggested by Lee and Stolfo (8). Whoused2methods for detection, the association rules method and the redundant episodes approach. They illustrated that viathe analysis of audit data it's possible discovering intrusion patterns.

Frei and Rennhard (9)utilized anothermethod for searching for anomaly in registry files. They generated the Histogram Matrix, a registry file visualizingapproachwhichaids security find administrators the anomalies. Thismethodoperates on each textual registry file. Itdepends on the ides that the brain is sufficient in the detection of patterns whileobserving images, thus, the registry fileis viewed in a waywhich it's easyobservingchanges from regularbehaviors.

Fu and others(10)suggested anapproach for anomaly detecting in unstructuredsystem registrieswhich doesn't need any application specific knowledge. In addition, theyaddedan approachfor the extraction of registry keys from free text messages. Makanju, et.al(11) suggested a hybrid registryalarmdetectingmodel, with the use of each of anomaly and signature-based detectingapproaches.

III. BACKGROUND ON ANOMALY DETECTION

An anomaly (or outlier) is an observation that looks inconsistent with the rest(majority) of the dataset, and hence arouses the suspicion that it can be generated bya different mechanism. The objective of anomaly detection is to mine unusual and information of interest from a large amount of data. Detecting anomaly is extensivelystudied in differentaspects,like the statistics, data mining, machine leaning and informationtheory, and its applications have been greatly expanded to multipleareaslike detecting of fraud, network intrusion, health monitoring, environmental monitoring andperformance analysis.

A straightforward solution for anomaly detection is to construct а pattern of normalobservations, and then one can use the pattern to identify anomalies. Whenapplyingthe pattern on test data, the observations whose properties follow the regular patternare labeled as normal, and those that deviate noticeably from the regular patternare labeled as anomalies. According to the availability of labeled training data. anomalydetectingapproachesmay be divided into three main classes, which are thesupervised, semisupervised and unsupervised approaches.

In the first category all the training samples are required to be paired with a labelor desired output, i.e., normal or abnormal observations, for the characterization of allanomalies ornon-anomalies. Semi-supervised learning techniques make use of unlabeled records as ell as labeled ones for training. Typically semi-supervised techniques are trained with a large amount of unlabeled records and a small amount of labeled records. It should be noted that prelabeled data is not constantly available nor easily obtained in several of real-lifeutilizations, in addition. new kinds of observations (normal or abnormal) couldoccur that aren't included in the labeled training data. Unsupervised methods are oftenmore appealing for anomaly detection, since they require no labeled data, rather theyapply certain criteria to identify anomalous observations. An example type of such techniquesare distance-based approaches, e.g., classifying records according to the averagedistance between each one of the data records to its mapping the nearest neighbor observations. If the measured distance for a specific record significantly exceeds nearest neighbor distance of all objects then the data record is considered as an anomaly, otherwise it isconsidered to be normal.

IV. DATABASE ANOMALOUS DETECTION MODEL

This paper includes the description of the design of a data-base anomaly detectingstructure, as illustrated in Figure(1).

Figure (1): data-base anomaly detectingstructure

The structure basically made up of the following 5modules, which are: data acquisition layer, data pre-processing, data merging, user behaviors mining, anomalydetecting.

The basictask: benefitting fromregistry miner and otherdata-base registry collecting tools or data-base system's own registryanalyzing tools, likeOracle11g Profiler for completing theset of the existing testing data and the auditting of the trainingdata.

4-1 Data Acquisition Layer Module

	C01_PRICE	C01_HARD	C01_PREMIUM	C01_ID	C01_TREND	C01_SCREEN	C01_SPEED	C01_RAM	C01_MULTI	C01_CD	C01_ADS
1	506	33	no	506	139	4	1,775	170	no	14	yes
2	507	33	no	507	139	8	2,490	340	no	15	yes
3	508	33	no	508	139	16	3,599	340	no	17	yes
4	509	50	no	509	139	8	2,690	340	no	14	yes
5	510	66	no	510	139	8	3,195	540	no	15	yes
6	511	66	no	511	139	8	3,695	452	no	14	yes
7	512	50	no	512	139	8	2,645	250	no	15	yes
8	513	66	no	513	139	16	3,090	452	no	15	yes
9	514	66	no	514	139	2	1,890	107	no	15	yes
10	515	33	no	515	139	4	1,999	170	no	14	yes
11	516	50	no	516	139	8	2,935	250	no	17	yes
12	517	25	no	517	139	4	1,990	214	no	14	yes
13	518	50	no	518	139	4	2,290	214	no	14	yes
14	519	66	no	519	139	4	2,390	214	no	14	yes
15	520	50	no	520	139	4	2,025	170	no	14	yes
16	521	33	no	521	139	4	2,095	214	no	14	yes
17	522	33	no	522	139	8	2,590	340	no	14	yes
18	523	25	no	523	139	4	1,499	170	no	14	yes
19	524	33	no	524	139	8	2,325	250	no	15	yes
20	525	66	no	525	139	4	2,099	120	no	14	yes
21	526	66	no	526	139	16	2,999	245	no	15	yes
22	527	66	no	527	139	8	2,790	340	no	15	yes
23	528	33	no	528	139	2	1,590	107	no	14	yes
24	529	50	no	529	139	4	2,499	170	no	14	yes
25	530	50	no	530	139	8	2,575	250	no	15	yes
26	531	25	no	531	139	8	2,390	340	no	15	yes
27	532	33	no	532	139	2	1,495	107	no	14	yes

Fig. (2): the type of gathered auditing registry data detecting

4-2 Data Pre-processing Module

The basictask: post collecting data (audit trainingdata, the current data inspection), for removing thegenuine noise, like theinconsistent auditinginformation, noparticular operatingpersons, no operating iteminformation and othervaluabledata, in addition to stemming some information isn'tin association to the needed data from relevantcommunications links protocols when database serversareconnected viaclients.

4-3 Data Merging Module

The basic task: initially, to statistic the number offunctional data-base items, like the data table, data view, etc. used by this person. Then, dealing with thetaskitem and user via the numericidentifying, and after thatstoring in the established sessionsregistry tables. Moreover, every one of the connectedoperation records considered a transaction T, each one of the transactions T generates the data-base D, which will be utilized to mine user behaviors properties. Every one of the transactions belonged to the data-base D is made up of the following fields: the session connection ID, Data-base process user, process object, process path, etc. with an overall of 12 fields.

4-4 User Behaviors Mining Module

The basic task: Firstly, the procedure on the data-baserunvia the users and the their data-base itemsmustbe clustered with the use of the k-means approach, this wayfinishing the PreliminaryCharacterizing of thebehaviors of the user. In addition making the 1stpreparation for more mining of user behaviorsproperties.Secondly, improving the sufficiency of mining property rules concerning the user behaviorswith the use of the Apriorial gorithm.

4-5 Anomaly Detecting Module

The basic task: comparing the training stage of the rulesgenerated by a regular user (obtained from old-

The following is the anomaly detecting algorithm:

rules table) with the testingstage of mining association rules (obtained from new rules), in the case where the data-base exception happened then the irregulardetails have to be timely registered and shown.

Input: The current audit data to be detected Output: The information of detecting anomalies

Method:

V. THE RESEARCH OF THE MODEL OF MAIN ECHNOLOGIES

Figure (4): the procedure of clustering

www.ijera.com

DOI: 10.9790/9622-0712022935

5-1 Preliminary Characterization of User BehaviorsProperties

According to the K-means

This research includes the description of using the kmeans clustering method for dealing with the database users and operating object data, for the sake of characterizing the users' initial behaviors profiles. The maintask E of k-means method is described in equation (1).

$$E = \sum_{i=1}^{k} \sum_{p \in Ci} \left| p - m_i \right|^2$$
(1)

The clustering procedure of data-baseitems is depicted in Fig. 4.

5-2 Apriori association rule mining algorithm

This approach has been suggested for the Boolean associating rules mining redundantelement group of the mainmethod, in the year of 1994 by Agrawal et.al.(6). Even though the use of Apriorimethod own nature may raise the effectiveness to a specific degree. For the sake of mining the data-base registry data more efficiently, this study presents the Apriorimethod.

1) Relevant theories and conclusions

Theorem (1) : Supposing redundant k itemset is capable of generating(k+1) Itemset, then the number of itemset of the redundant k itemset is definitely k.

Theorem (2): $\forall c \in Ck$, R (c) could be produced by the two items of R (x), R (y) (x \neq y) in Rk - 1, and R (c) = R (c) \cap R (c).

2) The main idea behind this Algorithm

Data storing format which is a transaction identifier is corresponding to severaltypes is called the standardized data formatting in the data-base of transactions. While, data storing formatswhich is a transaction identifier is corresponding to severaltransactionidentifiersrelevant to the element is called the vertical data formatting.

The data which has standardized data formatting is transformed to vertical formattingviathe scan process of the data-base one time. In the same time, every one of the items in the itemset and transaction identifiers which corresponds to the elements are stored separate from one anotherwith the use of two dynamical liststorages. The supporting counting of Ck may bereached by Lk - 1 ∩L1 with no need to repeat data-base scanningfor the sake of obtaining the supporting counting of Ck.Connecting conditions of Apriorimethod areimproved with the use of the conclusions which have been proven in this study.

Redundant itemset k are obtained via connecting conditions of Lk - $1\infty L1$, and the final item of Lk - 1 based on the index is subject to comparison with every one of the items of L1 when Lk - $1\infty L1$, avoiding duplicating comparing of connecting conditions of Lk - $1\infty L1$, and with no consideration if (k-1) is sub-set of candidate itemset Ck is in Lk - 1.

The repetitions of redundant item set k are improved via Theorem1, and the supporting counts of nominated item set k are handled with Theorem2.

3) The following is the description of the Apriori algorithm:

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experimental Results:

The precision of the Anomaly Detecting of the Model the comparing of detectingprecision between user behaviorss diggers pairedvia anomaly

detectionsuggested in the model and the conventionalstructure of data-base anomaliesdetectingaccording to the Apriori algorithm. In the experiments, the use oftrend database events for testing the detectingprecision. The outcome is illustrated in Figure (5).

Fig. (5): Experimental Outputs Detection Accuracy & Database events

The difference between the behaviors of two users (user1& user2) by using Apriori Algorithm as Shown in Figure (6), the explore Data behaviors of user shown in figure (7).

The results of the experimentationproved the fact that mining

properties of usersbehaviorspost the auditingregistry clustering may be excavating user behaviors rules with moreefficiency, therefore, the precision of database anomaly detecting is also developed with moreefficiency.

Itemsets: 1,000 out (of 122,027		Q* Trems
ID	Items	Support(%)	Item Count
52	110	76.9231	1
1197	88, 110	69.2308	2
1486	100, 105	69.2308	2
22	75	69.2308	1
46	100	69.2308	1
49	105	69.2308	1
10930	75, 105, 100	61.5385	3
14421	88, 105, 100	61.5385	3
17098	100, 110, 105	61.5385	3
666	70, 88	61.5385	2
822	75, 88	61.5385	2
833	75, 100	61.5385	2
836	75. 105	61.5385	2
•			
temset Details:			
ID: 22			
<u>Item List</u>			
75			
Support (%)	69.2308		
Item Count	1		
<u>.</u>			

Figure (6): Aprioriuser1

		support (10)	rien counc	
14	97	46.1538	1	
47187	60, 105, 100, 88	38.4615	4	
54511	70, 90, 88, 75	38.4615	4	
54517	70, 100, 88, 75	38.4615	4	
54520	70, 105, 88, 75	38.4615	4	
54522	70, 110, 88, 75	38.4615	4	
54674	70, 105, 100, 75	38.4615	4	
56594	70, 100, 90, 88	38.4615	4	
6597	70, 105, 90, 88	38.4615	4	
6719	70, 110, 100, 88	38.4615	4	

Figure (6): Apriori user2

Figure (7): Explore Data

VII. CONCLUSION

This studyexplains a structure of data-base anomalydetectingfor the sake of efficiently improving the precision of data-base anomaly detecting. Based on this structure, a sufficient Apriorimethod is suggested. This algorithm may be able toget rid of someinsignificant rules to a specificdegree and depicting data-base users'behaviors profiles more clearly. At last, sequence patterns mining used in userthat access the data-base registries will be asignificant research topic in the future.

SaifAldeen Salim Ahmed "User behaviors attributes of database anomaly detection model." International Journal of Engineering Research and Applications (IJERA), vol. 7, no. 12, 2017, pp. 29-35.

.