
Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 13 | P a g e

Hybridizing Regular Expression with query processing to remove

SQL Injection and XSS attacks

Monali Sachin Kawalkar
1
, Dr. P. K. Butey

2

1
Department of computer science R.T.M.Nagpur University

2
Head of the Department Department of Computer Science Kamla Nehru, R.T.M Nagpur University

ABSTRACT

Web applications are widely used everywhere like e-commerce, online payments, online banking, money

transfer, social networking, etc. As web application interacts with database where critical information is stored

over the network. The methodology used is Structure Query language (SQL) and Scripting language. OWASP

[2] has released the latest version of “Top 10 Vulnerabilities” based on the previous incidents as well as on the

risks associated with the Vulnerabilities. SQL Injection and Cross Site Scripting are the most serious security

threat to Web applications they allow attackers to obtain unrestricted access to the databases underlying the

applications and to the potentially sensitive information these databases contain. Cross Site Scripting is a most

prevalent web application security issue. This occurs when application sends the user provided data to the web

browser without validating or encoding the account. XSS allows attackers to execute scripts in the victim’s

browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites. To address this

problem, we describe review of the different types of SQL injection attacks and XSS attack. For each type of

attack, we provide descriptions and examples of how attacks of that type could be performed. This paper

identifies the security of a full blown E-Commerce website, and checks for any SQL Injection or XSS

vulnerabilities based on an hybrid approach of query processing and regular expression checking. This approach

improves the accuracy of attack detection and sanitizes the input query, so that the back end server is secured. In

our case, we tested the system over more than 50 different types of SQL Injection and XSS attacks, and found it

100% accurate in terms of attack detection and query sanitization

Keywords- OWASP – Open Web Application Security Project (OWASP) , SQL – Structure Query language,

Web Application ,Detection and Prevention Techniques. XSS – Cross site scripting, Input query sanitization,

DOM - Document Object Model.
--- ----------

Date of Submission: 16-11-2017 Date of acceptance: 30-11-2017

--- ----------

I. INTRODUCTION
Web Applications are vulnerable to a

variety of new security threats getting generated

everyday by various sources, these applications

which are hosted on Internet which is a widespread

information infrastructure. Unaware of the

Confidentiality, Integrity, Availability, Security and

Privacy, the internet is becoming a repository of

Business critical information. No matter which

business, Information and data of organization is the

most important business asset in today’s

environment, this can be achieved an appropriate

level of Information security.

Websites rely heavily on complex web

applications to deliver different output or content to

a wide variety of users according to set preferences

and specific needs. This arms organizations with the

ability to provide better value to their customers and

prospects. However, dynamic websites suffer from

serious vulnerabilities rendering organizations

helpless and committed to Sql injection attacks and

cross site scripting attacks on their data. E-

commerce sites are tricked by attackers and they

lead into shipping goods for no charge, usernames

and passwords have been cracked, and confidential

and important credentials of users have been leaked.

if there is no validation on the input of the

application, then the malicious code can steal

sessions, cookies, or inject and show private data for

the user

SQL injection and Xss vulnerabilities has

been described the most serious threats for Web

applications [33].Web applications that are

vulnerable to SQL injection may allow an attacker

to gain complete access to their underlying

databases. Because these databases often contain

sensitive user information, the resulting security

violations can include identity theft, loss of

confidential information, and fraud. In some cases,

attackers can even use an SQL injection

vulnerability to take control of and corrupt the

system that hosts the Web application.

RESEARCH ARTICLE OPEN ACCESS

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 14 | P a g e

These attacks are a serious threat to any

Web application that receives input from users and

incorporates it into SQL queries to an underlying

database. Most Web applications used on the

Internet or within enterprise systems work this way

and could therefore be vulnerable to SQL injection.

The cause of SQL injection vulnerabilities is mainly

insufficient validation of user input. To address this

problem, developers have used a range of coding

guidelines such as OWASP testing guidelines [3,4]

that promote defensive coding practices, such as

encoding user input and validation.

Attacks can be characterized as Identifying

injectable parameters, Performing database finger-

printing, Determining database schema, Extracting

data, Adding or modifying data, Performing denial

of service, Evading detection, Bypassing

authentication, Executing remote commands,

Performing privilege escalation.

Example Application

This section shows an example application

that contains SQL injection vulnerability. We use

this example in following section to provide attack

examples.

String strUserId="";

String strUserpassword ="";

String strUserName="";

String strEmail="";

strUerId = request.getParameter(“user_id”);

strUserpassword =

request.getParameter(“user_pwd”);

Connection =

DriverManager.getConnection(“lead”);

String ssql = " select user_email from user_mst

where user_id='"+ strUerId +"' and

user_pwd='"+ strUserpassword +"' ";

Statement st1 = connection.createStatement();

ResultSet rs1 = st1.executeQuery(ssql);

If (rs1!=NULL)

 displayEmail(rs1);

Else

 displayAuthFailed();

Figure 1.1 Extract of servlet implementation

This example refers to a quite simple

vulnerability that could be prevented using a basic

coding attach. We use this example simply for

illustrative purposes because it is easy to

understand and general enough to illustrate many

different types of attacks. The code extract in

Figure 1.1 implements the login functionality for

an application. It is based on similar

implementations of login functionality that we have

found in existing Web-based applications. The

code in the example uses the input parameters

user_id, user_pwd, and user_name to dynamically

build an SQL query and submit it to a database. For

example, if a user submits user_id, user_pwd, and

user_name as “0001,” “secret,” and

“Smith,” the application dynamically builds and

submits the query:

SELECT user_email from user_mst

where user_id='0001' and

user_pwd='secrete' and

user_name='Smith'

If the User Id, User password, and User name

match the corresponding entry in the database,

Smith’s account information is returned and then

displayed by function displayEmail(). If there

is no match in the database, function

displayAuthFailed() displays an

appropriate error message.

 SQL injection attack types and XSS attack

types

In this section we describe the different

kinds of SQLIA[34]. For each attack type we

provide an attack example. The different types of

attacks are generally not performed in isolation;

many of them are used together or sequentially,

depending on the specific goals of the attacker.

Similarly describes xss attack types.

Tautologies

In this type of attack the attacker goal is

bypassing authentication, identifying injectable

parameters, extracting data. The general goal of a

tautology-based attack is to inject code in one or

more conditional statements so that they always

evaluate to true. The most common usages are to

bypass authentication pages and extract data. In

this type of injection, an attacker exploits an

injectable field that is used in a query’s WHERE

conditional. Typically, the attack is successful

when the code either displays all of the returned

records or performs some action if at least one

record is returned.

Example: In this example attack, an attacker

submits “ ’ or 1=1 - -” for the login input field (the

input submitted for the other fields is irrelevant).

The resulting query is:

SELECT email FROM user_mst WHERE

User_id=’’ or 1=1 -- AND

user_pwd=’’ AND user_name=

The code injected in the conditional (OR 1=1)

transforms the entire WHERE clause into a

tautology. The database uses the conditional as the

basis for evaluating each row and deciding which

ones to return to the application. Because the

conditional is a tautology, the query evaluates to

true for each row in the table and returns all of

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 15 | P a g e

them. In our example, the returned set evaluates to

a non null value, which causes the application to

conclude that the user authentication was

successful. Therefore, the application would invoke

method displayEmail()and show all of the

emails in the set return by the database.

Illegal/Logically Incorrect Queries

In this type of attack attacker Identifying

injectable parameters, performing database finger-

printing, extracting data. Attacker collects

important information about the type and structure

of the back-end database of a Web application. The

attack is considered a preliminary, information

gathering step for other attacks. If the attack is

successfully executed the default error page

returned by application servers. When performing

this attack, an attacker tries to inject statements that

cause a syntax, type conversion, or logical error

into the database. Logical errors often reveal the

names of the tables and columns that caused the

error.

Example: This example attack’s goal is to cause a

type conversion error that can reveal relevant data.

To do this, the attacker injects the following text

into input field user_id: “convert(int,(select top 1

name from sysobjects where xtype=’u’))”. The

resulting query is:

SELECT email FROM user_mst WHERE

user_name=’’ AND

User_pwd=’’ AND user_id= convert

(int,(select top 1 name from

sysobjects where xtype=’u’))

In the attack string, the injected select query

attempts to extract the first user_mst table

(xtype=’u’) from the database’s metadata table

(assume the application is using Microsoft SQL

Server, for which the metadata table is called

sysobjects). The query then tries to convert this

table name into an integer. Because this is not a

legal type conversion, the database throws an error.

For Microsoft SQL Server, the error would be:

”Microsoft OLE DB Provider for SQL Server

(0x80040E07) Error converting nvarchar value

’user_mobile’to a column of data type int.”

There are two useful pieces of information

in this message that help an attacker. First, the

attacker can see that the database is an SQL Server

database, as the error message explicitly states this

infomation. Second, the error message reveals the

value of the string that caused the type conversion

to occur. In this case, this value is also the name of

the first user-defined table in the database:

“user_mst.” A similar strategy can be used to

systematically extract the name and type of each

column in the database. Using this information

about the schema of the database, an attacker can

then create further attacks that target specific pieces

of information.

Union Query

In this type of attack attacker bypassing

authentication and extracting data. In union-query

attacks, an attacker exploits a vulnerable parameter

to change the data set returned for a given query.

With this technique, an attacker can trick the

application into returning data from a table

different from the one that was intended by the

developer. Attackers do this by injecting a

statement of the form: UNION SELECT <rest of

injected query>. Because the attackers completely

control the second/injected query, they can use that

query to retrieve information from a specified table.

The result of this attack is that the database returns

a dataset that is the union of the results of the

original first query and the results of the injected

second query.

Example: An attacker could inject the text “’

UNION SELECT tel_cell from trncustomer_new

where

Customer_id=110005 - -” into the login field,

which produces the following query:

SELECT email FROM users WHERE

user_name=’’ UNION

SELECT tel_cell from

trncustomer_new where

Customer_id=110005 -- AND

user_pwd=’’ AND user_id=

Assuming that there is no login equal to “”, the

original first query returns the null set, whereas the

second query returns data from the

“trncustomer_new” table. In this case, the

database would return column “tel_cell” for

account “110005.” The database takes the results

of these two queries, unions them, and returns them

to the application. The effect of this application is

that the value for tel_cell is displayed along with

the customer information.

Piggy-Backed Queries

Attacker goal is extracting data, adding or

modifying data, performing denial of service,

executing remote commands. In this attack type, an

attacker tries to inject additional queries into the

original query i.e they are trying to include new

and distinct queries that “piggy-back” on the

original query. As a result, the database receives

multiple SQL queries. The first is the intended

query which is executed as normal; the subsequent

ones are the injected queries, which are executed in

addition to the first. Vulnerability to this type of

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 16 | P a g e

attack is often dependent on having a database

configuration that allows multiple statements to be

contained in a single string.

Example: If the attacker inputs “’; drop table users -

-” into the passfield, the application generates the

query:

SELECT email FROM user_mst WHERE

user_name=’Smith’ AND

User_pwd=’’; drop table users -- ’

AND user_id=0001

After completing the first query, the database

would recognize the query delimiter (“;”) and

execute the injected second query. The result of

executing the second query would be to drop table

users, which would likely destroy valuable

information.

Stored Procedures

In this type of attack, an attacker

performing privilege escalation, performing denial

of service and executing remote commands.

SQLIAs of this type try to execute stored

procedures present in the database .Most of the

time developer uses databases with a standard set

of stored procedures that extend the functionality of

the database and allow for interaction with the

operating system. Therefore, once an attacker

determines which backend database is in use,

SQLIAs can be crafted to execute stored

procedures provided by that specific database,

including procedures that interact with the

operating system. In a common way that writing a

stored procedures for web applications are

invulnerable to SQLAs i.e stored procedure may

contain other type of vulnerabilities such as buffer

overflows, that allow attacker to run arbitrary code

on the server or escalate their privileges.

CREATE PROCEDURE

DBO.isAuthenticated

@user_name varchar2, @user_pwd

varchar2, @user_id int

AS

EXEC("SELECT email FROM user_mst

WHERE user_name=’" +@user_name+ "’

and user_pwd=’" +@user_pwd+

"’ and user_id=" +@user_id);

GO

Figure 1.2 Stored procedure for checking

identification.

Example: This example describes a arameterized

stored procedure can be exploited via an SQLA. In

the above example, suppose we assume that the

query string constructed at line 8 and 9 has been

replaced by a call to the stored procedure defined in

Figure 1.2. The stored procedure returns a

true/false value to indicate whether the user’s

credentials authenticated correctly. To execute an

SQLIA, the attacker simply injects “ ’ ;

SHUTDOWN; --” into either the user_name or

user_pwd fields. This injection causes the stored

procedure to generate the following query:

SELECT email FROM user_mst WHERE

User_name=’Smith’ AND user_pwd=’

’; SHUTDOWN; -- AND user_id=

At this point, this attack works like a piggy-back

attack. The first query is executed normally, and

then the second, malicious query is executed,

which results in a database shut down.

Inference

In this type of attack attacker identifying

injectable parameters, extracting data and

determining database schema. In this attack, the

query is modified to recast it in the form of an

action that is executed based on the answer to a

true/-false question about data values in the

database. In this type of injection, attackers are

generally trying to attack a site that has been

secured, when an injection has succeeded, there is

no usable feedback via database error messages.

Inference attack includes two techniques first is

blind injection and second is timing attack.

Blind Injection- In this technique, the

information must be inferred from the behavior of

the page by asking the server true/-false questions.

If the injected statement evaluates to true, the site

continues to function normally. If the statement

evaluates to false, although there is no descriptive

error message, the page differs significantly from

the normally-functioning page.

Timing Attack- A timing attack allows an

attacker to gain information from a database by

observing timing delays in the response of the

database. To perform a timing attack, attackers

structure their injected query in the form of an

if/then statement e.g. the WAITFOR keyword,

which causes the database to delay its response by

a specified time.

Example: In two ways Inference based attacks can

be used. The first of these is identifying injectable

parameters using blind injection. Consider two

possible injections into the login field. The first

being “legalUser’ and 1=0 - -” and the second,

“legalUser’ and 1=1 - -”. These injections result in

the following two queries:

SELECT email FROM user_mst WHERE

user_name=’legalUser’

and 1=0 -- ’ AND user_pwd=’’ AND

user_id=0

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 17 | P a g e

SELECT email FROM user_mst WHERE

user_name=’legalUser’

and 1=1 -- ’ AND user_pwd=’’ AND

user_id=0

If we considering two scenarios, in the

first scenario, we have a secure application, and the

input for user_name is validated correctly. In this

case, both injections would return login error

messages, and

the attacker would know that the

user_name parameter is not vulnerable. In the

second scenario, we have an insecure application

and the user_name parameter is vulnerable to

injection. The attacker submits the first injection

and, because it always evaluates to false, the

application returns a login error message. At this

point however, the attacker does not know if this is

because the application validated the input

correctly and blocked the attack attempt or because

the attack itself caused the login error. The attacker

then submits the second query, which always

evaluates to true. If in this case there is no login

error message, then the attacker knows that the

attack went through and that the login parameter is

vulnerable to injection.

The second way inference based attacks

can be used is to perform data extraction. Timing

based inference attack to extract a table name from

the database. In this attack, the following is

injected into the user_name parameter:

‘‘legalUser’ and

ASCII(SUBSTRING((select top 1 name

from sysobjects),1,1)) > X WAITFOR

5 --’’.

This produces the following query:

SELECT email FROM user_mst WHERE

user_name=’legalUser’ and

ASCII(SUBSTRING((select top 1 name

from sysobjects),1,1))

> X WAITFOR 5 -- ’ AND user_pwd=’’

AND user_id=0

In this attack the SUBSTRING function is

used to extract the first character of the first table’s

name. Using a binary search strategy, the attacker

can then ask a series of questions about this

character. In this case, the attacker is asking if the

ASCII value of the character is greater-than or less-

than-or-equal-to the value of X. If the value is

greater, the attacker knows this by observing an

additional 5 second delay in the response of the

database.

Alternate Encodings

An attack intention of alternate encoding

attack is evading detection. In this attack, the

injected text is modified so as to avoid detection by

defensive coding practices and also many

automated prevention techniques. This attack type

is used in conjunction with other attacks. Alternate

encodings do not provide any unique way to attack

an application; they are simply an enabling

technique that allows attackers to evade detection

and prevention techniques and exploit

vulnerabilities that might not otherwise be

exploitable.

To avoid this defense, attackers have

employed alternate methods of encoding their

attack strings (e.g., using hexadecimal, ASCII, and

Unicode character encoding). Common scanning

and detection techniques are not sufficient to

encoded strings, thus allowing these attacks to go

undetected. So at different layers of application

have different ways of handling alternate

encodings. The application may scan for certain

types of escape characters that represent alternate

encodings in its language domain. Another layer

(e.g., the database) may use different escape

characters or even completely different ways of

encoding. For example, a database could use the

expression char(120) to represent an alternately-

encoded character “x”, but char(120) has no special

meaning in the application language’s context. An

effective code-based defense against alternate

encodings is difficult to implement in practice

because it requires developers to consider of all of

the possible encodings that could affect a given

query string as it passes through the different

application layers. Therefore, attackers have been

very successful in using alternate encodings to

conceal their attack strings.

Example: In this attack, the following text is

injected into the user name field: “legalUser’;

exec(0x73687574646f776e) - - ”. The resulting

query generated by the application is:

SELECT email FROM user_mst WHERE

user_name=’legalUser’;

exec(char(0x73687574646f776e)) --

AND user_pwd=’’ AND user_id=

This example makes use of the char()

function and of ASCII hexadecimal encoding. The

char() function takes as a parameter an integer or

hexadecimal encoding of a character and returns an

instance of that character. The stream of numbers

in the second part of the injection is the ASCII

hexadecimal encoding of the string

“SHUTDOWN.” Therefore, when the query is

interpreted by the database, it would result in the

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 18 | P a g e

execution, by the database, of the SHUTDOWN

command.

XSS type attack

In the following example, we will assume

that the attacker's final goal is to steal the victim's

cookies by exploiting XSS vulnerability in the

website. This can be done by having the victim's

browser parse the following HTML code:

Example Query-
<script>

window.location='http://attacker/?

cookie='+document.cookie

</script>

This script navigates the user's browser to

a different URL, triggering an HTTP request to the

attacker's server. The URL includes the victim's

cookies as a query parameter, which the attacker

can extract from the request when it arrives to his

server. Once the attacker has acquired the cookies,

he can use them to impersonate the victim and

launch further attacks.

II. RELATED WORKS
Existing system in practice used in

development and test time to prevent or detect

vulnerability attacks so that it improve programs

for input validation vulnerability attacks can be

reduced. Following section includes study of those

techniques and also compare with our approach.

(A)Detection techniques for SQL injection

Attacks-

AMNESIA(Analysis and Monitoring for

Neutralizing SQL Injection Attacks)

This is the most relevant detection

technique proposed by Halfond et.al.[11], author

suggested that AMNESIA is the effective SQLAs

detection tool. It is a model based techniques which

combines both static analysis and dynamic analysis

for preventing and detecting web application

vulnerability at run time. Static phase is used to

generate different type of query statements.

Dynamic phase is used to interpret all queries

before they are submitted to the database and

validate each query against the statically built

query models. AMENSIA technique stops all

queries before they are sent to database and

validates each query statement against the

AMNESIA models. Queries that violate the model

represent potential SQLs and thus prevented from

executing on the database.

SQLGAURD [12][13]- In User input base model

SQLGAURD method is useful. This method

checked at runtime which is expressed as grammar

that only accept legal queries.SQL Guard checks

the structure of the query before and after the

addition of user-input based on the model. In this

approach developer should modify code to use a

special intermediate library or manually insert

special markers into the code where user input is

added to a dynamically generated query.

SQLChecker[12] – This model uses a secret key at

runtime checking so security of the approach is

dependent on attackers. In SQL Check, the model

is specified independently by the developer. It is

similar to SQLGaurd by which Model checks as a

grammar that only accept legal queries. In this case

developer should have to modify code to use a

special intermediate library or manually insert

special markers into the code where user input is

added to a dynamically generates query.

Tautology Checker [14] – This method provides

an analysis framework for security. It is a static

analysis and automated reasoning performs for

checking any tautology statement contains in

coding. The major drawback of this tool is, it

having limited scope. So this tool it is not useful as

much.

CANDID [14] – In java programming CANDID

tool is use as dynamically for program

transformation. This tool dynamically mines the

programmer-intended query structure on any input

and detects attacks by comparing it against the

structure of the actual query issued. CANDID’s

natural and simple approach turns out to be very

powerful for detection of SQL injection attacks.

SQL-IDS [12] - Machine learning technique

includes this method. It builds a model of typical

queries and matches at run time that queries that

does not match with original query treat as attacks.

This technique detects attacks successfully, but it

depends on training seriously.

SQL Prevent [12]-This technique is consists of an

HTTP request interceptor. When the original data

flow is modified SQL Prevent technique is

deployed into a web server. The HTTP requests are

saved into the current thread of local storage. Then,

SQL interceptor intercepts the SQL statements that

are made by web application and pass them to the

SQLIA detector module. Consequently, HTTP

request from thread-local storage is fetched and

checks to determine whether it contains an SQLIA.

The malicious SQL statement would be prevented

to be submitted to database, if it contains malicious

data.

SQLRand [15] - According to the Keromytis and

Boyd in SQLRand Proxy server is used between

Client (Web server) and SQL server. They de-

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 19 | P a g e

randomized queries received from the client and

sent the request to the server. Portability and

security are the advantages of this de-

randomization framework.

(B)Prevention techniques for SQL Injection

Attacks-

WAVES [16] - WAVES a black-box technique for

testing web application for SQL injection

vulnerability. This technique uses a Web crawler to

identify all points in a Web application that can be

used to inject SQLIAs. It target on a specified list

of patterns and attack techniques. WAVES then

monitors the application’s response to the attacks

and uses machine learning techniques to improve

its attack methodology.

JDBC Checker [13] –This technique is based on

static analysis of web application that can reduce

SQL injection vulnerabilities and detect type errors.

It is uses for dynamically generated query string on

basis of mismatching. As we know that most of the

SQLIAs consist of syntactically and type correct

queries so this technique would not catch more

general forms of attacks.

SECURITYFly [12]-This is implemented for java.

As compare to other tool this checks string in place

of character for any suspicious information and try

to sanitize query strings. This tool has a drawback

that is numeric fields cannot stop by this approach.

Difficulty of identifying all sources of user input is

the main limitation of this approach.

SECURITY GATWAY [14] - It technique base

on the filtering system that forces the input

validation. By using Security Policy Descriptor

Language (SPDL), developers provided specify

transformation that is applied to the parameters of

web application.

SQL DOM [12] - It is an object model for

proposing a solution for building a secure

communication environment for accessing

relational databases from the OOP (Object-

Oriented Programming) Languages. Due to this

they mainly focus on identifying the obstacles in

the interaction with the database via Call Level

Interfaces.

WebSSARI [12]-Use for sanitizing input that

passed through predefined set of filters. In this case

static analysis to check taint flows against

preconditions for sensitive functions. The

drawback of this approach is that it is not necessary

preconditions for sensitive function accurately

expressed.

Similarly, various detection and

prevention methods are being research and

implemented in the past to secure web application

from cross site scripting attacks. The related work

includes Cross-site Scripting (XSS) Attack

Detection and Cross-site Scripting (XSS) Attack

prevention techniques which are mainly based on

static analysis work, dynamic analysis work, static

and dynamic analysis, server side solution and

client side solution.

In the area of static analysis [17]Y. W

Huang, F. Yu, C. Hang, C. H. Tsai, D. Lee and S.

Y. Kuo describe the use of bounded model

checking (BMC) for verifying Web application

code. Y. Huang, S. Huang, Lin, and Tsai use

number of software-testing techniques. These

techniques includes black-box testing, fault

injection, and behavior monitoring to web

application in order to work out the presence of

vulnerabilities [18]. [19]A.S. Christensen, A.

Mǿller, and M.I. Schwartzbach describe the

analysis of string expression. For this they use Java

programs and checking for errors in dynamically

generated SQL queries. In Taint Propagation

Analysis technique they use data flow analysis to

track the behavior of information flow from source

to sink[20,21]. D. Balzarotti, M. Cova, V.

Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel and

G. Vigna[22] descibe a novel approach to analysis

of the sanitization process in Composing Static and

Dynamic Analysis to Validate Sanitization in Web

Applications. Wassermann and Su’s in their recent

work [23] describe Using of untrusted scripts to

detect harmful script from user given data.

In the area of dynamic analysis work, Su

and Wassermann in [24] describe a successful

injection attack there is a change in the syntactical

structure of the exploited entity.[25]E.Kirda et al

developed Noxes which is the first client-side

solution to mitigate cross-site scripting attacks.

Noxes acts as a web proxy, called it as personal

firewall. Browser-Enforced Embedded Policies

Techniques by T.Jim, N.Swamy and M.Hicks [26]

developed a mechanism that modifies the browser

so that it can execute only filter content to prevent

injected script code from running in browsers that

view the site. Interpreter-based Approaches

technique was introduced to track un-trusted data at

the character level and for identifying

vulnerabilities that use context-sensitive string.

This approach described by T. Pietraszek and C. V.

Berghe[27].

In the area of static and dynamic

analysis,Lattice-based Approach described by

[28]D. Balzarotti, M. Cova, V. V. Felmetsger and

G. Vigna,described using WebSSARI which

combines static and runtime features and find

security vulnerability by applying static taint

propagation analysis. WebSSARI targets cross site

scripting.

In the area of server side solution and client side

solution [29] Rattipong Putthacharoen and Pratheep

Bunyatnoparat described protecting cookies from

Cross Site Script attacks using Dynamic Cookies

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 20 | P a g e

Rewriting technique. This is implemented in a web

proxy where it will automatically rewrite the

cookies that are sent back and forward between the

users and the web applications. [30]Prithvi Bisht

and Venkatakrishanan describes preventing

mechanisms for cross site scripting attacks which is

based on input validation that can effectively

prevent XSS attacks on the server side. They also

introduce several new XSS attacks and analyzed

the reasons for the failure of filtering mechanisms

in defending these attacks. They design XSS

GUARD framework for preventing XSS attacks on

the server side. XSS GUARD works by

dynamically learning the set of scripts that a web

application intends to create for any HTML

request. [31]N. Ikemiya and N. Hanakawa, describe

client-side mechanism for detecting malicious Java

Scripts. The system consists of a browser-

embedded script auditing component, and IDS that

processes the audit logs and compares them to

signatures of known malicious behavior or attacks.

Client side cross site scripting protection using

Noxes Tool [32] is a client-side Web-proxy that

includes all Web traffic and serves as an

application-level firewall. The approach works

without attack-specific signatures.

III. PROPOSED SYSTEM
To handle SQL injection attack and Cross

site scripting attack the following defenses are used

for prevention. The paper identifies vulnerability

attacks caused due to inputs performed by a user

which are not properly validated in the web

applications. We checks for any SQL Injection or

XSS vulnerabilities based on an hybrid approach of

query processing and regular expression checking.

This approach improves the accuracy of attack

detection and sanitizes the input query, so that the

back end server/ database is secured. So, this

approach will stop the attack before it affect the

system and will provide a sanitize query to the

system by classifying the input data into SQL or

HTML input. The general work of the system is as

follows:

1) The client sends the request to server.

2) The request is redirected to our approach query

sanitization with regular expression.

3) This approach describes query processing that

includes SQL injection attack and XSS attack

removal services.

(a) If http request is SQL statement then with

the help of query processing it sanitizes the

query with regular expression and validates the

request. These validated requests then send to

the web application in the server.

(b) If http request is XSS then with the help of

query processing it sanitizes the script with

regular expression and validates the request.

These validated requests then send to the web

application in the server.

4) Else the request does not contain any malicious

code, then access directly to web application

server.

5) Depending on the validation results the filter

on web application server decides whether to

continue with the request or deny the request.

The following figure 3.1 shows the system

architecture of our approach.

3.1 Block diagram of System Architecture

 Figure 3.1. Proposed System Architecture

3.2 Flowchart of the system

The following Figure 3.2 gives the flowchart of the

proposed system.

Figure 3.4 Flowchart of the system

3.3 Algorithm for hybridizing regular

expression with query processing to remove

SQL injections and XSS attacks

Steps:

1. Start the algorithm.

2. Accept user input in the form of any html

text having scripts, tags, urls.

3. With request query processing the query

will sanitize with regular expression.

4. If there is attack in request then it reject

query.

Else

Process query to database.

5. Finally show result.

6. Repeat for each request.

7. End of the algorithm.

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 21 | P a g e

IV. SYSTEM IMPLEMENTATION
A web application utilizes web and

browser technologies to perform tasks over a

network using a web browser. The web

applications are stored on the web servers, where

all their data are stored.

1) This system implements the database

independent SQL injection attack and XSS

attack removal using regular expression

algorithm using php. By using LARVEL

framework we create an application.

2) The application takes the input from the URL

and then by using regular expression data

classifier classifies the SQL statement and

script accordingly.

3) For each request the sanitizing application is

executed. When the redirected request from the

server reaches the sanitizing application

algorithm is triggered.

4) As a first step the algorithm checks whether it

is a SQL query or script which is extracted

from the URL. The SQL query and script are

processed using search pattern. A sequence of

character that forms a search pattern is called

as regular expression. This search pattern can

be used for text search and texts replace

operations.

5) The URL is passed onto the signature check

which uses the regular expression to validate

the URL.

6) Some of the following checks are done on the

URL extracted from the http request.

I. Query delimeter (--)

II. White spaces

III. Comment Delimeter (/**/)

IV. Scanning for the query with

V. Dropping Meta character like (;,’,<, >, %, +)

7) The validated URL are then directed back to

the server.

8) Depending on the validation results the filter

on web application server decides whether to

continue with the request or deny the request.

V. EVALUATION
The system implements hybridizing

regular expression with query processing which is

detection and prevention method that remove the

SQL injection and XSS attacks successfully. For

the evaluation expression we used the php code for

creating application. This method successfully

tested on open source project. The following output

screens i.e. Figure 5 shows the response of the

system when a malicious input is provided in the

input form. Figure 6 and Figure 7 shows outcome

of malicious queries executed on application which

sanitizes with our application. By using regular

expression for removal of SQL Injection attack and

XSS attack on independent database by firing the

query which further leads to Database via URL.

Figure 5.1 E-commerce applications

Figure 5.2 Malicious input fired to the application.

Figure 5.3 Outcome after sanitizing the malicious

input fired to the application.

VI. ANALYSIS RESULT
By using the methodology (Proposed

Method) used for removal of SQL Injection and

XSS is successfully executed with accuracy and the

analysis of methodology is shown in the below

table. The hit time is also evaluated and is in ns.

This section compares the detection rate of the

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 22 | P a g e

proposed method with other researcher’s method.

Table 1 and 2 shows the comparison of SQL

injection detection and prevention techniques with

respect to attack type. With our proposed

methodology it detects and prevents all type of

attack successfully and accurately. The symbol √ is

used for techniques that can successfully detect all

attacks of that type. The symbol × is used for

techniques that is not able detect all attacks of that

type. Symbol ○ shows techniques that detect the

attack type only partially because of natural

limitations of underlying approach.We have

analyzed the system and methodology that are used

to control SQL injection attacks and XSS attacks

which are shown in Table3 which describes the

response time for the query executed irrespective of

query length with accuracy. The time taken for the

response with our system was noted in

nanoseconds.

VII. CONCLUSION
This paper presents a survey on web

application attacks i.e. types of vulnerabilities and

security threats within the Web application (It can

be e-commerce, social networking etc.). This paper

proposes improved detection and prevention of

input validation attack on web applications with

less time. Our proposed detection concept will help

to detect and recognize XSS and SQL injection

attacks and also sanitize the query for validation. It

also expects that the concept will reduce the

analysis time. Future work of our study will be the

implementation of technique that uses method for

detection and prevention of Input validation attacks

like SQL injection and XSS on web application.

Additionally this paper proposes improved and

efficient tool that would provide web security.

REFERENCES
[1] Www.OWASP.org/index.php/XSS_Preventi

on_Cheat_sheet

[2] OWASP Top Ten Project -

http://www.owasp.org/index.php/Top_10

[3] OWASP Code Review Guide -

http://www.owasp.org/index.php/Category:

OWASP_Code_Review_Project

[4] OWASP Testing Guide -

http://www.owasp.org/index.php/Testing_G

uide

[5] https://www.acunetix.cz/websitesecurity/cro

ss-site-scripting/

[6] "SQL Injection/Insertion Attacks".

insecure.org.

[7] SQL Injection Attacks and Defense(Book) -

Justin Clarke

http://www.owasp.org/index.php/XSS_Prevention_Cheat_sheet
http://www.owasp.org/index.php/XSS_Prevention_Cheat_sheet
https://www.acunetix.cz/websitesecurity/cross-site-scripting/
https://www.acunetix.cz/websitesecurity/cross-site-scripting/

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 23 | P a g e

[8] Cross Site Scripting Wikipedia,

http://en.wikipedia.org/wiki/Cross-

site_scripting

[9] Cross site scripting

,accunetix,http://www.acunetix.com/website

security/cross-site-scripting/

[10] Cross site scripting, Secure web

development,

,http://hwang.cisdept.csupomona.edu/swane

w/Code.aspx?m=XSS

[11] W. G. J. Halfond and A. Orso, "Preventing

SQL injection attacks using AMNESIA,"

presented at the Proceedings of the 28th

international conference on Software

engineering,Shanghai, China, 2006.

[12] Sh. Bojken, A. Shqiponja, A. Marin, and

Xh. Aleksander,"Protection of Personal Data

in Information Systems",International

Journal of Computer Science, Vol. 10, No.

2,July 2013, ISSN (Online): 1694-0784.

[13] Srinivas Avireddy, Varalaxhmi perumal,

Narayan Gowraj, Ram Srivastava

Kannan“Random4: An Application Specific

Randomized Encryption Algorithm to

prevent SQL Injection” 11th International

conference on trust, Security and privacy in

computing and communications IEEE 2012.

[14] A Survey on Detection and Prevention

Techniques of SQL Injection by Harish

Dehariya

[15] S. W. Boyd and A. D. Keromytis.

“SQLrand: Preventing SQL Injection

Attacks”, In Proceedings of the 2nd Applied

Cryptography and Network Security

Conference, pages 292–302, June 2004.

[16] Y. Huang, F. Yu, C. Yang, C. H. Tsai, D. T.

Lee, and S. Y. Ku. “Securing Web

Application Code by Static Analysis and

Runtime Protection”, In Proceedings of the

12th International Word Wide Web

Conference, May 2004.

[17] Y. W Huang, F. Yu, C. Hang, C. H. Tsai, D.

Lee and S. Y. Kuo, “Verifying Web

Application using Bounded Model

Checking,” In Proceedings of the

International Conference on Dependable

Systems and Networks, (2004).

[18] Y.-W. Huang, S.-K. Huang, T.-P. Lin and

C.-H. Tsai, “Web application security

assessment by fault injection and Behavior

Monitoring,” In Proceeding of the 12th

international conference on World Wide

Web, ACM, New York, NY, USA, (2003),

pp.148-159.

[19]]A. S. Christensen, A. Mǿller and M. I.

Schwartzbach, “Precise analysis of string

expression”, In proceedings of the 10th

international static analysis symposium,

LNCS, Springer-Verlag, vol. 2694, pp. 1-18.

[20] V.B. Livshits and M. S. Lam, “Finding

security errors in Java programs with static

analysis,” In proceedings of the 14th Usenix

security symposium, (2005) August, pp.

271-286.

[21] N. Jovanovic, C. Kruegel and E. Kirda,

“Precise alias analysis for syntactic detection

of web application vulnerabilities,” In ACM

SIGPLAN Workshop on Programming

Languages and Analysis for security,

Ottowa, Canada, (2006) June.

[22] D. Balzarotti, M. Cova, V. Felmetsger, N.

Jovanovic, E. Kirda, C. Kruegel and G.

Vigna, “Saner: Composing Static and

Dynamic Analysis to Validate Sanitization

in Web Applications,” In IEEE symposium

on Security and Privacy, (2008).

[23] G. Wassermann and Z. Su, “Static detection

of cross-site Scripting vulnerabilities,” In

Proceeding of the 30th International

Conference on Software Engineering, (2008)

May.

[24] Z. Su and G. Wassermann, “The essence of

command Injection Attacks in Web

Applications,” In Proceeding of the 33rd

Annual Symposium on Principles of

Programming Languages, USA: ACM,

(2006) January, pp. 372-382.

[25]] E. Kirda et al., “Client-Side Cross-Site

Scripting Protection,” Computers &

Security,”Proc of 21st ACM Symposium on

Applied Computing,Oct. 2009, pp. 592-604.

[26]]T. Jim, N. Swamy and M. Hicks, “BEEP:

Browser-Enforced Embedded Policies,” In

Proceedings of the 16th International World

Wide Web Conference, ACM, (2007), pp.

601-610.

[27] T. Pietraszek and C. V. Berghe, “Defending

against Injection Attacks through Context-

Sensitive String Evaluation”, In Proceeding

of the 8th International Symposium on

Recent Advance in Intrusion Detection

(RAID), (2005) September.

[28] D. Balzarotti, M. Cova, V. V. Felmetsger

and G. Vigna, “Multi-Module Vulnerability

Analysis of Web-based Applications,” In

proceeding of 14th ACM Conference on

Computer and Communications

Security,Alexandria, Virginia, USA, (2007)

October.

[29] R.Putthacharoen and P.Bunyatnoparat,”

Protecting Cookies from Cross Site Script

Attacks Using Dynamic Cookies Rewritng

Technique,”Proc. of IEEE 13th International

Conference on Advanced Communication

Technology, Feb 2011,pp. 1090-1094.

Monali Sachin Kawalkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 11, (Part -7) November 2017, pp.13-24

www.ijera.com DOI: 10.9790/9622-0711071324 24 | P a g e

[30] P. Bisht and V. N. Venkatakrishnan, “XSS-

GUARD: Precise dynamic prevention of

Cross-Site Scripting Attacks,” In Proceeding

of 5th Conference on Detection of Intrusions

and Malware & Vulnerability Assessment,

LNCS, vol. 5137, (2008), pp. 23-43.

[31] N. Ikemiya and N. Hanakawa, “A New Web

Browser Including A Transferable Function

to Ajax Codes”, In Proceedings of 21st

IEEE/ACM International Conference on

Automated Software Engineering (ASE '06),

Tokyo, Japan, (2006) September, pp. 351-

352.

[32] E. Kirda et al., “Client-Side Cross-Site

Scripting Protection,” Computers &

Security,”Proc of 21st ACM Symposium on

Applied Computing,Oct. 2009, pp. 592-604.

[33] T. O. Foundation. Top Ten Most Critical

Web Application Vulnerabilities, 2005.

http://www.owasp.org/documentation/top

ten.html.

[34] Halfond, William G., Jeremy Viegas, and

Alessandro Orso. "A classification of SQL-

injection attacks and

countermeasures." Proceedings of the IEEE

International Symposium on Secure

Software Engineering. Vol. 1. IEEE, 2006.

Monali Sachin Kawalkar Hybridizing Regular Expression with query processing to remove

SQL Injection and XSS attacks.” International Journal of Engineering Research and

Applications (IJERA) , vol. 7, no. 11, 2017, pp. 13-24.

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/topten.html

