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ABSTRACT  
Masonry load bearing wall subjected to vertical concentric and eccentric loading may collapse through 

instability. In this Paper the buckling behaviour of masonry load bearing wall of different slenderness ratio 

were investigated by many researcher has been reviewed via testing a series of scale masonry wall subjected to 

concentric and eccentric vertical loading. It is also observed that buckling behaviour is greatly influenced by 

the material properties of units, mortar and units-mortar interface. The influence of nonlinear behaviour of 

interface element, slenderness ratio and various end conditions have been investigated together with the effect 

of different end eccentricity of vertical load.  

Keywords: Masonry load bearing wall, buckling failu re, eccentric load, slenderness ratio . 

 

I. INTRODUCTION 
Load bearing masonry is among the most 

ancient architectural technologies, yet continues to 

provide boundless opportunities for both traditional 

and modern design. Historically, the structural 

design of masonry buildings was based on the 

empirical requirements of building codes for 

minimum wall thickness and maximum height. 

Bearing wall construction for buildings higher than 

three to five stories was uneconomical and other 

methods of support (steel or concrete skeleton 

frame) were generally used. In 1965, there was a 

renewed interest on the part of the design 

professional, architect and engineer, in modern 

bearing wall construction, wherein the design is 

based on a rational structural analysis rather than 

on outmoded arbitrary requirements. Many 

research projects have been conducted on the 

properties of the three basic components and the 

overall unreinforced masonry wall with vertical 

load and load eccentricities. The literature on the 

subject shows large number of studies carried out 

on axially loaded walls  with varying slenderness 

ratio. Among the first, Chapman and Slatford  

(1957) obtained closed form solutions for the load 

deformation behaviour of brittle elastic wall by 

assuming that masonry material has no tensile 

strength and that cracking occurs whenever a 

tensile stress would develop. After that Yokel’s 

(1971) results on the buckling of walls made of no-

tension material are well known. De Falco’s 

proposal (2002) on the stability of columns using 

an elastic-plastic material model stands among the 

most recently presented analytical approaches. 

More recently, Mura (2008) has utilized a parabolic 

stress-strain relationship to describe the behaviour 

of the brickwork under compression loads. Shalin  

(1978) reviewed the results of analysis carried out 

by a number of authors and presented experimental 

evidence in support of the calculations. Further 

work was carried out by Sawko and Towler (1982) 

who proposed a numerical procedure for 

calculating the failu re load of a no-tension material 

wall. An analytical solution has been carried out by 

Romano et al. (1993), considering no tension 

bearing masonry with a monomial stress–strain 

relationship in compression. Parland et al. (1982) 

proposed a method for determining buckling failure 

load of a slender wall, taking into account the 

effect of tension stress field which exists between 

the cracked joints. However, the linear elastic 

materials were used in this analysis. 

 

1.2 Masonry Materials and Properties  

A close-up view of a typical masonry wall 

is shown in Figure 1. Masonry is a composite 

construction material consisting of masonry units 

and mortars built following certain pattern. The 

mechanical properties of masonry vary 

considerably due to variable material properties of 

units and mortars. For example, mortar is typically  

composed of cement, lime, sand and enough water 

to produce a plastic, workable mixture. Several 

different types of mortars have been widely used in 

the construction, as shown in Table 1 (ASTM 

1958). 
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Figure 1: Typical masonry wall. 

 

Table 1: Mortar compositions by volumes. 
Type Ratio (cement: 

lime: sand) 

Compressive 

strength( psi) 

M 1:0:3 2500 
S 0.5-1:0.25-0.5:4.5 1800 

N 1:0.5-1.25:6 750 

O 1:2:9 350 

K
* 

0.5:2:7.5 75 

*No longer used in construction after 1960’s  

 

Brick, concrete masonry units, clay tile, 

and stone have all been used for the masonry units 

in previous practice. Brick masonry is the focus of 

this research, because it makes up majority of the 

existing unreinforced masonry buildings. 

The mechanical properties of masonry as a 

composite material are functions primarily of the 

mechanical properties of the individual masonry 

units, mortars, and the bond characteristics between 

units and mortar. St rict ly speaking, unreinforced 

masonry construction results in an anisotropic 

material. However, for a simplified design 

approach, the elastic properties of masonry 

materials are usually considered as isotropic. These 

elastic, isotropic properties are taken as those 

determined from tests on masonry pris ms 

perpendicular to the bed joints. The elastic modulus 

of masonry is controlled by the combined elastic 

modulus of masonry units and mortar (Hamid et al. 

1987). Previous research indicates a large scatter in 

the measured elastic modulus of masonry. Two 

reasons explain the large scatter. First, the material 

properties of masonry units and mortar vary  

significantly by themselves. Second, different 

workmanship factors may contribute to the 

variation as well. The European code (EC6 1995) 

gives the following formulae for calculat ing 

Young’s modulus E and shear modulus G of 

masonry material for a design purpose: 

 
(1) 

Where, fm is the characteristic 

compressive strength of masonry. Some other 

researchers recognized that masonry is actually a 

nonlinear material and thus its elastic modulus 

varies with different stress level. Experimental 

stress-strain relationship of mortar, brick, masonry 

prism and masonry panel is shown in the Figure 2. 

Usually the compressive strength of the masonry 

falls in between compressive strength of bricks and 

mortar. 

 

 
Figure 2: Typical stress-strain diagram of masonry 

components. 

 

Compressive strength tests are easy to 

perform and give a good indication of the general 

quality of materials used. The CEN Eurocode 6 

(1995) uses the compressive strength of the 

components to determine the strength of masonry 

even if a true indicat ion of those values is not 

simple. For masonry units, standard tests with solid 

platens result in an artificial compressive strength 

due to the restraint effect of the platens. The CEN 

Eurocode 6 (1995) minimizes this effect by 

considering a normalized compressive strength fb, 

that result from the standard compressive strength 

in the relevant direction of loading multip lied by an 

appropriate size o r shape factor. The normalized  

compressive strength refers to a cube specimen  

with 100 x 100 x 100 (mm
3
) and cannot be 

considered representative of the true strength. The 

normalized compressive strength of unit is 

calculated according to Eurocode 6: fb = fb,m*δ, 

where δ=shape coefficient. The compressive 

strength test for masonry unit is shown in Figure 3.  

 
Figure 3: Test of masonry units (da Porto 2003) (a) 

test setup (b) and (c) specimen after test. 
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It is difficult to relate the tensile strength 

of the masonry unit to its compressive strength due 

to the different shapes, materials, manufacture 

processes and volume of perforat ions. For the 

longitudinal tensile strength of clay, calcium-

silicate and concrete units, Schubert (1988a) 

carried out an extensive testing program and 

obtained a ratio between the tensile and 

compressive strength that ranges from 0.03 to 0.10. 

For the fracture energy  of solid clay and 

calcium-silicate units, both in the longitudinal and 

normal directions, Van der Pluijm (1992) found 

values ranging from 0.06 to 0.13 (Nmm/mm
2
) for 

tensile strength values ranging from 1.5 to 3.5 

(N/mm
2
). 

Currently, investigations in mortar disks 

extracted from the masonry joints are being carried 

out to fully characterize the mortar behavior, 

Schubert and Hoffman (1994). Nevertheless, there 

is still a lack of knowledge about the complete 

mortar uniaxial behavior, both in compression and 

tension. 

The nonlinear properties of masonry, such as 

ultimate strength and ductility, are also direction-

depended.  

 

1.3 Buckling and Material Overstressing 

Any compression member usually fails 

both due to the buckling and material overstressing. 

The more slender the member the greater the 

possibility to buckling failure; the more squat the 

member the greater propensity to material 

overstressing. The combination of buckling failure 

mode with the mode of ultimate material failure is 

shown in the Figure 4. The figure shows that with 

the increasing of both slenderness ratio and 

reduction factor the paossibility of buckling failure 

increases. The material failure occurs in the case of 

low slenderness ratio with high reduction factor. In 

addition, buckling failure connect with material 

failure where the members may fail due to 

combination of both mechanisms. High slenderness 

ratio andlow reduction factors indicate general 

buckling when low slenderness ratio and high 

reduction factors produce Euler buckling.  

 
Figure 4: Buckling and material overstressing 

interaction curve (Morton, 1990).  

The mathematical solution for the differential 

equation describing a perfectly idealized strut was 

proposed by Euler as: 

 

    (2) 

Writing this formula in terms of crit ical stress: 

 

 (3) 

or  

 (4) 

Where,  

r radius of gyration; 

 Eu ler crit ical load; 

 effective length (or height) of member;  

 elastic modulus of masonry; 

 second moment of area o f section; 

 area of section. 

The material strength properties have been 

rigoriously investigated and BS 5628 contains table 

of characteristic strength fk for the various masonry 

formats. In general: 

         (5) 

and for wall construction the maximum stress: 

          (6) 

The above model is based on the basic Rankine 

approach of having a straight line jo ining the two 

axes( see Figure 5): 

 

(7) 

Presenting this in terms of stresses: 

 
                         (8) 

Where, 

 ultimate load for material strength failure;  

 ultimate stress for material strength failure;  

 Eu ler crit ical stress. 

This is a emperical relationship between 

the elastic modulus of masonry, E and the 

compressive strength of the masonry. This is 

incorporated in BS 5628: part 2 as 900 fk (MPa) for 

the short term modulus of elasticity of clay, 

calcium silicate and concrete masonry. Again, 

according to Eurocode 6, this relat ion is consideed 

as 1000 fk (MPa). 
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Figure 5: Combining buckling with material 

overstressing of masonry. 

 

1.4 Concentric Loading Wall  

The brickwork has a number of peculiarities that 

make the different development. Th is exposed 

several problems and observations. In this section 

Masonry walls with vertical load which applied  

without any eccentricity is described. Previous 

sections have presented the expression for the Euler 

critical buckling load in wall under centered load. 

This expression is valid in the case of composite 

parts of a material elastic follow the Hooke’s law.  

 
Figure 6: Concentrically loaded wall.  

 

In this case, the stresses are evenly distributed, with 

the stress instability: 

 

          (9) 

Where, 

A cross sectional area; 

E modulus of elasticity; 

i = radius of gyration; 

h height of the wall. 

In the case of brickwork, this expression becomes 

invalid because the material not satisfies Hooke's 

law, means no linear proportionality between stress 

and strain. For this situation the formula derived by 

Ritter (quoted by Knutsson, 1991) is introduces: 

 

        (10) 

With, 

E tangent modulus of elasticity for small 

strains; 

fc compressive strength. 

Introducing this value of E in the expression 9 

gives: 

 

(11) 

Can be expressed as: 

 

(12) 

This expression is commonly  known as Ritter's 

formula, is used as the Rankine, Grashof, Engesser 

Winkler or have been associated with it (Knutsson, 

1991). 

 

1.5 Eccentric Loading Wall  

Ritter's formula shown above is valid for 

masonry walls subjected to centered load. In a real 

case, it is common to find situations where the 

loads are applied eccentric. 

 
Figure 7: Eccentrically loaded wall.  

 

In these cases, a simplificat ion can make by 

assuming a symmetrical stress distribution around 

the load and neglecting the part of the section 

outside of the distribution. With this simplification, 

the bearing capacity of the structure can be 

calculated as a structure with load centered and 

with a thickness equal to (Figure 8): 

 
(13) 

Where, 

t  total thickness of the wall; and  
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e eccentricity with which the load is applied.  

 
Figure 8: Simplificat ion consists in assuming a 

symmetrical stress distribution around load. 

 

Therefore, the critical stress can be calculated as: 

 

(14) 

Where, 

Ac compressed cross-sectional area considering 

the new equivalent thickness; 

Ic = , rad ius of gyration of the compressed 

section. 

The latter term is more general and applies 

to both load cases centered (in which eccentricity is 

null and the compressed area is the total area of the 

section) and the case of load eccentrically applied.  

Resistance may be affected by the fact that 

on the surface of the masonry mortar is not 

confined, being the weaker joints near the surface. 

This may be especially critical for walls with a 

reduced thickness. In order to consider this effect, 

Knutsson (1991) proposed the stress reduction by a 

coefficient kt. 

Kt = 0.8 for walls with 90 < t ≤ 125 mm  

Kt = 0.9 for walls with 125 < t ≤ 175 mm  

Kt = 1 for walls with t > 175 mm 

As explained above, the critical load is determined 

as: 

 

(15) 

Can be expressed in abbreviated form as: 

     (16) 

Where, 

 

 Ritter constant for the material. 

The expression obtained can be particularized for 

the case of rectangular sections, which is: 

 (17) 

With, 

 
l total width of the wall;  

t thickness of the wall;and 

e eccentricity of load application.  

 

When the load is applied on a solid wall 

with an eccentricity greater than t/6, the wall 

develops tension within a certain zone. The zone is 

shown in Figure 9. It is assumed that this portion of 

the wall cracks slightly at each joint, in compliance 

with the assumption of a no tension material. The 

geometry of the cracked section changes for 

different values of eccentricity of load application. 

It is therefore necessary to apply the principles of 

the basic approach to the remain ing uncracked 

portion of the wall. 

 
Figure 9: Tension zone in a solid eccentrically 

loaded wall. 

 

Figure 10 shows, schematically, the effect  

of increasing eccentricity ratio on the size of the 

wedge shaped cracked section. The position of the 

maximum deflection rises progressively above the 

mid-height of the wall. In addition, the critical load 

of the wall is progressively reduced as the area of 

the tapered portion of the wall becomes smaller.  
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Figure 10: Effect of increasing eccentricity on the 

size of cracked section. 

 

An important aspect is that for the range 

of applied eccentricity (at the top of the wall) t/6 < 

e ≤ 0.3t the width of the section at a critical section 

remains t. When e > 0.3t the size of the wedge 

shaped cracked section intrudes through the critical 

section and its thickness is less than wall thickness, 

t. 

 

1.6 Effects of Slenderness Ratio and Eccentricity 

of Loading  

The modern masonry wall constructions 

allow slenderness of the wall and the eccentricity 

of vertical loading by the application of a reduction 

factor to the masonry strength. In traditional 

construction usually the load bearing walls are 

relatively thick and if the ratio of height to 

thickness is no more than about 10, the effect of 

slenderness will be negligible. DIN 1053 limits the 

slenderness ratio to 20 and permits only the two 

better quality grades between 10 and 20. In this 

range the material strength is to be reduced by a 

factor (25-h/t)/15 and only light loading is 

permitted on walls having a slenderness ratio over 

14. On the other hand, the Eurocode-6 limits the 

slenderness ratio for masonry wall to 27. Within  

this constraint Hendry (1976) calculated maximum 

stresses due to eccentric loading by using 

conventional linear theory. The maximum 

compressive should not exceed the material 

strength divided by an appropriate safety factor. No 

tensile strength is assumed in this case.  

The effect of slenderness ratio and 

eccentricity on the compressive strength of walls 

was investigated by Hasan and Hendry (1976), to 

determine whether reduction factors prescribed in 

various codes are conservatives. One third scale 

model has been tested with axial and eccentric 

loading and with various end conditions. 

The results were compared with various 

national codes. Twenty five specimens were tested 

in different end conditions such as flat ended, 

reinforced concrete slab and hinged with different 

load eccentricity. The walls were constructed by 

using stretcher course and English bond. Results 

found in this test shows decrease in strength of 

walls of flat ended with the increase in slenderness 

ratio except of wall of slenderness ratio 12. In all 

walls except hinge supported series, the first 

hairline crack appeared between 50-60% of failure 

load and enlarged with further increase of load. The 

general mode of failure of the walls was vertical 

splitting accompanied by crushing and splitting of 

various courses of bricks. However, in walls of 

slenderness ratio 25 and all walls of vertical load 

eccentricity t/3 group failure occurred at mortar 

brick interface due to breakdown of bond between 

the mortar and the brick at the time of maximum 

deflection. 

 

1.7 Influence of Tensile strength on Masonry 

Wall Stability 

The influence of tensile strength on the 

stability of masonry wall was investigated by 

Schultz and Bean, a sample cantilever masonry 

wall is used to demonstrate the sensitivity of 

critical axial loads on masonry tensile strength. The 

wall, the profile of which is shown in Figure 11, is 

subjected to a concentrated eccentric vertical load 

P, a concentrated horizontal top load Q, a  

distributed horizontal load q, and weight W, 

distributed along wall height. The wall is 

subdivided into N elements of equal length. 

 

 
Figure 11: Idealized masonry wall (Schultz et al, 

2009). 

 

The distributed loads, namely weight W 

and lateral load q are converted to concentrated 

nodal loads (i.e., w = W/N and f = qL/N). The 

height of the masonry wall is L = 6 m (19.7 ft), and 

the thickness is h = 200 mm (7.9 in.). The 

mechanical properties are εcu = 0.005, E = 125.9 

N/mm
2
 (2.900 ksi) and v = 0.17. Moreover, the 
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concentrated lateral load Q the distributed lateral 

load q and the self weight W are assumed to be 

proportional to vertical load, and are represented by 

normalized variables qL2/2Ph, QL/Ph, W/P, and 

e/h. Figure 12 shows the axial load vs. lateral 

deflection (P-Δ) curves for various values of the 

parameter 100εcr /εcu. The case of a masonry wall 

with no tensile strength, which has been studied by 

many researchers, corresponds to 100εcr / εcu = 0, 

whereas the maximum value for the tensile 

capacity parameter, i.e.,  100εcr /εcu = 2, represents 

a practical upper bound for contemporary masonry 

materials. 

Cracking strength is seen to have a 

remarkable impact on the shape and smoothness of 

the stability curves, but it does not have much 

influence on the values for ultimate tip deflection, 

i.e., when load capacity vanishes (P = 0). However, 

tensile strength does have an effect on tip 

deflection values corresponding to the critical 

(peak) axial load (Figure 12). The peak value for 

vertical load (i.e., the critical axial load Pcr) was 

taken for each of the P-Δ curves that were 

generated for a specific tensile strength (100εcr 

/εcu). The resulting relationship is shown in Figure 

13, which produces the dramatic influence in  

critical axial load capacity Pcr with increasing 

tensile strength, 100εcr /εcu. 

 

 
Figure 12: Influence of tensile strength on load 

deflection behavior (Schultz et al, 2009).  

 

 
Figure 13: Influence of tensile strength on axial 

critical load (Schultz et al, 2009).  

The same wall configuration was analyzed 

for increasing eccentricity, e, of vertical load P but 

with no lateral loading (i.e., Q = q = 0). Critical 

axial load, as function of eccentricity, is shown in 

Figure 14, which demonstrates the importance of 

this parameter on buckling capacity. As e/h 

increases from 0 to 0.5, buckling capacity for 

eccentrically  compressed walls decreases by a 

factor of 5. However, current US code provisions 

assume that the buckling capacity of eccentrically  

compressed masonry walls vanishes as eccentricity 

e approaches one-half of the wall thickness h. 

In the many research the buckling 

capacities of masonry walls were computed, but 

only for the case of no tensile strength (i.e., 100εcr 

/εcu = 0). Even modest tensile capacit ies in masonry 

give rise to finite buckling strengths, even for cases 

where e/h > 0.5, as noted by the horizontally  

asymptotic behavior of the curves shown in Figure 

14. The Pcr vs. εcr /εcu curves shown in Figure 14 

indicate that increases in buckling capacity with 

tensile strength are substantial only for walls with 

large eccentricity (i.e., e/h>0.2). 

 
Figure 14: Influence of tensile strength on the 

buckling capacity of eccentrically loaded wall 

(Schultz et al, 2009). 

 

1.8 Analytical and Numerical Approaches  

Yokel (1971) developed an analytical 

formula to determine the critical load of pris matic 

elements that, because of a very low tensile 
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strength, have cracked sections. The study was 

based on a prismatic rectangular section, consisting 

of an elastic material, with a linear relationship 

between stress and strain and did not develop 

resistance to traction (Figure 15, left). The loading 

conditions considered by Yokel (1971) consisted of 

a load P acting direction parallel to the axis of the 

piece, applied with an eccentricity value t/2 > e ≥ 

t/6. The piece considered hinged at both ends, so 

that the rotation was not restricted (Figure 15, 

right). The balance in any section requires that the 

reaction is equal to the applied load. The resulting 

stress distribution of a section is shown in the 

Figure 16. 

Figure 16 (a) shows the case where the 

load P acts at an eccentricity equal to kern 

eccentricity (e=t/). In the case the compressive 

stresses at one face (the tension face) of the cross 

section is zero. At the other face the maximum 

compressive stress occurs. The value of the 

maximum stress produced is: 

 
 

 
Figure 15: The d imension of wall (left) and 

loading condition (right).  

 

 
Figure 16: Resulting stress distribution (a) 

corresponds to an eccentricity t/6 (b) corresponds 

to an eccentricity greater than t/6. 

 

In the figure 16 (b) the load P acts at a higher 

eccentricity t/6, i.e . the load is applied outside the 

kern of the section. The maximum stress at 

compression face of the cross section is: 

 
(18) 

Where, u is the distance between the line 

of application of P and compression face of section 

the cross section, P is the compressive force 

applied to member and b is the width of member.  

On the other hand, a tensile crack appears 

at the tension side of the cross section, as the 

material has no tensile strength. The uncracked part 

of the cross section has a triangular stress 

distribution similar to that shown in figure 16 (a), 

where  = 0 at the origin of crack. The uncracked 

thickness of the section is 3u and depth of cracks is 

therefore t-3u. The expression 18 is valid fo r all 

cases in which the values of eccentricity are t/2 > e 

≥ t/6. Stress distribution within the entire wall is 

shown in Figure 17. 
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Figure 17: Stress distribution in the units 

of the wall. 

The rectangle obtained by broken lines 

shows the undeflected shape of the member. The 

deflected shape is shown by the heavy out line. The 

shaded area within the deflected member shows the 

un-cracked zone which supports the load. The 

stress distribution at one particular cross section is 

shown by the heavy-shaded triangle. 

Distance, u between the compression face 

of the member and the line of act ion of force P 

varies along the height of the member because of 

member deflection. The maximum distance u1 

occurs at the two member ends. The min imum 

distance u0 occurs at mid-height. The maximum 

compressive stress in the member occurs at mid-

height is: 

 

(19) 

Figure 18 shows the deflection curve of the 

compression face of the member, together with the 

coordinate system used. The x axis is parallel to the 

action line of P and is tangential to the deflection 

curve at the origin. At each point, y = u – u0 and at 

x = h/2, y = u1 – u0. 

 

 
Figure 18: Deflection curve of compression face.  

 

By this approach, finally the equivalent critical 

load is computed from an equivalent moment of 

inertia and based on an equivalent thickness of 3u1 

is: 

 

(20) 

Where, 

 equivalent critical load; 

 distance between line of action of 

compressive load and compression face of member 

at member support. 

Note that,  becomes the Euler load, when the 

section is loaded at the edge of the kern (3u1 = t) 

i.e. the load is applied at an eccentricity equal to 

t/6. 

Yokel concluded that the elastic instability is given 

for the value of good crit icis m: 

 
(21) 

Where,  is the crit ical load of member.  

Substituting the value of in the expression and 

obtained: 

 

(22) 

The author observed the expressions obtained by 

comparing with the results of a pilot scale test 

conducted by the Institute of Structural Clay  

Products. The test included slenderness ratio of 6.6 

to 46.1 and the eccentricit ies t/6 to t/3.  

In this comparison the author obtained the 

following conclusions: 

 The masonry tested developed a tensile 

strength of around 2% - 3% of compressive 

strength. This change translates into greater 

capabilit ies than those obtained by author's 

formulat ion. These differences will be greater 

for situations where failure occurs at relatively  

low stress (high ratio of slenderness and 

eccentricity). 
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 The stress - strain curve for bricks is not 

exactly linear. The tangent modulus of 

elasticity at failure tends to be about 70% of 

initial value. If deflect ions are predicted on the 

basis of modulus of elasticity at low stress 

levels, deflections at high stress levels would 

probably be greater than the predicted 

deflections. This effect is more pronounced for 

reasons of slenderness and low eccentricity.  

 The brick units themselves have greater 

strength and stiffness than the mortar beds 

connecting the units. This discontinuity stress 

distribution causes a much more complex than 

the idealized distribution assumed by the 

author for the solution. The author did not 

evaluate the effect of these discontinuities on 

strength and stiffness. 

 

A numerical model for the analysis of 

structural members under eccentric compression is 

presented by Vassilev et al. (2009). The 

equilibrium is formulated in the deformed state and 

takes account of the effect of deflections on the 

bearing capacity. The assumed parabolic stress-

strain function allows a realistic modeling of the 

composite material behavior in compression and 

bending. Due to the physical and structural 

nonlinearities, the bending stiffness becomes under 

loading a function of the stress state, thus leading 

to variable coefficients of the governing differential 

equation. 

The system solution is obtained within an  

iterative numeric procedure, based on the 

discretisation of the structure into finite segments 

and the piecewise linearizat ion of its parameters. 

The piecewise integration of the equilibrium 

differential equation leads to a formulation in terms 

of the transfer matrix method. The ultimate state is 

marked either by equilibrium bifu rcation and loss 

of stability or collapse due to material failu re. The 

performance of structural members under eccentric 

compression is usually assessed through the 

equilibrium conditions of models like the one on 

Figure 19. The bearing capacity is ensured as long 

as the resistance can equal the compressive and 

bending action of the external load. At ultimate 

level the capacity is exhausted either due to 

material failure or excessive increase of deflections 

leading to loss of stability. 

 
Figure 19: Masonry wall under eccentric 

compression (Vassilev et al. 2009). 

 

If the bending stiffness B and the 

compressive force N remain constant over the 

height, then the problem has an explicit solution, 

based on the familiar differential equation: 

 
(23) 

The basic steps of the iterative procedure 

are presented in Figure 20. An update of the 

stepped stiffness function serves as starting point 

for each iteration. The first step of the analysis 

procedure under a prescribed load level is the 

System Solution which is based on the transfer 

matrix method. 

 
Figure 20: Iterative scheme of the evaluation 

procedure (Vassilev et al. 2009). 

The expression for the compressive resultant 

becomes thus in the case of rectangular sections: 

 

(24) 

 

Where, t, b = width and depth of the section, P = 

applied load,  = resultant compressive axial 

force,  = stress,  = curvature and  = strain. 

The solution of Equation 24 yields the strain at the 

centroid ε
0
 and determines unequivocally – along 

with the curvature κ – the two relevant values of 

the current strain state: 



Mir Abdul Kuddus. Int. Journal of Engineering Research and Application                     www.ijera.com 
ISSN : 2248-9622, Vol. 7, Issue 1, ( Part -5) January 2017, pp.30-41 

 
www.ijera.com                                               DOI: 10.9790/9622-0701053041                            40 | P a g e  

. 
 

And finally, the formula for the updated value of 

the bending stiffness prior to the next iterat ion: 

 

 

(26) 

 

The results obtained in this numerical 

study presented below illustrate the potential of the 

approach. Figure 21 shows the two characteristic 

modes of failure independent of the load 

eccentricity. It varies in magnitude, but remains 

equal at both ends. The slenderness ratio is h/t = 

10. 

In the case of the figures on the left, the 

load acts with the small eccentricity e = t/8. The 

cracking is primarily a consequence of the 

eccentricity amplification, induced by the second-

order deflections. The crack propagation is 

confined to the central part, while the boundary 

regions remain undamaged. The bearing capacity is 

reduced to Φ = 0.597 where Φ is the bearing 

reduction factor. The ultimate state is associated 

with material failure at the critical central section, 

at the stage when the maximum stress equals the 

material strength. 

 

 
Figure 21: Deflection and damage at u ltimate limit 

state (Vassilev et al. 2009). 

 

In the case on the figures on the right, the 

larger eccentricity of e = t/3 leads a priori to 

cracking all over the height. The effective width of 

the interior sections is further reduced due to the 

second-order effects. At ultimate it is barely 1/3 of 

the thickness at the critical section. The material 

strength is not reached as the system fails at Φ = 

0.140 due to loss of stability. The plot in Figure 22 

gives the calculated capacity versus the load 

eccentricity as well as the results of two series of 

tests with the eccentricity ratios e/t = 1/3 and e/t = 

0.4 respectively. A good agreement between 

prediction and experiment can be registered in both 

cases. The numerical simulation indicates material 

failure as the cause for collapse in the case of the 

smaller eccentricity and loss of stability for the 

larger one. 

The dashed lines on Figure 22 serve as 

reference by the evaluation of the results. They 

represent the material section capacity, based on 

two common simplified theories: stress -block and 

linear stress distribution. The prediction lies within  

the two limits as long as the eccentricity remains 

relatively small and material failu re prevails. The 

capacity progressively drops below with the 

increasing eccentricity, when instability becomes 

dominating. 

 

 
Figure 22: Capacity reduction factor versus load 

eccentricity; material section capacity (SB) based 

on stress block theory and (LS)-based on stress 

distribution (Vassilev et al. 2009). 

 

II. CONCLUSIONS 

The diverse combinations of slenderness 

ratio and load eccentricity used in the experimental 

program which provided the means for a 

comprehensive numerical analysis of the masonry 

wall. It must be noted that some difference with 

respect to the experimental results is unavoidable 

because of the influence of possible non-reported 

accidental eccentricities . It has been observed that 

an accurate description of tensile cracking and 

opening of mortar joints, by means of an 

appropriate interface element, is essential to obtain 

reliable results on the bucking failure of walls. 
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