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ABSTRACT 
In this paper, we introduce and study the notion of Zα-open sets and some properties of this class of sets are 

investigated. Also, we introduce the class of A
*
L-sets via Zα-open sets. Further, by using these sets, a new 

decompositions of continuous functions are presented. 
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I. INTRODUCTION 
J. Tong [21] introduced the notion of B-set 

and B-continuity in topological spaces. The concept 

of A
*
-sets, DS -set, A

*
-continuity, DS-continuity 

introduced by E. Ekici [4, 8] and used them to obtain 

a new decomposition of continuity. Noiri et.al [17] 

introduced the notion of η-set and η-continuity in 

topological spaces. The main purpose of this paper is 

to obtain a new decompositions of continuous 

functions. We introduce and study the notion of Zα- 

open sets and A
*
L-sets. The relationships among of 

Zα-open sets, A
*
L-sets and  the related sets are 

investigated. By using these notions, we obtain a new 

decompositions of continuous functions. Also, some 

characterizations of these notions are presented. 

 

II. PRELIMINARIES 

A subset A of a topological space (X, ) is 

called regular open (resp. regular closed) [20] if A = 

int(cl(A)) (resp. A= cl(int(A))). The δ-interior [22] of 

a subset A of X is the union of all regular open sets of 

X contained in A and is denoted by δ-int(A). A subset 

A of a space X is called δ-open [22] if it is the union 

of regular open sets. The complement of a δ-open set 

is called δ-closed. Alternatively, a set A of (X, ) is 

called δ-closed [22] if A = δ-cl(A), where  δ-cl(A) = 

{x X:  A ∩ int(cl(U))  υ, U and x U}. 

Throughout this paper (X, τ) and (Y, σ) (simply, X 

and Y) represent non-empty topological spaces on 

which no separation axioms are assumed unless 

otherwise mentioned . For a subset A of a space (X, 

τ), cl(A), int(A) and X \ A denote the closure of A, 

the interior of A and the complement of A 

respectively. A space X is called submaximal [3] if 

every dense subset of X is open. A space (X, τ) is 

called extremally disconnected (briefly.     E. D.) 

[19] if the closure of every open set of X is open. A 

subset A of a space X is called δ-dense [6] if and only 

if  δ-cl(A) = X. A subset A  of a space X  is called 

a-open [4] (resp. -open [16],preopen 

[13],δ-semiopen [18], semiopen [12], Z-open [11], 

b-open [1] or γ-open [10] or sp-open [3], e-open [5]) 

if A  int(cl(δ-int(A))) (resp. A int(cl(int(A))), 

Aint(cl(A)), Acl(δ-int(A)), A cl(int(A)), A  

cl(δ-int(A)) ∪  int(cl(A))), A  int(cl(A)) ∪  cl(int(A)), 

A  cl(δ-int(A)) ∪  int(δ-cl(A))). The complement of 

a-open (resp. -open, preopen,  δ-semiopen, 

semiopen) sets is called a-closed [4] (resp. -closed 

[16], pre-closed [13], δ-semi-closed [18], 

semi-closed [2]). The intersection of all a-closed 

(resp. -closed, pre-closed, δ-semi-closed, 

semi-closed) sets containing A is called the a-closure 

(resp. -closure, pre-closure, δ-semi-closure, 

semi-closure) of A and is denoted by a-cl(A) (resp. 

-cl(A), pcl(A), δ-scl(A), scl(A)). The union of all 

a-open (resp. -open, preopen, δ-semiopen, 

semiopen) sets contained in A is called the a-interior 

(resp. -interior, pre-interior, δ-semi-interior, 

semi-interior) of A and is denoted by a-int(A) (resp. 

-int(A), pint(A), δ-sint(A), sint(A)). The family of 

all δ-open (resp. a-open, -open, preopen, 

δ-semiopen, semiopen) is denoted by δO(X) (resp. 

aO(X), O(X), PO(X), δSO(X), SO(X)). 

Lemma 2.1. Let A, B be two subset of (X, τ). Then 

the following are hold: 

(1) α-cl(A) = A ∪  cl(int(cl(A))) and α-int (A) = A ∩ 

int(cl(int(A))) [1], 

(2) δ-scl(A) = A ∪  int(δ-cl(A)) and  δ-sint(A) = A ∩ 

cl(δ-int(A)) [17], 
(3) pcl(A) = A ∪  cl(int(A)) and pint (A) = A ∩ 

int(cl(A)) [1]. 

 

Definition 2.1. A subset A of a space (X, τ) is called:  

(1) a A
*
-set [4] if  A = U ∩ V, where U is open and 

V is a-closed, 

(2) a DS-set [8] if  A = U ∩ V, where U is open and 

V is δ-semi-closed,  

(3) a B-set [21] if  A = U ∩ V, where U is open and 

V is semi-closed, 

(4) a η-set [17] if  A = U ∩ V, where U is open and 
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V is -closed, 

(5) a δ
*
-set [7] if  δ-int(A) is δ-closed. 

 

III. ZΑ-OPEN SETS 
Definition 3.1. A subset A of a topological space (X, 

τ) is called 

(1) Zα-open if A  int(cl(int(A))) ∪  cl(δ-int(A)),  

(2) Zα-closed if cl(int(cl(A))) ∩ int(δ-cl(A))  A. 

The family of all Zα-open (resp. Zα-closed) subsets of 

a space (X, ) will be as always denoted by ZαO(X) 

(resp. ZαC(X)). 

 

Remark 2.1. The following diagram holds for a 

subset of a space X: 

 
 

The converse of the above implications need not 

necessary be true as shown by [1, 3, 4, 5, 10, 11, 16, 

18] and the following examples. 

 

Example 3.1. Let X = {a, b, c, d, e} with topology τ 

= {υ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, 

b, c}, {a, b, d}, {b, c, d}, {a, b, c, d}, X}. Then: 

(1) A subset {a, b, e} of X is Zα-open but it is not 

δ-semiopen and it is not α-open, 

(2) A subset {b, e} of X is semiopen but it is not 

Zα-open. 

Example 3.2. Let X = {a, b, c, d, e} with topology τ 

= {υ,{a, b},{c, d},   {a, b, c, d}, X}. Then the 

subset {a, b, c} is a Z-open set but it is not Zα-open. 

Theorem 3.1. Let (X, τ) be a topological space. Then 

a Zα-open set A of X is α-open if one of the following 

conditions are hold: 

(1) (X, τ) is E.D.,  

(2) A is δ
*
-set of X, 

(3) X \ A is δ-dense of X. 

Proof. (1) Since, A  ZαO(X) and X is E.D., then  

A  int(cl(int(A))) ∪  cl(δ-int(A)) int(cl(int(A))) ∪  

int(cl(δ-int(A))) = int(cl(int(A))) and therefore A  

αO(X, τ), 

(2) Let A be a δ
*
-set and Zα-open. Then A  

int(cl(int(A))) ∪  cl(δ-int(A)) = int(cl(int(A))) ∪  

δ-int(A) = int(cl(int(A))). Therefore A is -open,       

(3) Let A ZαO(X) and X \ A be a δ-dense set of X. 

Then δ-int(A)= υ and        hence A ⊆ int(cl 

(int(A))). Therefore A is -open. 

Lemma 3.1. Let (X, τ) be a topological space. Then 

the following statements are hold. 

(1) The union of arbitrary Zα-open sets is Zα-open, 
(2) The intersection of arbitrary Zα-closed sets is 

Zα-closed. 

Remark 3.2. By the following example we show that 

the intersection of any two Zα-open sets is not 

Zα-open. 

Example 3.3. Let X = {a, b, c} with topology τ = {υ, 

{a}, {b}, {a, b}, X}. Then A = {a, c} and B ={b, c} 

are Zα-open sets. But A ∩ B = {c} is not  Zα-open. 

Definition 3.2. Let (X, τ) be a topological space. 

Then : 

(1) The union of all Zα-open sets of X contained in A 

is called the Zα-interior of A and is denoted by 

Zα-int(A), 

(2) The intersection of all Zα-closed sets of X 

containing A is called the Zα-closure of A and is 

denoted by Zα-cl(A). 

Theorem 3.2. Let A be subset of a topological space 

(X, τ). Then the following are statements are 

equivalent: 

(1) A is Zα-open set, 

(2) A = Zα-int(A), 

(3) A = α-int(A) ∪  δ-sint(A). 

Proof. (1) ↔(2). Obvious, 

(1) →(2). Let A be a Zα-open set. Then A  

int(cl(int(A))) ∪  cl(δ-int(A)). BY Lemma 2.1, 

α-int(A) ∪  δ-sint(A) = (A ∩ int(cl(int(A)))) ∪  (A ∩ 

cl(δ-int(A))) = A ∩ (int(cl(int(A))) ∪  cl(δ-int(A))) = 

A, 

(2) →(1). Let A = α-int(A) ∪  δ-sint(A). Then by 

Lemma 2.1, we have 

A = (A ∩ int(cl(int(A)))) ∪  (A ∩ cl(δ-int(A)))  

 int(cl(int(A))) ∪  cl(δ-int(A)). Therefore A is 

Zα-open set.    

Theorem 3.2. Let A be subset of a topological space 

(X, τ). Then the following are statements are 

equivalent: 

(1) A is a Zα-closed, 

(2) A = Zα-cl(A), 

(3) A = α-cl(A) ∩ δ-scl(A). 

Proof. It is clear. 

 

IV. A*
L-SETS 

Definition 4.1. A subset A of a space (X, τ) is said to 

be an A
*
L-set if there exist an open set U and an 

Zα-closed set V such that  A = U ∩ V. 

The family of A
*
L-sets of X is denoted by A

*
L(X). 

Remark 4.1. (1) The following diagram holds for a 

subset A of a space X, 

          η-set   →  A
*
L-set    → B-set 

            ↑           ↑ 

           A
*
-set  →   DS-set 

(2) Every open set and every Zα-closed set is A
*
L-set, 

(3) None of the above implications is reversible as 

shown by [4, 7, 16] and the following examples. 

Example 4.1. Let X ={a, b, c, d, e} with topology τ = 

{υ, {a}, {c}, {a, b},{a, c}, {a, b ,c}, X}. Then the set 

{b, c, e} is an B-set but it is not an A
*
L-set . Also, the 

set {b, e} it is an A
*
L-set but it is not DS-set and it is 

not open. Further, the set {a} is A
*
L-set but not 

Zα-closed. 

Example 4.2. Let X = {a, b, c, d} with topology τ = 
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{υ,{a},{b},{a, b}, X}. Then the set {b, c} is an 

A
*
L-set but not an η-set. 

Theorem 4.1. Let A be a subset of a space (X, τ). 

Then A  A
*
L(X) if and only if  A = U ∩ Zα-cl(A), 

for some open set U. 

Proof. Let A A
*
L(X). Then A = U ∩ V, where U is 

open and V is Zα-closed. Since A  V, then Zα-cl(A) 

 Zα-cl(V) = V. Thus U ∩ Zα-cl(A)  U ∩ V = A  

U ∩ Zα-cl(A). Therefore, A = U ∩ Zα-cl(A).  

Conversely. Since A = U ∩ Zα-cl(A), for some open 

set U and Zα-cl(A) is Zα-closed, then by Definition 

4.1, A is A
*
L-set. 

Lemma 4.1 [12]. Let A be a subset of a space(X,τ). 

Then, A is semi-closed if and only if int(A) = 

int(cl(A)). 

Theorem 4.2. Let X be a topological space and A  

X. If A  A
*
L(X), then pint(A) = int(A). 

Proof. Let A  A
*
L(X). Then, A = U ∩ V, where U is 

open and V is Zα-closed. Since V is Zα-closed, then V 

is semi-closed. Hence by Lemmas 2.1, 4.1, we have 

pint(A) = A ∩ int(cl(A))  U ∩ int(cl(V))= U ∩ 

int(V) = int(A). Thus, pint(A) = int(A). 

Theorem 4.3. Let A be a subset of a space(X, τ).Then 

the following are equivalent: 

(1) A is open, 

(2) A is α-open and A
*
L-set, 

(3) A is preopen and A
*
L-set. 

Proof. (1) →(2) and (2) →(3) Obvious, 

(3) →(1). Let A be a preopen set and A
*
L-set. Then 

by Theorem 4.2, we have pint(A) = int(A). But, A is 

preopen, then A = pint(A) = int(A). Thus A is open. 

Theorem 4.4. For an extremally disconnected space 

X. The following are equivalent: 

(1) A is open, 

(2) A is Zα-open and A
*
L-set, 

(3) A is preopen and A
*
L-set. 

Proof. It follows directly from Theorems 3.1, 4.3. 

Theorem 4.5. Let (X, τ) be a topological space. Then 

the following are equivalent: 

(1) X is submaximal, 

(2) Every dense subset of X is an A
*
L-set. 

Proof. (1) →(2). Let X be a submaximal space. Then 

every dense subset of X is an open sets, so is an 

A
*
L-set. 

(2) →(1). It is known that every dense set is preopen. 

Also, by hypothesis, every dense is A
*
L-set. So, by 

Theorem 4. 3, it is open. Therefore, X is submaximal. 

Theorem 4.6. Let X be a topological space. Then the 

following are equivalent: 

(1) X is indiscrete, 

(2) The A
*
L-set of X are only trivial ones. 

Proof. (1) →(2). Let A be an A
*
L-set of X. Then 

there exists an open set U and an Zα-closed set V 

such that A = U ∩ V. If A ≠ υ, then U ≠ υ. We obtain 

U = X and A = V. Hence X = Zα-cl(A)  A and A = 

X, 

(2) →(1). Every open set is an A
*
L-set. So, open sets 

in X are only the trivial ones. Hence, X is indiscrete. 

V. DECOMPOSITIONS OF 

CONTINUOUS FUNCTIONS 
Definition 5.1. A function f:(X, τ)→(Y, σ) is said to 

be Zα-continuous  if  

 f
 -1

(V) is Zα-open in X, for every V σ. 

Definition 4.2. A function f:(X, τ)→(Y, σ) is called 

super-continuous [15] (resp. a-continuous [4], 

-continuous [14], pre-continuous [13], 

δ-semi-continuous [9], semi-continuous 

[12],-continuous [10], e-continuous [5], 

Z-continuous [11]) if f
 -1

(V) is δ-open (resp. a-open, 

-open, preopen, δ-semiopen, semiopen,  -open, 

e-open, Z-open) of X, for each V σ. 

Remark 5.1. Let f: (X, τ) →(Y, σ) be a function. 

Then The following diagram is hold: 

 

 
 

The implications of the above diagram are not 

reversible as shown by [4, 9, 10, 11, 15] and the 

following examples.  

Example 5.1. Let X = {a, b, c, d} with topology τ = 

{υ, {a},{c},{a, c},   {a, b}, {a, b ,c}, X}. Then: 

(1) the function  f :(X, τ) → (X, τ) which defined by 

f(a) = a, f(b) = d and f(c) = c, f(d) = b is 

semi-continuous but it is not Zα-continuous, 

(2) the function f :(X, τ) → (X, τ) which defined by, 

f(a) = a, f(b) = b, and f(c) = f(d) = c is Zα-continuous 

but it is not δ-semi-continuous. 

Example 5.2. In Example 3.2, the function f :(X, τ) 

→ (X, τ) which defined by, f(a) = c, f(b) = f(c) = d 

and f(d) = f(e) = e is Z-continuous but it is not 

Zα-continuous. Also, the function f :(X, τ) → (X, τ) 

which defined by, f(a) = a,  f(b) = b, f(c) = c and f(d) 

= f(e) = d, is Zα-continuous but it is not α-continuous. 

Definition 5.3. A function f:(X, τ) → (Y, σ) is said to 

be A
*
L-continuous if  f

 -1
(V) is an A

*
L-set of X, for 

every V σ. 

Definition 5.4. A function f:(X, τ) → (Y, σ) is called 

B-continuous [21] (resp. η-continuous [17], 

DS-continuous [8]) if  f
 -1

(V) is a B-set (resp.  η-set, 

DS-set) in X, for each V σ. 

Remark 5.2. (1) Let f: X → Y be a function. Then 

the following implications are hold: 

 η-continuous → A
*
L-continuous  → B-continuous 

       ↑               ↑ 

  A
*
-continuous  → DS-continuous 

(2) Every continuous is A
*
L-continuous. 

(3) These implications are not reversible as shown by 

[4, 8]and the following examples. 

Example 5.3. Let X = {a, b, c, d, e} = Y with 

topology τ = {υ,{a},{c},   {a, c},{a, b},{a, b, c}, X} 
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and σ = {υ,{c},{d, e}, {c, d, e}, Y}. Then:  

(1) the function f :(X, τ)→(Y, σ) which defined by, 

f(a) = a, f(b) = d,    f(c) = e, f(d)= b and f(e) = c is 

B-continuous but it is not A
*
L-continuous, 

(2) the function f :(X, τ)→(Y, σ) which defined by, 

f(a) = f(c) = a, f(b) = d,    f(d) = b and f(e) = e is 

A
*
L-continuous but it is not DS-continuous and it is 

not continuous. 

Example 5.4. In Example 4.2, the function f :(X, 

τ)→(X, τ) which defined by f(a)= f(d) = d and f(b) = 

f(c) = b is A
*
L-continuous but it is not η-continuous. 

Theorem 5.1. The following are equivalent for a 

function f: X → Y: 

(1) f is continuous, 

(2) f is α-continuous and A
*
L-continuous,  

(3) f is pre-continuous and A
*
L-continuous. 

Proof. It is an immediate consequence of Theorem 

4.3. 

Theorem 5.2. Let X be an extremely disconnected 

space and f: X → Y be a function. Then following 

are equivalent: 

(1) f is continuous, 

(2) f is Zα-continuous and A
*
L-continuous, 

(3) f is α-continuous and A
*
L-continuous,  

(4) f is pre-continuous and A
*
L-continuous. 

Proof. It is an immediate consequence of Theorem 

4.4. 
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