www.ijera.com

RESEARCH ARTICLE

OPEN ACCESS

On Z_□-**Open Sets and Decompositions of Continuity**

A. M. Mubarki¹, M. A. Al-Juhani², M. M. Al-Rshudi³, M. O.AL-Jabri⁴

¹ Department of Mathematics, Faculty of Science, Taif University,

^{2,3,4} Department of Mathematics, Faculty of Science, Taibah University Saudi Arabia

ABSTRACT

In this paper, we introduce and study the notion of Z_{α} -open sets and some properties of this class of sets are investigated. Also, we introduce the class of A^*L -sets via Z_{α} -open sets. Further, by using these sets, a new decompositions of continuous functions are presented.

(2000) AMS Subject Classifications: 54D10; 54C05; 54C08.

Keywords: Z_{α} -open sets , A^*L -set, Z_{α} -continuity and decomposition of continuity.

I. INTRODUCTION

J. Tong [21] introduced the notion of B-set and B-continuity in topological spaces. The concept of A^{*}-sets, DS -set, A^{*}-continuity, DS-continuity introduced by E. Ekici [4, 8] and used them to obtain a new decomposition of continuity. Noiri et.<u>al</u> [17] introduced the notion of η -set and η -continuity in topological spaces. The main purpose of this paper is to obtain a new decompositions of continuous functions. We introduce and study the notion of Z_aopen sets and A^{*}L-sets. The relationships among of Z_a-open sets, A^{*}L-sets and the related sets are investigated. By using these notions, we obtain a new decompositions of continuous functions. Also, some characterizations of these notions are presented.

II.PRELIMINARIES

A subset A of a topological space (X, τ) is called regular open (resp. regular closed) [20] if A =int(cl(A)) (resp. A = cl(int(A))). The δ -interior [22] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by δ -int(A). A subset A of a space X is called δ -open [22] if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set A of (X, τ) is called δ -closed [22] if A = δ -cl(A), where δ -cl(A) = {x \in X: A \cap int(cl(U)) \neq \phi, U \in \tau and x \in U}. Throughout this paper (X, τ) and (Y, σ) (simply, X and Y) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and X \ A denote the closure of A, the interior of A and the complement of A respectively. A space X is called submaximal [3] if every dense subset of X is open. A space (X, τ) is called extremally disconnected (briefly. E. D.) [19] if the closure of every open set of X is open. A subset A of a space X is called δ -dense [6] if and only if δ -cl(A) = X. A subset A of a space X is called a-open [4] (resp. α-open [16], preopen

[13],δ-semiopen [18], semiopen [12], Z-open [11], b-open [1] or γ -open [10] or sp-open [3], e-open [5]) if $A \subseteq int(cl(\delta-int(A)))$ (resp. $A \subseteq int(cl(int(A)))$, $A \subseteq int(cl(A)), A \subseteq cl(\delta - int(A)), A \subseteq cl(int(A)), A \subseteq$ $cl(\delta-int(A)) \cup int(cl(A))), A \subseteq int(cl(A)) \cup cl(int(A)),$ $A \subseteq cl(\delta - int(A)) \cup int(\delta - cl(A)))$. The complement of a-open (resp. α-open, preopen, δ-semiopen, semiopen) sets is called a-closed [4] (resp. α -closed [13], [16]. pre-closed δ-semi-closed [18]. semi-closed [2]). The intersection of all a-closed α -closed. pre-closed, δ-semi-closed. (resp. semi-closed) sets containing A is called the a-closure α -closure, pre-closure, δ-semi-closure, (resp. semi-closure) of A and is denoted by a-cl(A) (resp. α -cl(A), pcl(A), δ -scl(A), scl(A)). The union of all (resp. α -open, preopen, δ -semiopen, a-open semiopen) sets contained in A is called the a-interior α -interior, pre-interior, δ-semi-interior, (resp. semi-interior) of A and is denoted by a-int(A) (resp. α -int(A), pint(A), δ -sint(A), sint(A)). The family of δ-open (resp. a-open, α-open, preopen, all δ -semiopen, semiopen) is denoted by $\delta O(X)$ (resp. $aO(X), \alpha O(X), PO(X), \delta SO(X), SO(X)).$

Lemma 2.1. Let A, B be two subset of (X, τ) . Then the following are hold:

(1) α -cl(A) = A \cup cl(int(cl(A))) and α -int (A) = A \cap int(cl(int(A))) [1],

(2) δ -scl(A) = A \cup int(δ -cl(A)) and δ -sint(A) = A \cap cl(δ -int(A)) [17],

(3) $pcl(A) = A \cup cl(int(A))$ and pint (A) = A \cap int(cl(A)) [1].

Definition 2.1. A subset A of a space (X, τ) is called: (1) a A^{*}-set [4] if $A = U \cap V$, where U is open and

V is a-closed, (2) a DS-set [8] if $A = U \cap V$, where U is open and

V is δ -semi-closed, (3) a B-set [21] if $A = U \cap V$, where U is open and

V is semi-closed, (4) a η -set [17] if $A = U \cap V$, where U is open and

www.ijera.com

V is α -closed,

(5) a δ^* -set [7] if δ -int(A) is δ -closed.

III. Z_A-OPEN SETS

Definition 3.1. A subset A of a topological space (X, τ) is called

(1) Z_{α} -open if $A \subseteq int(cl(int(A))) \cup cl(\delta-int(A))$,

(2) Z_{α} -closed if cl(int(cl(A))) \cap int(δ -cl(A)) \subseteq A.

The family of all Z_{α} -open (resp. Z_{α} -closed) subsets of a space (X, τ) will be as always denoted by $Z_{\alpha}O(X)$ (resp. $Z_{\alpha}C(X)$).

Remark 2.1. The following diagram holds for a subset of a space X:

The converse of the above implications need not necessary be true as shown by [1, 3, 4, 5, 10, 11, 16, 18] and the following examples.

Example 3.1. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}, X\}$. Then:

(1) A subset {a, b, e} of X is Z_{α} -open but it is not δ -semiopen and it is not α -open,

(2) A subset {b, e} of X is semiopen but it is not Z_{α} -open.

Example 3.2. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then the subset $\{a, b, c\}$ is a Z-open set but it is not Z_{α} -open.

Theorem 3.1. Let (X, τ) be a topological space. Then a Z_{α} -open set A of X is α -open if one of the following conditions are hold:

(1) (X, τ) is E.D.,

(2) A is δ^* -set of X,

(3) $X \setminus A$ is δ -dense of X.

Proof. (1) Since, $A \in Z_{\alpha}O(X)$ and X is E.D., then

$$\begin{split} A &\subseteq int(cl(int(A))) \cup cl(\delta\text{-}int(A)) \subseteq int(cl(int(A))) \cup \\ int(cl(\delta\text{-}int(A))) &= int(cl(int(A))) \text{ and therefore } A \in \\ \alpha O(X, \tau), \end{split}$$

(2) Let A be a δ^* -set and Z_{α} -open. Then A \subseteq int(cl(int(A))) U cl(δ -int(A)) = int(cl(int(A))) U δ -int(A) = int(cl(int(A))). Therefore A is α -open,

(3) Let $A \in Z_{\alpha}O(X)$ and $X \setminus A$ be a δ -dense set of X. Then δ -int(A)= ϕ and hence $A \subseteq$ int(cl (int(A))). Therefore A is α -open.

Lemma 3.1. Let (X, τ) be a topological space. Then the following statements are hold.

(1) The union of arbitrary Z_{α} -open sets is Z_{α} -open,

(2) The intersection of arbitrary $Z_{\alpha}\mbox{-closed}$ sets is $Z_{\alpha}\mbox{-closed}.$

Remark 3.2. By the following example we show that

www.ijera.com

the intersection of any two $Z_{\alpha}\mbox{-}open$ sets is not $Z_{\alpha}\mbox{-}open.$

Example 3.3. Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are Z_{α} -open sets. But $A \cap B = \{c\}$ is not Z_{α} -open.

Definition 3.2. Let (X, τ) be a topological space. Then :

(1) The union of all Z_{α} -open sets of X contained in A is called the Z_{α} -interior of A and is denoted by Z_{α} -int(A),

(2) The intersection of all Z_{α} -closed sets of X containing A is called the Z_{α} -closure of A and is denoted by Z_{α} -cl(A).

Theorem 3.2. Let A be subset of a topological space (X, τ) . Then the following are statements are equivalent:

(1) A is Z_{α} -open set,

(2) $A = Z_{\alpha}$ -int(A),

(3) $A = \alpha$ -int(A) $\cup \delta$ -sint(A).

Proof. (1) \leftrightarrow (2). Obvious,

(1) \rightarrow (2). Let A be a Z_{α} -open set. Then A \subseteq int(cl(int(A))) \cup cl(δ -int(A)). BY Lemma 2.1, α -int(A) \cup δ -sint(A) = (A \cap int(cl(int(A)))) \cup (A \cap cl(δ -int(A))) = A \cap (int(cl(int(A))) \cup cl(δ -int(A))) = A.

(2) \rightarrow (1). Let A = α -int(A) $\cup \delta$ -sint(A). Then by Lemma 2.1, we have

 $A = (A \cap int(cl(int(A)))) \cup (A \cap cl(\delta - int(A)))$

 \subseteq int(cl(int(A))) U cl(δ -int(A)). Therefore A is Z_{α} -open set.

Theorem 3.2. Let A be subset of a topological space (X, τ) . Then the following are statements are equivalent:

(1) A is a Z_{α} -closed,

(2) $A = Z_{\alpha}$ -cl(A),

(3) $A = \alpha - cl(A) \cap \delta - scl(A)$.

Proof. It is clear.

IV. A^{*}L-SETS

Definition 4.1. A subset A of a space (X, τ) is said to be an A^{*}L-set if there exist an open set U and an Z_{q} -closed set V such that $A = U \cap V$.

The family of A^*L -sets of X is denoted by $A^*L(X)$.

Remark 4.1. (1) The following diagram holds for a subset A of a space X,

$$\begin{array}{ccc} \eta \text{-set} & \rightarrow & A^{^{+}}L\text{-set} & \rightarrow B\text{-set} \\ \uparrow & & \uparrow \\ A^{^{*}}\text{-set} & \rightarrow & DS\text{-set} \end{array}$$

(2) Every open set and every Z_{α} -closed set is A^{*}L-set, (3) None of the above implications is reversible as shown by [4, 7, 16] and the following examples.

Example 4.1. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then the set $\{b, c, e\}$ is an B-set but it is not an A^{*}L-set . Also, the set $\{b, e\}$ it is an A^{*}L-set but it is not DS-set and it is not open. Further, the set $\{a\}$ is A^{*}L-set but not Z_{α} -closed.

Example 4.2. Let $X = \{a, b, c, d\}$ with topology $\tau =$

 $\{\phi,\{a\},\{b\},\{a,\ b\},\ X\}.$ Then the set $\{b,\ c\}$ is an $A^*L\text{-set}$ but not an $\eta\text{-set}.$

Theorem 4.1. Let A be a subset of a space (X, τ) . Then $A \in A^*L(X)$ if and only if $A = U \cap Z_{\alpha}$ -cl(A), for some open set U.

Proof. Let $A \in A^*L(X)$. Then $A = U \cap V$, where U is open and V is Z_{α} -closed. Since $A \subseteq V$, then Z_{α} -cl(A) $\subseteq Z_{\alpha}$ -cl(V) = V. Thus $U \cap Z_{\alpha}$ -cl(A) $\subseteq U \cap V = A \subseteq$ $U \cap Z_{\alpha}$ -cl(A). Therefore, $A = U \cap Z_{\alpha}$ -cl(A).

Conversely. Since $A = U \cap Z_{\alpha}$ -cl(A), for some open set U and Z_{α} -cl(A) is Z_{α} -closed, then by Definition 4.1, A is A^*L -set.

Lemma 4.1 [12]. Let A be a subset of a space(X,τ). Then, A is semi-closed if and only if int(A) = int(cl(A)).

Theorem 4.2. Let X be a topological space and $A \subseteq X$. If $A \in A^*L(X)$, then pint(A) = int(A).

Proof. Let $A \in A^*L(X)$. Then, $A = U \cap V$, where U is open and V is Z_{α} -closed. Since V is Z_{α} -closed, then V is semi-closed. Hence by Lemmas 2.1, 4.1, we have pint(A) = A \cap int(cl(A)) \subseteq U \cap int(cl(V))= U \cap int(V) = int(A). Thus, pint(A) = int(A).

Theorem 4.3. Let A be a subset of a space(X, τ). Then the following are equivalent:

(1) A is open,

(2) A is α -open and A^{*}L-set,

(3) A is preopen and $A^{*}L$ -set.

Proof. (1) \rightarrow (2) and (2) \rightarrow (3) Obvious,

(3) \rightarrow (1). Let A be a preopen set and A^{*}L-set. Then by Theorem 4.2, we have pint(A) = int(A). But, A is preopen, then A = pint(A) = int(A). Thus A is open.

Theorem 4.4. For an extremally disconnected space X. The following are equivalent:

(1) A is open,

(2) A is Z_{α} -open and A^{*}L-set,

(3) A is preopen and A^*L -set.

Proof. It follows directly from Theorems 3.1, 4.3.

Theorem 4.5. Let (X, τ) be a topological space. Then the following are equivalent:

(1) X is submaximal,

(2) Every dense subset of X is an A^*L -set.

Proof. (1) \rightarrow (2). Let X be a submaximal space. Then every dense subset of X is an open sets, so is an A^*L -set.

 $(2) \rightarrow (1)$. It is known that every dense set is preopen. Also, by hypothesis, every dense is A^{*}L-set. So, by Theorem 4. 3, it is open. Therefore, X is submaximal. **Theorem 4.6.** Let X be a topological space. Then the following are equivalent:

(1) X is indiscrete,

(2) The A^*L -set of X are only trivial ones.

Proof. (1) \rightarrow (2). Let A be an A^{*}L-set of X. Then there exists an open set U and an Z_a-closed set V such that A = U \cap V. If A $\neq \varphi$, then U $\neq \varphi$. We obtain U = X and A = V. Hence X = Z_a-cl(A) \subseteq A and A = X,

(2) \rightarrow (1). Every open set is an A^{*}L-set. So, open sets in X are only the trivial ones. Hence, X is indiscrete.

V. DECOMPOSITIONS OF CONTINUOUS FUNCTIONS

Definition 5.1. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be Z_{α} -continuous if

 $f^{-1}(V)$ is Z_{α} -open in X, for every $V \in \sigma$.

Definition 4.2. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called super-continuous [15] (resp. a-continuous [4], [14], pre-continuous α -continuous [13], [9], δ -semi-continuous semi-continuous $[12],\gamma$ -continuous [10], e-continuous [5]. Z-continuous [11]) if $f^{-1}(V)$ is δ -open (resp. a-open, α -open, preopen, δ -semiopen, semiopen, γ -open, e-open, Z-open) of X, for each $V \in \sigma$.

Remark 5.1. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Then The following diagram is hold:

		semi-continuous \rightarrow	γ -continuous
		Ť	Ť
continuous –	+α-continuous	$\rightarrow Z_{\alpha}$ -continuous \rightarrow	Z- continuous
1	Ť	1	Ļ

super-continuous $\rightarrow a$ -continuous $\rightarrow \delta$ -semi-continuous $\rightarrow e$ -continuous

The implications of the above diagram are not reversible as shown by [4, 9, 10, 11, 15] and the following examples.

Example 5.1. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, X\}$. Then:

(1) the function $f:(X, \tau) \to (X, \tau)$ which defined by f(a) = a, f(b) = d and f(c) = c, f(d) = b is semi-continuous but it is not Z_{a} -continuous,

(2) the function $f:(X, \tau) \rightarrow (X, \tau)$ which defined by, f(a) = a, f(b) = b, and f(c) = f(d) = c is Z_{α} -continuous but it is not δ -semi-continuous.

Example 5.2. In Example 3.2, the function $f : (X, \tau) \rightarrow (X, \tau)$ which defined by, f(a) = c, f(b) = f(c) = d and f(d) = f(e) = e is Z-continuous but it is not Z_{α} -continuous. Also, the function $f : (X, \tau) \rightarrow (X, \tau)$ which defined by, f(a) = a, f(b) = b, f(c) = c and f(d) = f(e) = d, is Z_{α} -continuous but it is not α -continuous. **Definition 5.3.** A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be A^{*}L-continuous if $f^{-1}(V)$ is an A^{*}L-set of X, for every $V \in \sigma$.

Definition 5.4. A function $f:(X, \tau) \to (Y, \sigma)$ is called B-continuous [21] (resp. η -continuous [17], DS-continuous [8]) if $f^{-1}(V)$ is a B-set (resp. η -set, DS-set) in X, for each $V \in \sigma$.

Remark 5.2. (1) Let $f: X \rightarrow Y$ be a function. Then the following implications are hold:

 $\begin{array}{c} \eta\text{-continuous} \ \to A^*L\text{-continuous} \ \to B\text{-continuous} \\ \uparrow \qquad \uparrow \end{array}$

 A^* -continuous \rightarrow DS-continuous

(2) Every continuous is A^{*}L-continuous.

(3) These implications are not reversible as shown by [4, 8] and the following examples.

Example 5.3. Let $X = \{a, b, c, d, e\} = Y$ with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, X\}$

and $\sigma = \{\phi, \{c\}, \{d, e\}, \{c, d, e\}, Y\}$. Then:

(1) the function $f : (X, \tau) \rightarrow (Y, \sigma)$ which defined by, $f(a) = a, f(b) = d, \qquad f(c) = e, f(d) = b \text{ and } f(e) = c \text{ is}$ B-continuous but it is not A*L-continuous,

(2) the function $f : (X, \tau) \rightarrow (Y, \sigma)$ which defined by, f(a) = f(c) = a, f(b) = d, f(d) = b and f(e) = e is A^{*}L-continuous but it is not DS-continuous and it is not continuous.

Example 5.4. In Example 4.2, the function $f :(X, \tau) \rightarrow (X, \tau)$ which defined by f(a) = f(d) = d and f(b) = f(c) = b is A^{*}L-continuous but it is not η -continuous.

Theorem 5.1. The following are equivalent for a function $f: X \rightarrow Y$:

(1) f is continuous,

(2) f is α -continuous and A^{*}L-continuous,

(3) f is pre-continuous and A^*L -continuous.

Proof. It is an immediate consequence of Theorem 4.3.

Theorem 5.2. Let X be an extremely disconnected space and f: $X \rightarrow Y$ be a function. Then following are equivalent:

(1) f is continuous,

(2) f is Z_{α} -continuous and A^{*}L-continuous,

(3) f is α -continuous and A^{*}L-continuous,

(4) f is pre-continuous and A^{*}L-continuous.

Proof. It is an immediate consequence of Theorem 4.4.

REFERENCES

- [1]. **D.Andrijevi'c,** On b-open sets, Mat. Vesnik,48 (1996), pp. 59 - 64.
- [2]. S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), pp. 99-112.
- [3]. **J. Dontchev and M. Przemski,** On the various decompositions of continuous and some weakly continuous, Acta Math. Hungarica, 71(1-2) (1996), pp.109 120.
- [4]. E. Ekici, On a-open sets, A*-sets and decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51(2008), pp.39 -51.
- [5]. E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci., 33 (2) (2008), pp.269 - 282.
- [6]. E. Ekici, A note on □-open sets and e*-open sets., Univ. Ni^s Serbia., 22(1) (2008), pp. 89-96.
- [7]. E. Ekici and S. Jafari, On DS^{*}-sets and decompositions of continuous functions, Univ. Ni's Serbia, 22(2) (2008), pp. 65-73.
- [8]. E. Ekici and S. Jafari, On D-sets, DS-sets and decompositions of continuous, A-continuous and AB-continuous functions, Italian J. Pure Appl. Math., in Press.
- [9]. E. Ekici and G.B. Navalagi, δ-semicontinuous functions, Math. Forum, 17 (2004-2005), pp. 29- 42.

- [10]. A. A. EL-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta Univ. Egypt (1997).
- [11]. A. I. EL-Magharabi and A. M. Mubarki, Z-open sets and Z-continuity in topological spaces, International Journal of Mathematical Archive, 2(10) (2011), pp.1819-1827.
- [12]. N. Levine, Semiopen sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68 (1963), pp. 44-46,.
- [13]. A. S. Mashhour; M. E. Abd EL-Monsef and S. N. EL-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), pp. 47 - 53.
- [14]. A. S. Mashhour; I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), pp. 213-218.
- [15]. B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math., 13(1982), pp. 229-236.
- [16]. O. Njastad , On some classes of nearly open sets, Pacific J. Math., 15 (1965), pp. 961-970.
- [17]. T.Noiri and O. R.Sayed, On decomposition of continuity, Acta. Math. Hungar., 111(1-2) (2006), pp. 1-8.
- [18]. J. H. Park; B .Y. Lee and M . J. Son, On δ -semiopen sets in topological spaces, J. Indian Acad. Math., 19 (1) (1997), pp. 59 67.
- [19]. D. S. Sivaraj, Extremally disconnected spaces, Indian J. Pure Appl. Math., 17 (1986), pp. 1374-1375.
- [20]. M. H. Stone, Application of the theory of Boolean rings to general topology, TAMS, 41 (1937), pp. 375 - 381.
- [21]. J. Tong, On decomposition of continuity in topological spaces, Acta. Math. Hungar., 54 (1-2)(1989), pp. 51–55.
- [22]. N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl, 78(1968), pp.103-118.