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ABSTRACT 
Concrete is the safest and sustainable construction material which is most widely used in the world as it  

provides superior fire resistance, gains strength over time and gives an extremely long service life. 

Unfortunately high performance concrete is undoubtedly one of the most innovativ e materials in construction. 

Its Designing involves the process of selecting suitable ingredients of concrete (water, cement, fine and 

aggregates and a number of additives like mineral and chemical admixture) and determining their relat ive 

amounts with the objective of producing a high performance concrete of the required, strength, durability, and 

workab ility as economically as possible. Their proportions have a high influence on the final strength of the 

product. These relations do not seem to follow a mathematical formula and yet their knowledge is crucial to 

optimize the quantities of raw materials used in the manufacture of high performance concrete. Therefore, it  

would be important to have a tool to numerically model such relationships, even before pro cessing. In this 

aspect the main purpose of this paper is to predict the compressive strength of the high performance concrete by 

using classification algorithms. For building these models, training and testing using the available experimental 

results for 1030 specimens produced with 8 d ifferent mixture proportions are used. The result from this study 

suggests that weighted Support Vector Machines (wSVM) based models perform remarkably well in predict ing 

the compressive strength of the concrete mix.  

Keywords: HPC (High-Performance Concrete), Weighted Support Vector Machines, Compressive Strength 

Prediction  

   

I. INTRODUCTION 
In [1] yeh et al stat that High-performance 

concrete (HPC) is a new type of concrete used in the 

construction industry. HPC works better in terms of 

performance characteristics and uniformity 

characteristics than high-strength concrete [2,3]. 

Prediction of High-performance concrete strength is 

important for concrete construction as it gives an 

idea about the time for concrete form removal,  

project scheduling and quality control. The major 

difference between HPC and conventional concrete 

is essentially the use of mineral and chemical 

admixtures [4,5]. Therefore, Apart from the four 

conventional cement ingredients, Portland Cement 

(PC), water, fine aggregates, and coarse aggregates, 

HPC further incorporates cementitious materials, fly  

ash, blast furnace slag, and a chemical admixture 

[1]. These additional ingredients make HPC mix 

proportion calculations and HPC behavior modeling 

significantly more complicated than corresponding 

processes for conventional cement. Chou et al [6] 

stated that certain properties of HPC are not fully  

understood since the relationship between 

ingredients and concrete properties is highly 

nonlinear. Therefore, traditional model of concrete 

properties is inadequate for analyzing HPC 

compressive strength. 

There are popular methods of mix 

proportion of HPC such method proposed by [7,8,9] 

among other methods [10]. However, to obtain 

required mix proportions of HPC most commonly  

based on trial mixes as stated in relevant standards, 

experience, and ru les of thumb approach [11,12].  

Twenty-eighth day compressive strength is 

the most widely used objective function in the 

mixture design. However, as pointed out previously, 

the result depends on ingredient combinations and 

proportions, mixing techniques and other factors that 

must be controlled during manufacturing. 

Kasperkicz et al. [13] stated that the introduction of 

new ingredients and technologies implies that the 

number of parameters for HPC mix design may  

extend to 10-, 20- or even higher dimensional 

decision space numbers. Waiting 28 days to get 28-

day compression strength is time consuming and not 

a common practice in the construction industry. 

Therefore, many researchers have worked to 

establish prediction tools able to obtain an early  

determination of compressive strength, ideally well 

before concrete is laid down at a construction site. 

Prediction of concrete compressive strength is one 

area of active research in the civil engineering field, 

and a considerable number of relevant studies have 

been carried out over the past 30 years. Zain and 

Abd [14] attempted to categorize methods into three 
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types, i.e., those using statistical techniques, 

computational modeling and artificial neural 

networks. Statistical techniques represent a 

conventional approach, and are used primarily to 

predict conventional concrete compressive strength 

by establishing linear and nonlinear regression 

equations. Several approaches using regression 

functions have been proposed for predicting the 

concrete strength [15,16,17,18].  

Traditional modeling approaches are based 

on empirical relationships derived from the 

experimental data. The approach starts with an 

analytical equation assumption, fo llowed by 

regression analysis that employs limited 

experimental data to determine an unknown 

coefficient. While many regression models have 

been suggested, obtaining a suitable regression 

equation is not an easy task. Moreover in this 

prediction effort, the early compressive strength at 6-

hour, 1-day and 3-day is usually embodied in a 

prediction equation that necessitates some time delay  

in prediction [19]. Furthermore, for HPC, where the 

number of influencing factors is greater than for 

conventional concrete, this regression model is 

neither suitable nor adequate to predict compressive 

strength [20]. As traditional methods handle 

complex non-linear and uncertain materials (like 

HPC) poorly, many researchers have sought better 

prediction tools. Many studies have proposed 

artificial neural networks (ANNs) and ANN 

variations to map non-linear relationships among 

factors of influence on 28-day HPC compressive 

strength. Kasperkicz et al. [13] proposed an artificial 

neural network of the fuzzy-ATMAP to predict HPC 

strength properties. It was found that concrete 

property prediction could be effectively modeled  

using a neural system without being affected by data 

complexity, incompleteness, or incoherence. In 

1998, Yeh et al [1] demonstrated the superiority of 

ANNs in predicting HPC compressive strength that 

produced better results than regression analysis. Yeh 

also showed how easily ANNs could adapt to 

different numerical experiment settings in order to 

review the effect on the concrete mix of each 

variable proportion. Akkurt et al. [21] also noted the 

use of fuzzy logic to predict concrete compressive 

strength.  

Within last decade, machine learning and 

AI are attracting increasing attention in academic 

and empirical fields for their potential application to 

civil engineering problems [22]. In the field of civil 

engineering, much research has focused on 

prediction techniques. Therefore researchers have 

explored the potential of artificial neural networks 

(ANNs), a nonlinear modeling approach, in 

predicting the compressive strength of the concrete 

due to its ability to learn input-output relation for 

any complex problem in an efficient way.  

Several work reported the use of neural 

network based modeling approach in predicting the 

concrete strength (Sergio Lai and Mauro Serra, 

1997; Yeh, 1998a, 1998b, 1999; Kasperkiewicz et  

al., 1995; Sebastia et al., 2003;  

Kim et al., 2004; Dias and Pooliyadda, 

2001; Nehdi et al.,2001; Oh et al., 1999). In most of 

the studies a back propagation neural network was 

used. A neural network model requires no functional 

relationship among the variables, as is the case with 

most of other regression analysis techniques. A 

neural network based modeling algorithm requires 

setting up of different learn ing parameters (like 

learning rate, momentum), the optimal number of 

nodes in the hidden layer and the number of hidden 

layers so as to have a less complex network with a 

relatively better generalization capability. A large 

number of training iterat ions may force ANN to over 

train, which may affect the predicting capabilit ies of 

the model.  

Also many papers have reported on hybrid 

techniques that are able to predict HPC to a high 

degree of accuracy (Cheng et al., 2012; Peng et al., 

2009; Yeh, 1999).  

Within last few years, another modeling 

technique called Support Vector Machines (SVMs) 

(Vapnik 1995) is being applied in the field of civil 

engineering (Dibike et. al. 2001, Pal and Mather 

2003). SVM, which represents a new AI technique, 

has been shown to deliver comparable o r higher 

performance than traditional learn ing machines and 

has been introduced as a powerful tool to solve 

classification and regression problems [23,24]. In  

[25] Gupta investigates the potential of support 

vector machines in predicting the compressive 

strength of high strength concrete. Radial bas is 

function (RBF) and polynomial kernels are used 

with support vector machines. However, SVM 

presents several inherent shortcomings. Firstly, 

SVM is unable to provide high prediction accuracy 

for either the penalty parameter (C) or kernel 

parameter settings. Secondly, SVM considers all 

training data points equally in order to establish the 

decision surface. Therefore, Ling and Wang [26] 

proposed a modified version of SVM, known as 

fuzzy SVM (FSVM) or weighted SVM (wSVM), to 

weight all train ing data points in order to allow 

different input points to contribute differently to the 

learning decision surface. The objective of present 

study is to examine the potential of support vector 

machines (wSVMs) for predicting the compressive 

strength of high strength concrete. 

We evaluate the effectiveness of the 

proposed method using an experimental database 

originally generated by Yeh [27] and posted to the 

University of Califo rnia, Irvine machine learn ing 

repository website. To verify and validate the 

proposed system, wSVM performance was 
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compared against original SVMs and has shown 

better recognition performance.  

The rest of this paper is organized as 

follows. A Brief introduction to SVM and weighted 

SVMs is introduced in section 2. Experimental 

results are presented and discussed in Section 3. 

Finally, conclusions are stated in the last section. 

 

II. BRIEF INTRODUCTION TO SVM 

AND WEIGHTED SVMS 
1. SVM 

This section addresses support vector 

machines (SVM), the classifier used in this 

dissertation for the detection of concrete surface 

cracks. 

An SVM classifier, just like other learn ing 

algorithms, is composed by training and testing 

stages [28]. In the training stage the selected features 

are extracted and typically mapped into a higher 

dimensional space in order to efficiently separate 

crack features from non-crack features. Since the 

ground-truth of the training set is supplied, the 

features that correspond to cracks and to non-cracks 

can be determined. Then, as illustrated in Fig.1, 

SVM selects the set of points in each class (support 

vectors) that are the nearest to the other class and 

through them computes a hyperplane that separates 

the two classes, being as far as possible from the 

support vectors. This hyperplane is often call 

maximum-marg in hyperplane and makes SVM 

robust.  

Once the system has been trained, the 

following phase is the testing stage. In this stage 

each testing sample is classified as belonging to one 

of the two pattern classes. For that the testing set 

features are mapped into the same dimensional space 

produced in the training stage and, according to the 

hyperplane side they fall, the corresponding pattern 

class is attributed. Finally, the classifier accuracy 

can be evaluated by comparison against a set of 

manually labeled data. 

 

 
Fig. 1. SVM feature space example that selects the 

support vectors to separate the two pattern classes 

through a hyperplane. 

The example illustrated in Fig.8is very 

simple and there is no need to map the extracted 

features into a higher dimensional space since they 

can be easily separated by a hyperplane. However 

the typical case is much more complex and the two 

classes are often mixed, being necessary to map the 

features to separate better the two classes. Note that 

in Fig.1 several different hyperplanes could separate 

the two classes. However the hyperplane computed, 

tries to be as far as possible from the support 

vectors. 

Given a train ing set of instance-label pairs 

{xi,yi}, i=1,...,l where xi ∈ R and y ∈ {-1,1}
1
, the 

support vector machines require the solution of the 

following optimization problem:  

 

  (1) 

Subject to:  

 
 

Here training vectors xi are mapped into a 

higher (maybe infinite) d imensional space by the 

function Φ. Then SVM finds a linear separating 

hyper plane with the maximal marg in in this higher 

dimensional space. C > 0 is the penalty parameter of 

the error term. We can define, K(xi,xj) = 

Φ(xi)TΦ(xj) called the kernel function. Though new 

kernels are being proposed by researchers, the most 

common four basic kernels are: Linear, Polynomial, 

Radial basis function (RBF) and Sigmoid. 

 Linear: K(xi,xj) = xi
T
xj   (2) 

 Polynomial :  

K(xi,xj) = (ϒxi  xj+r)
d
,ϒ>0    (3) 

 Radial basis function (RBF) :  

K(xi,xj) = exp(-ϒ||xi  - xj||
2
),ϒ>0  (4) 

 Sigmoid : K(xi,xj ) = tanh (ϒxi
T
xj +r)  (5) 

Where ϒ, r and d correspond to kernel parameters 

that can be defined or estimated. 

 

2. Weighted SVMS   

The weighted support vector machine 

(WSVM) is a SVM adaptation to the cost sensitive 

learning framework. This supervised learning 

technique has been successfully applicable for 

imbalanced classification. 

The term ―weighted support vector 

machines‖ (wSVMs) was proposed by Fan and 

Ramamo hanarao [29] as a synonym for Fuzzy  

Support Vector Machines (FSVMs) to draw 

attention to the effective weighting of fuzzy  

memberships at each FSVM training point. 

Fan and Ramamo hanarao [29] stated that 

different input vectors make d ifferent contributions 

to the learning of decision surface. Thus, the 

important issue in training weighted SVMs is how to 

develop a reliable weighting model to reflect the true 
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noise distribution in the training data. Fan and 

Ramamo hanarao [29] developed emerg ing patterns 

(EPs) to weight the training data. Lin and Wang [30] 

developed FSVMs to enhance support vector 

machine (SVM) ab ilities to reduce the effects of 

outliers and noise in data points. While SVMs a 

recent AI paradigm developed by Vapnik [30] that 

has been used in a wide range of applications, treat 

all training points of a given class uniformly, 

training points in many real world applications bear 

different importance weightings for classification on 

purposes. To solve this problem, Lin and Wang [31] 

applied a fuzzy member to each SVM input point, 

thus allowing different input points to contribute 

differently to the learning decision surface. In such 

time series prediction problems, older training points 

are associated with lower weights, so that the effect 

of older training points is reduced when the 

regression function is optimized. 

In sequential learn ing and inference 

methods such as time series problems, where a point 

from the recent past may be given greater weight 

than a point from further in the past, function of 

timeti can be selected as the weighted SVM scheme. 

Lin and Wang [31] proposed three time functions, 

linear, quadratic, and exponential, as shown in Eqs. 

(6)–(8). Those three time functions were used by 

Khemchandaniet al. [32] on financial t ime series 

forecasting problems, who demonstrated their 

abilities to bring about better results than SVM. 

 

      (6) 

  (7) 

   (8) 

 

However, as the wSVM was developed 

from SVM, it presents the user with similar 

problems. Schlkopf and Smola (2002) expressed that 

SVM bandwidth and penalty parameter C, which  

determines the trade-off between margin  

maximization and violation error minimization, 

represent an issue that requires attention and 

handling. Another point of concern is the setting of 

kernel parameters, such as gamma (γ), on the radial 

basis function, which must also be set properly to 

improve prediction accuracy. In addition, using 

wSVM requires users to set a further parameter, i.e ., 

weighting data parameterσ. Therefore, three 

different parameters must be optimized, including 

the penalty parameter (C), kernel parameter (i.e.γ , if 

the RBF kernel is employed), and σ. To overcome 

this challenge, an optimization technique (e.g., 

fmGA) may be used to identify best parameters 

simultaneously [24] 

 

III. EXPERIMENTAL RESULTS AND 

DISCUSSION 
1. Database 

This section verifies and validates the 

performance of our system using wSVM in  

predicting HPC compressive strength. The model 

proposed herein predicts the compressive strength of 

HPC using an experimental database originally  

collected by Yeh [13] and furnished from various 

university research labs, which was posted to the 

University of Califo rnia, Irvine machine learn ing 

repository website. The database includes a total of 

1030 concrete samples and covers 9 attributes, 8 of 

which are quantitative input variables and 1 of which  

is an output variable. Each instance includes the 

amount of cements, fly ash, blast furnace slag, water, 

superplasticizers, coarse aggregate, fine aggregate, 

age of testing and the compressive strength (in 

MPa). 

Table 2 shows the general details of the 

nine attributes used in this study. However, the 

database often contains unexpected inaccuracies 

[24], as for instance, the class of fly ash may not be 

indicated. 

Another problem is related to 

superplasticizer as chemical admixture produced by 

different manufactures which may have different 

chemical compositions [6,20]. Moreover, Chou et al. 

[6] identified that such inaccuracies induce another 

difficulty related to the compressive strength which 

can be classified into a specific class such as high or 

low concrete compressive strength. 

The HPC database often contains 

inaccuracies due to mixing proportions, mixing  

techniques and ingredient characteristics (e.g., 

varying degrees offinesses, classes offly ash, and 

types of superplasticizer). Such makes prediction of 

HPC compressive strength a highly uncertain task. 

Also HPC databases contains compressive strength 

measures representing 14 different testing ages 

ranging from 1 day to 365 days as shown in Table 3)  

 

2. Experiment Setup  

The experiments were carried out in Matlab 

(R2012a), on a 64-b it, PC with an i5 microprocessor 

with 4 cores, 4 GB of RAM and a hard disk o f 250 

GB. 

To develop the HPC compressive strength 

prediction system, the1030 samples were divided 

randomly into training and testing sets 90% or 927 

samples were assigned to the training set and the 

remainder, 10% or 103 samples, were assigned to 

the testing set. As the wSVM was to be compared  

against SVM result accuracies, SVM parameter 

setting procedures followed previous researcher 
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suggestions and settings. In this study, as suggested 

by Hsu et al. [33] parameter settings for SVMs, 

herein C and γ were set to 1 and 1/k respectively, 

with k representing number of input patterns. This 

study employed four performance measures, namely  

root mean square error (RMSE), coefficient 

correlation (r), coefficient of determination (R2) and 

mean absolute error (MAE) to verify and validate 

the accuracy of the proposed system and other AI 

models. Table 4 shows RSME, r, R2, and MAE 

results of the proposed wSVM system (linear, 

quadratic and exponential time series functions) 

compared against SVM. 

 

3. Results and discussion  

This section presents the results of 

comparing wSVM to other prediction technique 

including such as SVM. 

The performance of the proposed system 

was evaluated by three statistical measures namely  

root mean square error (RMSE), coefficient of 

determination (R2) and mean absolute error (MAE) 

to verify and validate the accuracy of the proposed 

method 

 (9) 

(10) 

  
 

Here, Ai = Actual value, M=mean of actual 

value; Pi = Predicted value; n = number of data (1, 2, 

3 …). 

Table 4 shows RSME, R2, and MAE 

results of the proposed system using wSVM with 

polynomial and RBF kernel functions compared 

against the other AI systems (SVM and BPN) 

Based on the three different evaluation 

methods for both training and testing datasets, 

wSVM provided the best satisfactory result. In 

comparing SVM based on RSME and MAE, SVM 

performed slightly better than wSVM, but only on 

training data (not on the testing data set). However, 

in terms of coefficient of determination (R2) for the 

training data set, wSVM is comparable to SVM. 

Fig.2 presents scatter diagrams of SVMs and wSVM 

using polynomial and RBF (Radial basis Function) 

kernels for the training data set. Better results were 

achieved by wSVM in terms of predict ing testing 

dataset results, which shows that the wSVM train ing 

data learning process provides a prediction model 

superior to SVM. Such confirms that wSVM 

(polynomial ann RBF kernels) delivers comparable 

or higher performance than SVM. 

This better learning ability demonstrates 

wSVM ability to cope with uncertain characteristics 

inherent in HPC databases. Moreover wSVM model 

is also able to map the complex relationship between 

input and output variables as well as manage time 

series characteristics inherent to HPC databases. 

While wSVM employed three different time series 

functions (linear, quadratic and exponential) to 

weigh data points, one preferable time series 

function should be chosen based on performance 

achieved by each time series function, both in the 

training and testing datasets. As shown in Table 4, 

the wSVM using quadratic functions generally  

provides slightly better performance, especially on 

the testing data set, in comparison with the wSVM 

using polynomial and RBF kernel functions. 

However, it should be noted that differences in 

performance obtained between the two kernel 

functions were not significant. This shows that there 

remains room for improvement to find a better t ime 

series function to predict HPC compressive strength. 

The proposed model, wSVM, offers the potential to 

predict HPC compressive strength. The practitioners 

can obtain early, applicable and reliable predict ion 

of concrete compressive strength for pre-design and 

quality control, as waiting 28 days to get 28-day 

compressive strength or later-age compressive 

strength is time-consuming. In accordance with Zain 

and Abd [34] and Chou et al. [35] the rapid  

prediction would enable the adjustment of mix 

proportion to avoid situation where concrete does 

not reach the required compressive strength, which 

would save time and construction costs. 

 

 

 
Table I 

HPC database: input and output variables 

 

 
Table II 

HPC database Examples 
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Table III 

Comparison of results using SVMs and weighted 

SVMs (Po lynomial and RBF kernels) 

 

 
 

 
 

 
 

 
Fig. 2  

Scatter diagrams of SVMs and wSVM (Polynomial 

and RBF kernels) 

IV. CONCLUSION 
This paper proposed wSVM as a hybrid AI 

system to predict HPC compressive strength, a 

mechanical property critical to measuring HPC 

quality. wSVM was developed by fusing FL. 

Therefore wSVMs was used to address uncertainties 

inherent in HPC and to deal with complex 

relationships related to fuzzy input–output mapping 

data in the HPC database (e.g., compressive 

strength) with regard to testing age. In comparison 

with SVMs, the accuracy of the proposed wSVM 

was significantly better for different evaluation 

measurements. 

Such results demonstrate the superior 

ability of wSVM to manage 1) time series data 

characteristics inherent in HPC experimental data, 2) 

complex relationships between input and output 

variables, and 3) uncertainties inherent in HPC 

databases. Therefore, wSVM offers strong potential 

as a predictive tool for HPC compressive strength. 
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