
Vidisha Tembhurkar.et.al Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 9, September.2016, pp.50-53

 www.ijera.com 50|P a g e

Ary Mouse for Image Processing

1
Vidisha Tembhurkar,

2
 Darshana Paunikar

3
 Akansha Rangari

4
 Shubham Ambade

5
Prof. Aniket Deo

Department of Computer Science and Information Technology, Nagpur Institute of Technology, Nagpur

ABSTRACT
In the field of touchy processing, many people would access the touchy phones, keypads etc. where the

disadvantage of touchy system is all about touch screen. So, to overcome this problem, we are going to develop

a project based on touch less device which is used to access and process our data with minimum time

complexity for optimization of the sourcing data. Our project contain marker to highlight required key term.

Touch less detects both the size and location of “Marker’s Gestures” for writing purposes. Whereas the camera

played a key role to select our object that is an image for it’s processing. In this, we are giving command on

camera to identify the gestures by Touch less SDK and reducing manual efforts.

Keywords: Touch less SDK, Neural Network, Handwriting Reorganization, Object Tracking, Hand as well as

Marker detection, Image Processing.

I. INTRODUCTION

Touchless is an SDK that allows users to

create and experience multi-touch applications.

Touchless started as Mike Wasserman’s college

project at Columbia University. The main idea: to

offer users a new and cheap way of experiencing

multi-touch capabilities, without the need of

expensive hardware or software. All the user needs

is a camera, which will track colored markers

defined by the user. Mike presented the project at

the Microsoft Office Labs Productivity Science

Fair, Office Labs fell in love with it, and Touchless

was chosen as a Community Project. Our

deliverables include an extensible demo application

to showcase a limited set of multi-touch

capabilities, but mainly we are delivering an SDK

to allow users to build their own multi-touch

applications. Now, Touchless is released free and

open-source to the world under the Microsoft

Public License (Ms-PL) on CodePlex. Our goals

are to drive community involvement and use of the

SDK as it continues to develop. Remember that this

is just the beginning; and you’re invited to join our

journey. Send us your questions and feedback, use

Touchless SDK in your .NET applications and

XNA games, and support the community by

contributing to the source code.

II. METHODOLOGY
This release includes a short list of binary files to

demonstrate Touch less:

 WebCamLib.dll - Interfaces with DirectShow

to grab webcam frames

 TouchlessLib.dll- Contains the functionality of

Touch less SDK

 Image.gif - Used in Touch less Demo's image

demo

 Touchless.chm - A documentation file of the

Touchless API for developers

 ouchless.jpg - A class diagram of the

Touchless API for developers

III. HANDWRITING ECOGNIZATION
Handwriting recognition well fits into this

category. Handwriting recognition is the task of

transforming a language represented in its spatial

form of graphical marks into its symbolic

representation. On the one hand, it is convenient

and useful to write using a pen, track its movement

through a camera, and transform the writing into

digital document. On the other hand, Touchless

works well for handwriting tracking because

inaccuracy does not count that much in this–

human handwriting, as well as many other human

activities, is fundamentally not accurate. (Fig. 1)

Not only do different people have different types of

handwritings, even if for the same person, the

script could be different in different time or when

he/she is in different mood. Compared to the

inaccuracy introduced by the above factors in

handwriting, the inaccuracy of Touchless is not

considerably significant. Handwriting data is

converted to digital form either by scanning the

writing on paper or by writing with a special pen

on an electronic surface such as a digitizer

combined with a liquid crystal display. The two

approaches are distinguished as off-line and on-line

handwriting, respectively. In our case, we choose

on-line recognition in this case because Touchless

tracks position data of object in real time and on-

line recognition uses two-dimensional coordinates

of successive points of the writing as a function of

time. The data can then be processed by pre-trained

Artificial Neural Network and recognized.

RESEARCH ARTICLE OPEN ACCESS

OPEN ACCESS

Vidisha Tembhurkar.et.al Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 9, September.2016, pp.50-53

 www.ijera.com 51|P a g e

IV. IMAGE MOVEMENT
Create a utility function to retrieve Image

Data in a consistent manner; we have a bit of code

duplication right now. Make a public interface for

demo classes to implement, then allow the user to

just invoke start and stop of a class on the library

Standardize error handling and exception

generation across the project. Improve the expected

marker regions used for scanning on update. We

could consider the marker’s acceleration, rather

than just the velocity. Perhaps try using regions that

aren’t axis-aligned rectangles.

V. HARDWARE AND SOFTWARE

DETAILS
5.1 C#.NET

C#.NET (C#.NET) is an object-oriented

computer language that can be viewed as an

evolution of Microsoft's implemented on the

Microsoft .NET framework. Its introduction has

been controversial, as significant changes were

made that broke backward compatibility with C#

and caused a rift within the developer community.

The great majority of C#.NET developers use

Visual Studio .NET as their integrated development

environment (IDE). Programs written in VB.NET

require the .NET framework to execute.

5.2 HARDWARE

Laptop

Mouse

Keyboard

Web camera

VI. DESIGN DETAILS
By adding Touchless to your project, you

can give your users a truly fun, novel, and

functional multi-touch experience, and all they

need is a webcam and any computer camera.

The prerequisites you'll need to develop using

Touchless are:

 Visual Studio 2010 or 2012

 .NET 3.0 or higher

 "TouchlessLib.dll” and "WebcamLib.dll"

Following are the process to set-up the

"TouchlessLib.dll" and "WebcamLib.dll" from an

.NET framework.

To add Touchless to an existing visual

Studio project, simply right click “References” and

select “Add Reference…” go to the browse tab, and

select "TouchlessLib.dll".

Ensure that both "TouchlessLib.dll" and

"WebcamLib.dll" are copied to the same output

directory to be used with your builds.

VII. FLOW DIAGRAM

7.1 Implementation

7.1.1. Color Lib

Improve HSV color space partitioning

model. We could group perceived similar colors

better. Potentially replace with a group clustering

algorithm. Perhaps just refine the per-dimension

bin counts, or replace the hash function.

Use a lookup table instead of transforming

RGB to HSV. We can just terminate early if it’s not

in the lookup table.

Reduce loop overhead of converting

ARGB values into RGB values, then into HSV

values, then into Binned HSV values, then finally

into a hash # for color lookup during marker

update. Potentially use a lookup table for a subset

of colors to avoid the math altogether.

Improve HSV color grouping, consider

refining the per-dimension bin counts or using a

different HSV color-space partitioning model that

better suits human perception of similar colors.

7.1.2. Marker

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Computer_language
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Backward_compatibility
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/.NET_framework

Vidisha Tembhurkar.et.al Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 9, September.2016, pp.50-53

 www.ijera.com 52|P a g e

Implement a way of getting higher degree

moments of inertia. Mostly, we are interested in the

axis of least rotational momentum and the

roundness factor.

Allow the user to send a mask image with

the add marker bitmap for arbitrary marker region

selections.”

Extend or replace alpha smoothing with

exponential decay to provide smoothed marker data

and reduce the marker jumpiness.

Optimize threshold, or replace threshold

concept with a partial matching. Also, step

threshold by numbers that actually make a

difference, or just have sensitivity +/- buttons and

increment functions Expose smoothing factor as a

public marker property.

Fix and improve the automated marker

tests Standardize some marker colors, create an

“auto-find makers” Improve the search bounds of a

previously absent marker.

Improve the meta-tracking (cases where

small numbers of pixels are missing from the

middle of a marker, or are outliers of the

concentration of pixels) Periodically/continuously

adopt surrounding pixels of confirmed marker

pixels Coloravg is currently just marker

representative color. Implement a way of actually

getting a color average from the set of colors found

Improve Marker highlighting Improve upon the

raster scan algorithm used for marker updating.

Optimize the method for getting the

marker appearance from a circular area of a bitmap;

we could use hierarchical bounds intersection or

something smarter than the current scan algorithm.

Optimize the values used to increment/decrement

color frequencies for marker appearance detection.

This should be somehow based on signal/noise

ratios.

Improve the expected marker regions used

for scanning on update. We could consider the

marker’s acceleration, rather than just the velocity.

Perhaps try using regions that aren’t axis-aligned

rectangles.

7.1.3. Touchless Manager

Add functionality to save and load marker

configuration files (reduce repeat training of the

same marker, possibly provide autoconfig files for

standard markers... will variant lighting allow for

this?) Implement additional marker data such as

ColorAverage, ColorSpace, Axis and Roundness.

Add flood fill algorithm so we can add a marker

with a few points in the Bitmap.

Refine the marker tracked colors as we find colors

around the marker.

The representative color doesn’t always match the

perceived color of the marker.

Provide subsequent examples of a marker

appearance.

Have TouchlessMgr actually expose a

way to get a list of the current markers Make a

better exception for camera start failure Validate

the PixelFormat of incoming images.

Create a utility function to retrieve

ImageData in a consistent manner; we have a bit of

code duplication right now.

Make a public interface for demo classes

to implement, then allow the user to just invoke

start and stop of a demo class on the library.

Standardize error handling and exception

generation across the project.

VIII. CONCLUSION

In the designing of our projects, we have

kept in mind the user in the implementation part

which interacting with the user we had given lot of

guideline to user with various massages. Net very

good programming languages for implementation

of any data base projects because it has powerful

control with which you can easily implement

various facilities in our projects .the screen are very

user friendly.

IX. FUTURE SCOPE
Technology is called “touchless,

telepresence display” and was performed by

placing a video camera under a transparent OLED

display. The screen, measuring less than 2 inches

thick and has a 40-inch diagonal, and is thus able to

display and simultaneously detect gestures made

above the surface or direct touches on the surface.

Camera sees through the screen and is thus

practically able to register user’s presence and

gestures. According to researchers from Applied

Science Group at Microsoft, this technology will

change the displays passive role. If now they serve

more to show, in the future will become true

“windows” through which the user can interact

with the digital world

REFERENCES
[1]. NET by Evangelos Petroutsos

[2]. NET Programming by vikas gupta.

[3]. www.microsoftlabs.com.

[4]. Niesink, L. Adding A Third Dimension To

Multi-T Table Top Display Interaction,

2010.

[5]. Ryu, D. , Um, D, Tanofsky, P. , Koh, D.

H., Ryu, Y. S.,& Kang, S. (2010). T-less:

A novel touch less Human.

[6]. Machine Interface based on Infrared

Proximity Sensing In Proceedings of 2010

IEEE/RSJ International Conference on

Intelligent Robots and Systems

(pp.5225225)Taipei, Taiwan.

[7]. Pickering, Carl A. Burnham, Keith J.

http://laptopreviewshop.com/samsung-the-amoled-displays-promoter-reveals-launch-dates.html
http://laptopreviewshop.com/samsung-the-amoled-displays-promoter-reveals-launch-dates.html
http://laptopreviewshop.com/samsung-the-amoled-displays-promoter-reveals-launch-dates.html
http://www.microsoftlabs.com/

Vidisha Tembhurkar.et.al Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 9, September.2016, pp.50-53

 www.ijera.com 53|P a g e

Richardson Michael J. Jaguar ,“A

research Study of Hand Gesture

Recognition Technologies and

Applications for Human Vehicle

Interaction”, 3rd Conference on

Automotive Electronics, 2007

