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ABSTRACT 
This paper studies the concepts of origin of uniquely colorable graphs, general results about unique vertex 

colorings, assorted results about uniquely colorable graphs, complexity results for unique coloring 
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I. ORIGIN OF UNIQUE COLORING 
The origin of unique coloring appears to 

have been, perhaps surprisingly, in the field of 

psychology. There the problem of a signed graph 

was introduced, together with a coloring of signed 

graphs, to model a problem in that field [4]. A 

signed graphS is a ordered pair (G;), where G is an 

undirected graph and is a function: E(G)→{-1,1}. 

These signed graphs are used in psychology to 

model the idea of clusterings. From there the idea 

of colorings and unique colorings a signed graph, 

closely related to the normal notion of coloring a 

graph arose in a 1968 paper of Cartwright and 

Harary [31]A coloring cof a signed graph is a 

function from the vertex set of G to{1; 2,….k} 

having the property that if x and y are two 

adjacentvertices in G, then 

1) If ({x;y}) = 1 then c(x) = c(y).  

2) If ({x;y}) =  1 then c(x) ≠ c(y).  

 

As usual the set {c
-1

({i}) : i {1; 2,….k}} 

defines a partition of the vertices ofS into color 

classes. This paper of Cartwright and Harary, as 

well as a 1967 paper of Gleason and Cartwright 

[31], established conditions for a signed graph to 

have a coloring, and introduced the notion of a 

unique coloring of a signed graph. To wit, a signed 

graph S is uniquely colorable if there is exactly one 

partition of S into color classes. Both papers gave 

fairly simple criterion for a signed graph to be 

uniquely colorable. In addition introduced the 

notion of unique coloring of a “normal" (unsigned) 

graph G, which is the topic of interest in this thesis. 

Under the usual notion of a coloring c of a 

graph G being a function from the set of vertices to 

a set of integers (colors) having the property that 

adjacent vertices receive a different assignment 

under c, Cartwright and Harary defined a graph G 

to be uniquely colorable if either G is complete or 

G has a unique partition of the vertices of G into t 

<|V (G)| color classes. In this same paper, they 

showed that if G has a unique coloring with say t 

colors, then, in fact t = (G), where (G) is the 

chromatic number of G, that is, the smallest 

positive integer s for which there is a coloring of G 

using exactly scolors. 

 

1.2 General Results about Unique Vertex 

Colorings  

Necessary Conditions for a Graph to be 

uniquely Colorable  

To warm up our understandings of unique 

coloring we mention some easy necessary 

consequences of a graph being uniquely vertex-

colorable. The first is that the number of colors 

used in a unique coloring is unique and equals the 

chromatic number of G. 

 

Proposition1.2.1. (Cartwright, Harary) IfGhas a 

unique coloring with t colors then t = (G). 

 

Proof: We may assume that Gis not the complete 

graph on (G) vertices. Clearly(G) <t < |V(G)|, since 

a unique coloring is also a proper coloring. If t 

>(G) then |V(G)|>(G) and for any (G)-coloring c of 

G, pick a set of vertices {x1;x2,….,} having the 

property that c(xi) = i. There are at least t –x (G) 

vertices in G other than {x1,…,} and these can be 

assigned colors from {(G) + 1; (G) + 2,…,t}, to get 

two distinct t-colorings of G. 

By this proposition, we may say unambiguously 

that G is uniquely vertex colorable, and mean that 

G is uniquely vertex- (G)-colorable. 

Let G be a graph and let c : V(G)→{1, 2, …, k} be a 

unique vertex-k-coloring of G. For i, j {1, 2, …, k}, 

define Gi;j to be the subgraph of G induced by the 

vertices which c assigns the colors i or j. A very 

useful necessary condition for G tobe uniquely 

vertex-k-colorable was noticed by Harary et. al. in 

the following theorem which appears in [30]. 
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Theorem 1.2.2. (Harary, Hedetniemi, Robinson, 

1969) Ifc:V(G) →{1,2,…,k} is a unique vertex-k-

coloring of G, then for all i ≠ j, i, j {1, 2, …, k}, the 

graph Gi;j is connected. 

 

Proof: If someGi;jhad two or more components, 

then by interchanging the colorsiand j in exactly 

one of these components, we would arrive at a 

valid coloring different than c. 

 

Corollary1.2.3. Letcbe a unique vertex-k-coloring 

ofG, letxbe a vertex inV(G)and let i {1,….,k}. If i ≠ 

c(x) then there is a vertex yV (G) such that x is 

adjacent to y and c(y) = i. In particular, every 

vertex of G has degree at least k1. 

 

Proof: LetuV(G), letcbe a unique vertex-k-coloring 

ofGand letibe a colordifferent from c(x). By 

Theorem 1.2.2., Gi;c(x) is a connected graph, and in 

particular, x is not an isolated vertex in Gi;c(x) 

because Proposition 1.2.1 insures that some vertex 

receives the color i. Since there are k1 other colors 

besides c(x), the minimum degree of G must be at 

least k1. This completes the proof of Corollary 

1.2.3. 

 

Corollary 1.2.4.(Harary et al.) IfGis a uniquely 

vertex-k-colorable, thenGhas at least (kedges. 

 

Proof: LetVibe the set of vertices coloredi. 

Theorem 1.2.2 insures that for 1<i < j<k, the graph 

Gi;j with vertex set ViVj is connected. Thus |E(Gi;j)| 

> |Vi|+|Vj|-1. Summing this inequality over all 

pairsi≠j, we have that 

|E(G)|)which isthe desired result. 

 

Corollary1.2.5.(Geller, Chartrand) IfGis a 

uniquely vertex-4-colorable simpleplanar graph, 

then any drawing of the graph G is a triangulation. 

Moreover, for i ≠ j and i, j{1; 2; 3; 4}, each 

subgraph Gi;j is a tree. 

 

Proof: By Euler's formula|E(G)| <3|V(G)|6, and 

from Corollary 1.2.4,|E(G)|>3|V (G)|6, so |E(G)| = 

3|V (G)|6. This implies that any drawing of G must 

be a triangulation. It also implies that equality 

holds throughout in the proof of the Corollary 

1.2.4, so . Since Gi,j is connected, it follows that Gi,j 

is a tree. This completes the proof of the corollary. 

 

II. ASSORTED RESULTS ABOUT 

UNIQUELY COLORABLE 

GRAPHS 

A function : V (G) → V ( ) is said to be 

a homomorphism of the graph G into the graph 

if it preserves adjacency of vertices, that is, if {x,y} 

E(G) implies {(x);(y)}E( ). If it is true that for 

every pair of vertices , isadjacent to  in 

G
’
 if and only if there is a pair x, y of adjacent 

vertices in G such that (x) =  and (y) = , then 

is said to be a homomorphism of G onto , and 

is said to be a homomorphism image of G. The 

following propositions appear in [32]. 

 

Proposition 2.1.1. IfGis uniquely vertex-k-

colorable andHis a homomorphism image of G 

such that (H) = k, then H is uniquely vertex-k-

colorable . 

 

Proposition 2.1.2. IfGis uniquely vertex-k-

colorable thenGis(k-1)-connected. 

 

Proof: LetAbe a set with|A| <k-2, letcbe a unique 

vertex-k-coloring ofG,and let x, y  V(G) A. There 

are two distinct colors i, j {1,….,k} such that 

novertex of A has a vertex colored i or j by c. 

Therefore, . By Corollary 1.2.3, there are vertices 

ux and uy such that x is adjacent to ux, y is adjacent 

to uy and c(ux) = c(uy) = i. Since Gi;j is connected, 

there is a path P in Gi,j joining uxto uy and thus 

there is a path in GA joining x and y. Thus, G A is 

connected. This completes the proof of the 

proposition. 

 

III. COMPLEXITY RESULTS FOR 

UNIQUE COLORING 
The following proposition is obvious. 

 

Proposition 3.1.1. A graph is uniquely vertex-1-

colorable if and only if it consists ofisolated 

vertices. A graph is uniquely vertex-2-colorable if 

and only if it is a connected bipartite graph. 

Beyond this there is not much hope of finding a 

“good" characterization of arbitrary uniquely 

vertex-k-colorable graphs when k>3 because of the 

following complexity results contained in or 

implied by the work of Dailey in 1981 [33] 

 

Theorem 3.1.2. The following decision problems 

are NP-Complete: 

1. Given a graph G and a vertex-k-coloring c of 

G, is there a vertex-k-coloring  of G that is 

not equivalent to c? 

2. Given an integer k and a graph G, does G have 

either 0 or at least 2 vertex-k-colorings? 

The result of Dailey probably dooms any 

possibility of a polynomial time algorithm for 

problems 1) or 2) above. In [31], the authors pose 

the question of whether there is a polynomial time 

algorithm for deciding whether a given planar 

graph is uniquely vertex-3-colorable. This problem 

is still open as far as this author knows. 
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IV. A SUFFICIENT CONDITION FOR 

DETERMINING UNIQUE VERTEX-

K-COLORABILITY 
The following sufficient condition for a graph to be 

uniquely vertex-k-colorable was given by Bollobas 

in [14]. 

 

Theorem 4.1.1. Letkbe an integer greater than 

one, letGbe a vertex-k-colorablegraph on n 

vertices, and let (G) denote the minimum degree of 

G. If then G is uniquely vertex-k-colorable . 

Moreover, if G has a vertex-k-coloring in which Gi;j 

is connected for every 1 <i < j <k, and, then G is 

uniquely vertex-k-colorable. These results are best 

possible. 

This was generalized by Dmitriev 

according to a review of [15]. As we can see, this 

condition will apply only to very dense graphs. 
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