RESEARCH ARTICLE

OPEN ACCESS

Electro Static Precipitator for Spent Wash Application.

Mulagala Srinivas Rama Kumar (M.S.Rama Kumar) Rama Kumar.M.S1 M.Tech (P.E)

Thermax Enviro Division, Midc,Bhosari, Pune,India-411026 Thermax Enviro Ltd,Midc,Bhosari, Pune,India-411026.

ABSTRACT

The distillery sector is major polluting industries in India & world. These units generate large volume of dark brown colored wastewater, which is known as "spent wash". Liquid wastes from breweries and distilleries possess a characteristically high pollution load and have continued to pose a critical problem of environmental pollution in India and many countries.

Keywords—spentwash, Electrostatic precipitator, Distillery component

I. INTRODUCTION

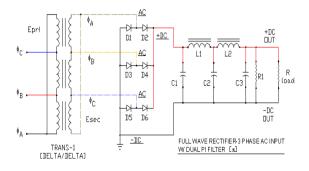
A Discharge electrode with High frequency transformer and Three phase transformer electrostatic precipitator (ESP) has been developed for control of submicron particles which are very harmful and Hazardous to the environment generated in exhaust gas. In new designing E.S.P process is very much sophisticated to control the NOx, SOx along with CO, CO2, O2 and N2.

Because of new designing very fine particles could be agglomerated and captured effectively in the ESP. The electrical supplied voltage, the dust loading and the gas flow velocity at the ESP were considered while the supplied voltage of the pre-charger was varied from minimum level to maximum level of voltage in KV with respect to current in ma. The overall collection efficiency increased with the supplied voltage while the dust loading and gas velocity did not give strong effect. A model to predict the overall collection efficiency at various operating conditions could be evaluated from the experimental data and it has improved from 99.97% to 99.98%.

Features of Pipe and Spike Electrode :

Best corona generation properties among various types of Rigid Electrode.Mechanically stable electrodes for optimum rapping vibration transmission and effective dislodgement. Light weight ,ease of shipping site. Long life.

II. DESIGNING ASPECTS

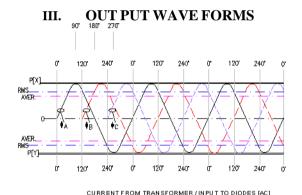

Three phase full converter conduction, High frequency transformer Design

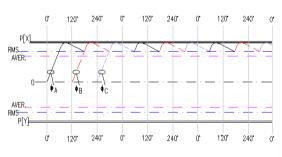
Mechanical	Electrical
Pipe And Spike Electrode	High Frequency Transformer
	Three Phase Transformer

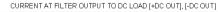
THREE PHASE FULL CONVERTER :

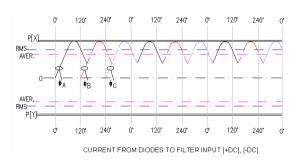
Three phase full converter is a fully controlled bridge controlled rectifier using six diodes are connected in the form of a full wave bridge configuration. All the six diodes are controlled switches which are turned on at a appropriate times by applying suitable supply.

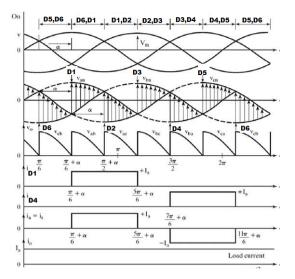
The **three phase full converter** is extensively used in industrial power applications upto about 120kW output power level. The figure shows a **three phase full converter** with highly inductive load. This circuit is also known as three phase full wave bridge or as a six pulse converter. The diodes are conducted at an interval. The frequency of output ripple voltage is $6f_s$ and the filtering requirement is less than that of **three phase semi and half wave converters**




Diodes are conducting when applying the signal . During the different time periods, diodes are to conduct together and the line to line supply voltage appears across the load.the Diode D_2 and D_6 is reverse biased immediately and D_6 turns off . Diode D_1 and D_2 conduct together and the line to line supply voltage appears across the load. Diodes are numbered in the circuit diagram corresponding to the order in which they are conducted. The figure shows the waveforms of three phase input


supply voltages, output voltage, the Diode current through D_1 and D_4 , the supply current through the line 'a'.


High frequency transformer with transformer switchover


One of the many requirements of the modern inverter is a broad, coordinated input and voltage range with a consistently high degree of efficiency across the entire operating range of the inverter. To satisfy this requirement, implementing a high frequency transformer (HF transformer) in most of its current inverters. This HF transformer has a transformer switchover that ensures a consistently high degree of efficiency right across the input voltage range. It is often incorrectly assumed that the maximum degree of efficiency at a particular voltage is one of the factors responsible for producing a good annual yield, when it is in fact the more or less constant degree of efficiency over the entire voltage range, maximum efficiency

HIGH FREQUENCY TRANSFORMER RECTIFIER CIRCUIT

T/r set used : HFTR reading

Spent wash feed : 11,487 kg/hr to 12 kg/hr

Coal feed : 4.5 to 5 tph.

Application : Esp for 12 tph boiler(spent wash/coal fired).

Boiler: 37.6 tph

Turbine load : 3.16 mw.

Condition : all fields are on condition at 12 spent wash.

Hftr readings : existing hftr readings

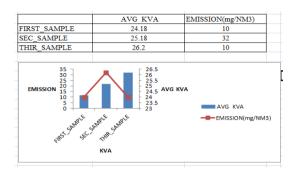
1 st a	and 2 fi	eld		Thir	d(3rd)						
(both	are co	mbine	ed)					Fourt	h(4 th	i)	
Vp	Vs	Ip	Is	Vp in V	v s	Ip	Is	Vp	V s	Ip	Is
36 2	65. 4	5 7	59 9	70	4 5	75	22 0	190	42	7 5	24 9
37 0	66	5 6	35 0	19 9	4 5	72	21 9	192	45	7 8	24 8
37 5	67. 1	5 4	33 5	19 0	4 4	75	21 4	200	45	7 2	24 9

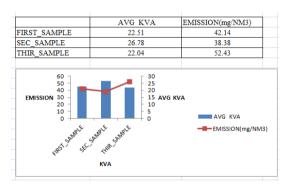
Vp : Primary voltage .in volts.,Vs : Secondary Voltage in KV,Ip : Primary current in Amp.,Is : Secondary current in ma.

	KVA(1&2 Field)	KVA(3 rd Field)	KVA(4 th Field)	AVG KVA	EMISSION (mg/NM ³)	
First sample	38.66	11.20	17.67	22.51	42.14	
Sec_sample	44.31	17.38	18.67	38.38	44.32	
Thir_sample	30.25	17.64	18.24	22.04	52.43	

Date of sample : 11-02-2016.

Tr-set used : High frequency transformer Application : esp for 12 tph boiler(spent wash/coal fired).


Boiler load : 36.8,36.4,36.4 tph


Coal feed : 4.1 to 4.5 tph..

Spent wash : 12.6, 11.7, 11.4 tph

www.ijera.com

	KVA(1&2	KVA(3rd	KVA(4 th	AVG	EMISSION
First	FIELD) 32.9206	FIELD) 20.837	FIELD) 18.797	KVA 24.18	mg/NM ³
sample	52.5200	20.007	10.757	2	10
Second sample	39.1212	18.421	18.023	25.18	32
Third sample	41.6056	18.797	18.2181	26.2	10

THREE PHASE TR-SET READING

T/r set used : Three phase($3-\phi$) t.r set readings Spent wash feed : 11,487 kg/hr to 12 kg/hr Coal feed : 4.5 to 5 tph.

Application : esp for 12 tph boiler(spent wash/coal fired).

Boiler : 37.6 tph

Turbine load : 3.16 mw.

Condition : all fields are on condition at 12 spent wash.

POWER CON THREE PHASE(3-) T.R SET READINGS (Existing transformer Replaced by Power con) :

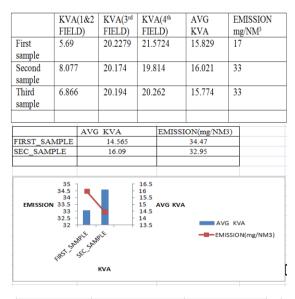
1 st a	nd 2 f	ield		Third	l(3rd)						
(both	are	com	bined)					Fourt	th(4 th)	
(kraft	t	pov	vercon				. ,				
transt	former	r)									
Vp	Vs	Ip	Is	Vp	Vs	Ip	Is	Vp	Vs	Ip	Is
250	59	21.9	91.1	200	48	65	219	195	44	75	247
250	57	11.7	92	210	49	84	210	195	44	75	245
251	57	11.9	92.1	210	48	89	219	199	44	74	248
230	54	4.3	92	210	48	89	219	199	44	74	247

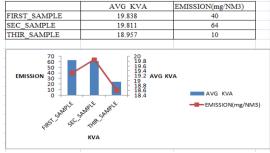
Application : esp for 12 tph boiler(spent wash/coal fired).

Tr set used : three phase transformer rectifier set reading. Coal feed : 4.1 to 4.6 tph. Boiler : 37.5 to 37.7 tph

Turbine load : 3.18 mw.

Condition : all fields are on condition at 12.1 spent wash.


Power con Three Phase Readings : Three phase Transformer Rectifier set Readings


	KVA(1&2 FIELD)	KVA(3 rd FIELD)	KVA(4 th FIELD)	AVG KVA	EMISSION mg/NM ³
FIRST SAMPLE	16.449	20.663	22.404	19.838	40
SECOND SAMPLE	16.366	20.663	22.404	19.811	64
THIRD SAMPLE	16.230	19.197	21.446	18.957	10

Tr-set used : three phase transformer.(power con). Application : esp for 12 tph boiler(spent wash/coal fired).

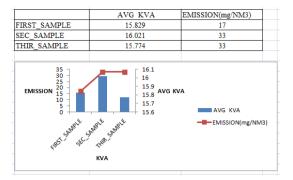
Spent wash : 12.2,12,12.6 tph Boiler load : 37,36.6,37.2 tph Coal feed : 4.1 to 4.5 tph. Spent wash : 12.2, 12, 12.6 tph.

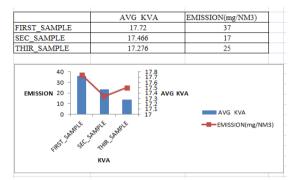
Power con Three Phase Readings : Three phase Transformer Rectifier set Readings.:

Tr-set used : three phase transformer rectifier set readings.

Application : esp for 12 tph boiler(spent wash/coal fired).

Boiler load : 37.7 ,36.7,36.6 tph.


Spent wash : 12,11.8,11.4 tph.


Coal feed : 4.1 to 4.5 tph.

Condition : all fields are on condition .

Power con three phase(3-□) t.r set readings (existing transformer replaced by power con)

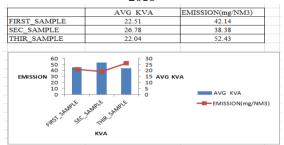
	KVA(1&2	KVA(3 rd	KVA(4 th	AVG	EMISSION
	FIELD)	FIELD)	FIELD)	KVA	mg/NM ³
First sample	10.642	19.704	22.815	17.720	37
Second sample	10.530	19.233	22.6358	17.466	17
Third sample	11.592	16.446	23.79	17.276	25

	NG H.F.T.R CONDITION	NDITION 27 7 TO	I 12 TON ODENT MA	CII)
(ALL F	IELD ARE ON CONDITION, BOILER CO tion : esp for 12 tph boiler(spent wash/coal fired	NDITION 37.7 TPE	1,12 ION SPENT WA	SH .).
	ash : 11,600 kg/hr to 12.1 kg/hr	ı).		
	d: 4.2 to 4.6 tph.			
	37.7 tph			
	load : 3.18 mw.			
	adings: existing hftr readings			
inti io	adings. existing interformings			
APPLIC	ATION	E.S.P FOR 1 × 40	TPH BOILER(SPENT	WASH/COAL FIRED)
FUEL U)
		SPENT WASH +	INDIAN/IMPORTED (COAL
SPECIF	ICATION NO		ARE ON CONDITION	
S.NO	PARAMETER	UNIT	DESIGNED	MEASURED
1	No of mechanical /	No.	4 MECH	4 MECH/4
	Electrical fields		4 ELECTRICAL	ELECTRICAL
2	Gas Flow At Inlet (Total)	AM3/HR	147600	150295
А	Gas Flow Per Pass	AM3/SEC	41	27.483
В	Gas Flow At Outlet	AM3/HR	95000	98940.48
3	Gas Temp At Inlet (Operating)	DEG C	200	200
3a	Gas Temp At Outlet	DEG C	175	175
4	Moisture	% v/v	16.06	14.85
5	Inlet dust load	GMS/NM3	77.63	77.63
6	Emission guarantee	MGMS/NM3	100	134
7	Collection efficiency	%	99.87	99.82
8	Plate area (total)	M2	4320	4320
А	Plate area (per pass)	M2	4320	4320
9	SCA	M2/M3/SEC	105.37	130.37
10	Velocity	M/SEC	0.57	13.29
11	Migration velocity (wd)	CM/SEC	5.51	7.418
	Treatment time	SEC	21.1	8.126
12	Suction pressure at esp Inlet	(-)MMWC	±400 mmWC	±400 mmWC
13	Pressure drop across The esp (top entry)	MM OF WC	25-30	9.2
14	Esp penhouse temp	1C	90-110	100
15	Boiler capacity	TPH	40	36.6
16	Oxygen	%	6.45	6.15

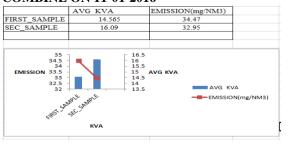
Application : Esp for 12 tph boiler(spent wash/coal fired). Spent wash : 11.8 kg/hr to 12 kg/hr Boiler load : 36.7 ,37,37-tph.

www.ijera.com

Spent wash : 12,11.5,11.8. Coal feed : 4.1 to 4.5 tph. Condition : all fields are on condition two -three phase(3-ω) t.r sets connected in first and second fields readings (existing transformer replaced by

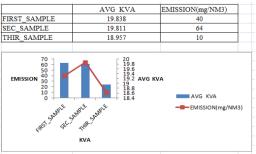

power con) :

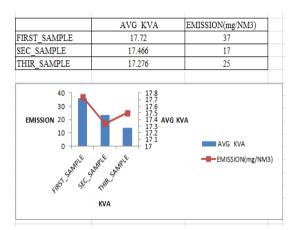
Condition : all fields are on condition

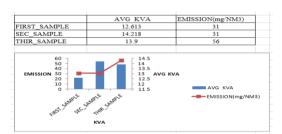

Two Three Phase Readings : Three	phase T	ransfo	ormer Rectifier set Readings.	
CTUDY DATE		1	1 01 2015	1

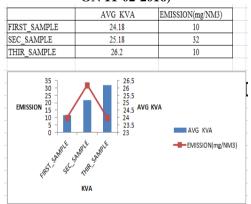
STUDY DA	ATE	11-01-2015							
APPLICAT	ION	E.S.P FOR 1 x	40 TPH BOILER(SPENT WA	SH/COAL FIRED)					
FUEL USE	D								
		SPENT WASH + INDIAN/IMPORTED COAL							
SPECIFICA	ATION NO	(ALL FIELD	(ALL FIELDS ARE ON CONDITION 12 TPH)						
S.NO	PARAMETER	UNIT	DESIGNED	MEASURED					
1	No of mechanical /	No.	4 MECH	4 MECH/4 ELECTRICAL					
	Electrical fields		4 ELECTRICAL						
2	Gas Flow At Inlet (Total)	AM3/HR	147600	150295					
А	Gas Flow Per Pass	AM3/SEC	41	27.483					
В	Gas Flow At Outlet	AM3/HR	95000	98945.48					
3	Gas Temp At Inlet (Operating)	DEG C	200	200					
3a	Gas Temp At Outlet	DEG C	175	175					
4	Moisture	% v/v	16.06	14.85					
5	Inlet dust load	GMS/NM3	77.63	77.63					
6	Emission guarantee	MGMS/NM3	100	17.33					
7	Collection efficiency	%	99.87	99.978					
8	Plate area (total)	M2	4320	4320					
А	Plate area (per pass)	M2	4320	4320					
9	SCA	M2/M3/SEC	105.37	130.37					
10	Velocity	M/SEC	0.57	13.29					
11	Migration velocity (wd)	CM/SEC	5.51	7.418					
	Treatment time	SEC	21.1	8.126					
12	Suction pressure at esp Inlet	(-)MMWC	±400 mmWC	±400 mmWC					
13	Pressure drop across The esp(top entry)	MM OF WC	25-30	9.2					
14	Esp penhouse temp	ıC	90-110	100					
15	Boiler capacity	TPH	40	36.6					
16	Oxygen	%	6.45	6.15					


FIRST CONDITION (H.F.T.R 1st & 2nd FIELD COMBINE ON 11-01-2016


SECOND CONDITION (3- TRANSFORMER f^t &2nd FIELD COMBINE ON 11-01-2016

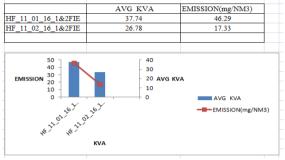

SIXTH –CONDITION THREE PHASE TRANSFORMER CONNECTED


THIRD CONDITION THREE PHASE T.R SET CONNECTED TO 1st and 2nd FIELD ON 09-02-2016


FOURTH CONDITION (THREE PHASE T.R SET CONNECTED TO 1^{st} and 2^{nd}

FIFTH CONDITION (TWO THREE PHASE TRANSFORMERS CONNECTED

SEVENTH CONDITION (H.F.T.R CONNECTED TO 1st and 2nd Field ON 11-02-2016)


H.F.T.R CONNECTED TO 1st & 2nd FIELD

	KVA(1	KVA(KVA(AV	EMISS
	&2	3 rd	4^{th}	G	ION(m
FIRST_	38.66	11.20	17.67	22.	42.14
SAMPL				51	
SEC_SA	44.31	17.38	18.67	38.	44.32
MPLE				38	
THIR_S	30.25	17.64	18.24	22.	52.43
AMPLE				04	

H.F.T.R CONNECTED TO 1st & 2nd FIELD

	KVA(1&2 FIELD)	KVA(3rd FEELD)	KVA(4th FEELD)	AVG KVA	EMISSION mg/NM ³
FIRST SAMPLE	32.9206	20.837	18.797	24.18	10
SECOND SAMPLE	39.1212	18.421	18.023	25.18	32
THIRD SAMPLE	41.6056	18.797	18.2181	26.2	10

KVA VS EMISSION (H.F.T.R 1st &2nd FIELD)

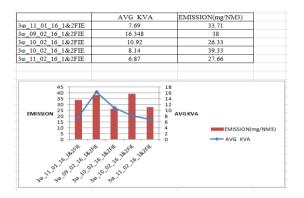
KVA VS EMISSION (THREE PHASE TRANSFORMER CONNECTED TO 1&2 FIELD

	KVA(1&2	KVA(3rd	KVA(4 th	AVG	EMISSION(mg/NM ³)
4.56	7.67	16.71	18.22	14.20	
5.25	6.004	20.64	18.16	14.93	
AVG				14.56	34.47
5.55pm	6.03	21.44	18.32	15.26	
6.25pm	11.06	21.44	18.30	16.93	
AVG				16.09	32.95

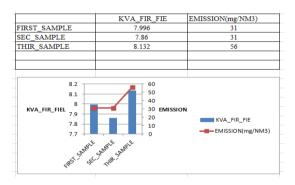
(THREE PHASE TRANSFORMER CONNECTED TO 1&2 FIELD ON 09-02-2016)

	KVA(1&2 FIELD)	KVA(3 nd FIELD)	KVA(4 th FIELD)	AVG KVA	EMISSION mg/NM ³
FIRST SAMPLE	16.449	20.663	22.404	19.838	40
SECOND SAMPLE	16.366	20.663	22.404	19.811	64
THIRD SAMPLE	16.230	19.197	21.446	18.957	10

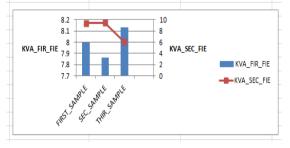
(THREE PHASE TRANSFORMER CONNECTED TO 1&2 FIELD

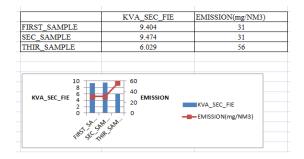

	KVA(1&2 FIELD)	KVA(3 rd FIELD)	KVA(4 th FIELD)	AVG KVA	EMISSION mg/NM ³
FIRST SAMPLE	10.642	19.704	22.815	17.720	37
SECOND	10.530	19.233	22.6358	17.466	17
SAMPLE					
THIRD	11.592	16.446	23.79	17.276	25
SAMPLE					

(THREE PHASE TRANSFORMER CONNECTED TO 1&2 FIELD


	KVA	1\$	KVA	2 nd	KVA(3 rd	KVA(4 th	AVG	EMISSION
	FELD		FIELD		FIELD)	FIELD)	KVA	mg/NM ³
First sample	7.996		9.404		13.03	20.024	12.613	31
Second sample	7.860		9.474		19.554	20.054	14.218	31
Third sample	8.132		6.029		20.639	20.8024	13.900	56

THREE PHASE TRANSFORMER


	CONNECTED TO 1&2 FIELD								
	KVA(1&2	KVA(3rd	KVA(4 th	AVG	EMISSION				
	FIELD)	FIELD)	FIELD)	KVA	mg/NM ³				
FIRST	5.69	20.2279	21.5724	15.829	17				
SAMPLE									
SECOND	8.077	20.174	19.814	16.021	33				
SAMPLE									
THIRD	6.866	20.194	20.262	15.774	33				
SAMPLE									



	KVA FIELD	1 st	KVA FIELD	2 nd	KVA(3 rd FIELD)	KVA(4 th FIELD)	AVG KVA	EMISSIO N mg/NM ³
FIRST SAMPLE	7.996		9.404		13.03	20.024	12.613	31
SECOND	7.860		9.474		19.554	20.054	14.218	31
SAMPLE THIRD	8.132		6.029		20.639	20.8024	13.900	56
SAMPLE	0.102		0.020		-01005		101000	

	KVA_FIR_FIE	KVA_SEC_FIE
FIRST_SAMPLE	7.996	9.404
SEC_SAMPLE	7.86	9.474
THIR_SAMPLE	8.132	6.029

