
S Ramanathan. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.41-45

 www.ijera.com 41 | P a g e

FPGA Implementation of an Area Optimized Architecture for 128

bit AES Algorithm

S Ramanathan*, Prof. Prayline Rajabai C**
*(M.Tech 2nd Year, VLSI Design, School of Electronics Engineering (SENSE), VIT University, Vellore)

** (Assistant Professor, Micro & Nanoelectronics, School of Electronics Engineering (SENSE), VIT University,

Vellore)

ABSTRACT

This paper aims at FPGA Implementation of an Area Optimized Architecture for 128 bit AES Algorithm. The

conventional designs use a separate module for 32 bit byte substitution and 128 bit byte substitution. The 32 bit

byte substitution is used in round key generation and the 128 bit byte substitution is used in the rounds. This

report presents a modified architecture of 128 bit byte substitution module using a single 32 bit byte substitution

module to reduce area.The AES encryption and decryption algorithm were designed using Verilog HDL. The

functionality of the modules were checked using ModelSim. The simulations were carried out in ModelSim and

Quartus II. The algorithm was implemented in FPGA and achieved a 2% reduction in the total logic element

utilization.

Keywords - 128 bit AES, Area Optimized Architecture, FPGA, ModelSim, Quartus II

I. INTRODUCTION

These days encryption is coming out as an

indispensable part of all data networks and

information processing system to protect all forms of

data being utilized by the system. Encryption is the

process of converting the sensitive information

(plaintext) into an incomprehensible string of

characters (ciphertext). Decryption is the process of

obtaining plaintext back from the ciphertext.

Over the years there were many encryption

algorithm that came into picture. The National

Institute of Standards and Technology (NIST) called

out for nominees for Advanced Encryption

Standards in 1997. There were 22 submissions out of

which 7 didn't satisfy all the requirements which left

15 submissions in total. Among the 15 submissions,

5 were chosen as finalists, Mars, RC6, Rijndael,

Serpent, Twofish. Rijndael by Vincent Rijmen and

Joan Daemen was chosen as winner among the 5

finalists. Later in 2001 NIST published the

specifications in the Federal Information Processing

Standards (FIPS) Publication 197.

AES falls under the category of symmetric cipher [1]

i.e. an encryption algorithm where the same key is

used for both encryption and decryption. Hence, the

encryption key must be kept secret at any cost in

symmetric cipher and obtaining plaintext from

ciphertext and algorithm information has to be

impossible without the encryption key.

Depending on the size of key, there are different

versions of AES algorithm available today. These

are AES-128, AES-192, AES-256, where the

numbers 128, 192 and 256 are the key sizes[2].

In software implementations of encryption

algorithms, the secrecy of key is compromised as the

OS where the encryption software runs is prone to

attacks. Furthermore, software implementation may

result in some compatibility issue due to which we

may not get required parallelism or speed. On the

other hand, these drawbacks are taken care of in

hardware implementations which makes it a viable

solution.

II. ADVANCED ENCRYPTION

STANDARD (AES)
The encryption algorithm converts 128-bit input

(plaintext) to 128-bit ciphertext using a cipher key.

The cipher key is a string of 128, 192 or 256 bits. 32

bits are considered as 1 word, hence key of 128, 192

or 256 bits are said to be of 4, 6 or 8 words.

Depending on the size of key, AES algorithm is

categorized into AES-128, AES-192, AES-256,

where the numbers 128, 192 and 256 are the key

sizes. The number of rounds of encryption depends

on the size of cipher key. There are 10, 12 and 14

rounds in AES-128, AES-192 and AES-256

respectively. The same is tabulated in Table 1.

TABLE I. AES VARIATIONS

AES

Version

Key Length

(Nk words)

Block Size

(Nb words)

Number of Rounds

(Nr rounds)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

AES algorithm operations are performed on a 4x4

array of bytes. This two dimensional 4x4 array of

bytes is known as state[3]. Initially, the state contains

RESEARCH ARTICLE OPEN ACCESS

S Ramanathan. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.41-45

 www.ijera.com 42 | P a g e

plaintext. Then some set of permutations and

substitutions are performed by the cipher. Once the

cipher operations are over the final value is copied to

cipher text. The following figure illustrates the same.

Fig. 1. State Array input and output

A. AES Encryption Algorithm

As shown in Fig.2 the AES encryption contains

the following steps

 Key Expantion

 Initial Round

o Add round key

 Rounds

o Sub bytes

o Shift rows

o Mix columns

o Add round key

 Final round

o Sub bytes

o Shift rows

o Add round key

Fig. 2. AES encryption and decryption algorithm

1) Key Expansion

All round keys are obtained from cipher key. For

each encryption round 4 words of round keys are

required thus total of 44 round keys are required for

key size of 128 bit[4]. The first word w0 is obtained

from first four bytes of the encryption key, the next

word w1 is the next four bytes and so on as shown in

Fig.3.

Fig. 3. Initial step of key expansion

The algorithm subsequently expands the words

[w0,w1,w2,w3] into a 44-word key schedule that can

be labelled w0, w1, w2, w3, ..., w43 as shown in

Fig.4.

Fig. 4. Key expansion in AES

2) Add Round Key

Every byte of current state is added (bitwise

XOR) with the round key values[5]. The round key

values and state are added column wise in the

following way.

Fig. 5. Add round key transformation

3) SubBytes Transformation

In subbytes, as the name indicates, each byte is

replaced by another byte. The byte to be replaced

with is obtained from s-box as shown in Fig.6

Fig. 6. Subbyte transformation in AES

The s-box is implemented as lookup table (LUT)

to minimize complexity[6]. Fig.7 shows the s-box

LUT.

S Ramanathan. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.41-45

 www.ijera.com 43 | P a g e

Fig. 7. S-box LUT for Subbyte transformation

As we can see, there are 256 entries in S-box

LUT shown in Fig.7. The most significant 4 bits are

considered as x and least significant 4 bits are

considered as y. Fig.8 illustrates how byte

substitution 53 is done using s-box.

Fig. 8. Byte substitution 53 is done using s-box

The value corresponding to 5 in x and 3 in y is

ED. So 53 is replaced by ED during subbyte

transformation.

4) ShiftRows Transformation

During shift rows, every row except the first one

is shifted cylindrically. Each row has different offset

i.e. each row is shifted by different amount to its left

as shown in Fig.9.

Fig. 9. Shift rows transformation in AES

5) MixColumns Transformation

Every column of state is treated as a 4 term

polynomial the finite field GF(2
8
)[7]. It can be

expressed as a matrix multiplication[8] as shown in

Fig.10

Fig. 10. Mix column transformation matrix

The mix column transformation using the above

transformation matrix during encryption is shown in

Fig.11

Fig. 11. Mix column transformation during encryption

Mix column and shift rows together provide

substantial diffusion i.e. a small change in plaintext

has a drastic effect on the cipher text.

B. AES Decryption Algorithm

As shown in Fig.2 AES decryption contains the

following steps

 Key expantion

 Initial round

o Add round key

 Rounds

o Inv shift rows

o Inv sub bytes

o Add round key

o Inv mix columns

 Final round

o Inv shift rows

o Inv sub bytes

o Add round key

In decryption the form of key schedule remains

the same but the transformation is replaced by the

respective inverse transformation and the sequence of

the transformation also changes.

1) InvShiftRows Transformation

During the inverse shift rows, every row except

the first one is shifted cylindrically in the opposite

direction of encryption, i.e. the row that was shifted

left n times during shift rows will be shifted right n

times during inverse shift rows as shown in Fig.12

Fig. 12. Inverse shift rows transformation in AES

2) InvSubBytes Transformation

The invsubbytes is similar to subbytes in the

sense that each byte is replaced by another byte. The

difference is that the byte to be replaced is obtained

from inverse s-box as shown in Fig.13 rather than the

s-box used during encryption.

S Ramanathan. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.41-45

 www.ijera.com 44 | P a g e

Fig. 13. Inverse S-box LUT for Inverse subbyte transformation

3) InvMixColumns Transformation

The inverse mix columns is used to perform the

inverse operation of the mix columns used during

encryption. It can be expressed as a matrix

multiplication as shown in Fig.14

Fig. 14. Inverse mix column transformation matrix

The inverse mix column transformation using the

above transformation matrix during decryption is

shown in Fig.15

Fig. 15. Inverse mix column transformation during decryption

III. 128BIT AES DESIGN AND

IMPLEMENTATION
This section covers the design and

implementation aspect of the 128-bit AES algorithm.

A synthesizable hardware model was created using

bottom-up approach i.e. the lower level modules

were designed first then the higher level modules

were designed by instantiating the lower level

modules. The modules were modelled in behavioural

style.

Most of the existing designs use a separate

subbyte module of 32 bits and 128 bit size. 32 bit

subbyte is used during key expansion and 128 bit

subbyte is used during the rounds.

The unique feature of the proposed design is that

it uses the same 32bit subbyte to implement 128 bit

subbyte thereby reducing hardware or resource

utilization. The proposed subbyte module is shown in

the figure below.

Fig. 16. Modified 128 bit subbyte using a single 32 bit subbyte

The 128 bit subbyte operation is performed by

using the 32 bit subbyte sequentially 4 times. In the

first iteration, the subbyte of first 32 bits is

performed, in the next iteration, the subbyte of next

32 bit is performed and so on. The mapping of all the

4 sets of 32 bit data_in and 32 bit data_out to 128 bit

data_in and 128 bit data_out is done using individual

bits of sipo.

The scheduling of data_out is as follows, if q[0]

is high, data_out[127:96] is received, if q[1] is high,

data_out[95:64] is received, if q[2] is high,

data_out[63:32] is received, if q[3] is high,

data_out[31:0] is received.

The scheduling of data_in is as follows, if q[1] is

high, data_in [127:96] has to be sent, if q[2] is high,

data_in[95:64] has to be sent, if q[3] is high,

data_in[63:32] has to be sent, otherwise

data_in[31:0] has to be sent.

In this way, only the hardware corresponding to

32bit subbyte is used and the hardware corresponding

to 128 bit subbyte is saved as the same existing

hardware is used 4 times sequentially to perform the

128 bit subbyte.

IV. RESULTS
The RTL coding of the Encryption and

Decryption Module has been completed. AES

Encryption and Decryption modules were designed

using Verilog HDL. Simulation were be carried out

in ModelSim and Quartus II. The functionality of the

Encryption and Decryption module has been checked

using ModelSim. The Encryption algorithm was

implemented in FPGA.

Total logic elements used is observed to be

10,784/33,216 (32%) in the device EP2C35F672C7

which 2% less than 11,187/33,216 (34%) as in [2] as

shown in the table II. The frequency of operation is

found out to be 160 MHz.

TABLE II. RESULTS

Architecture Total Logic

Elements

Percentage of logic

elements used

Luanlan [2] 11,187 34%

Our design 10,784 32%

S Ramanathan. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.41-45

 www.ijera.com 45 | P a g e

REFERENCES

Definitive standard:
[1] FIPS 197, “Advanced Encryption Standard

(AES)”, November 26, 2001.

Journal Papers:
[2] Luanlan, “The AES Encryption And

Decryption Realization Based On FPGA”,

Seventh International Conference on

Computational Intelligence and Security,

2011

[3] Hoang Trang, Nguyen Van Loi, “An

efficient FPGA implementation of the

Advanced Encryption Standard algorithm”,

IEEE 2012

[4] Douglas Selent, “Advanced Encryption

Standard”, Rivier Academic Journal,

Volume 6, Number 2, Fall 2010

[5] Sujatha Hiremath, M.S.Suma, “Advanced

Encryption Standard Implemented on

FPGA”, Second International Conference

on Computer and Electrical Engineering,

2009

[6] Tuan Anh Pham, Mohammad S. Hasan and

Hongnian Yu, “Area and Power

optimisation for AES encryption module

implementation on FPGA”, 18th

International Conference on Automation &

Computing, Loughborough University,

Leicestershire, UK, September 2012

[7] Dong Chen, Guochu Shou, Yihong Hu,

Zhigang Guo, “Efficient Architecture and

Implementations of AES”, 3rd International

Conference on Advanced Computer Theory

and Engineering(ICACTE), 2010

[8] Xin Cai, Rong Sun, Jingwei Liu, “An

ultrahigh speed AES processor method

based on FPGA”, 5th International

Conference on Intelligent Networking and

Collaborative Systems, 2013.

Thesis:
[9] Avinash Kak, “AES: The Advanced

Encryption Standard”, Purdue University

