
Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 33 | P a g e

Graph-Based Algorithm for a User-Aware SaaS Approach:

Computing Optimal Distribution

Houda Kriouile*, Bouchra El Asri**
*(IMS Team, SIME Laboratory, ENSIAS, Mohammed V University in Rabat, Morocco)

** (IMS Team, SIME Laboratory, ENSIAS, Mohammed V University in Rabat, Morocco)

ABSTRACT
As a tool to exploit economies of scale, Software as a Service cloud models promote Multi-Tenancy which is

the notion of sharing instances among a large group of tenants. However, Multi-Tenancy only satisfies

requirements that are common to all tenants as well as the fact that tenants themselves hesitate about sharing. In

a try to solve this problem, the present paper propose a User-Aware approach for Software as a Service models

using Rich-Variant Components. The main contribution of this approach is a framework summarized in a graph-

based algorithm enabling deduction of an optimal distribution of instances on application's tenants. To illustrate

and evaluate the framework, the approach is applied on a Software as a Service Application for private school

management.

Keywords: Algorithm, Graph Coloring, Multi-Tenancy, Rich-Variant Component, Software as a Service

Applications

I. INTRODUCTION
Cloud Computing has emerged these last

decade as a new model of computing. It is nowadays

one of the hottest paradigms of how to build and

deliver IT services. Software as a Service (SaaS) is a

form of Cloud computing that refers to software

distribution model in which applications are hosted

by a service provider and made availability to

customers over a network. As a key enabler to

exploit economies of scale, SaaS promotes Multi-

Tenancy (MT), the notion of sharing resources

among a large group of customer organizations,

called tenants. MT brings several advantages to

SaaS, however, it only satisfies requirements that are

common to all tenants as well as the fact that tenants

themselves hesitate about sharing.

To tackle these problems, a plethora of

research work has been performed to facilitate SaaS

applications customization according to the tenant-

specific requirements. Most of these works are based

on exploiting benefits of MT, variability

management, and tenants’ isolation on a single

instance [1,2,3]. Likewise, our approach aims to

create a flexible and reusable environment enabling

greater flexibility and suppleness for customers

while leveraging the economies of scale. The

approach is a user-aware solution integrating a

functional variability at application components

level and deployment variability at multi-tenants

end-users level as well. Moreover, the approach

focuses on satisfying stakeholders, providers and

customers, while maintaining a level of performance

and remaining efficient.

The aim of our work is to provide an

economy of scale for SaaS application providers

while minimizing the cost to its applications tenants.

We seek to achieve our goals using multi-variant

components that give more possibilities of sharing

allowing more instances sharing and over lower cost

and better communication between tenants’

communities.

This paper presents the contribution of our

approach and treats the formalization of its

algorithmic part. The remainder of this paper is

structured as follows. Section II provides the main

notion and concept making the base of knowledge of

our work. Section III identifies the problem of our

work as well as its motivation and its research goal.

Section IV presents the main contribution of our

approach consisting in a graph-based algorithm

computing optimal deployment. Section V treats the

algorithmic part of our approach. Section VI gives a

case study illustrating our work utility. Section VII

presents several approaches studied as related work.

Finally, Section VIII is a conclusion of the paper.

II. BASE OF KNOWLEDGE
2.1. Variability-Aware System

Variability is the capacity of a software

artifact to be adapted for a specific context [4]. It can

be, for example, the capacity to be extended,

configured, customized, or modified. In literature,

the notion of variability is largely related to Software

Product Line (SPL)because it is defined in SPL

context locating the differences between products of

the same family. SPL community approaches focus

more and more on variability resolution, and since,

different definitions of variability appeared in the

context of SPL. We define the variability as the

description of the possible variations of a system by

RESEARCH ARTICLE OPEN ACCESS

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 34 | P a g e

variation points, while a variation point identifies

and locates the place where occurs the variability. It

identifies possible solutions to solving this

variability.

The variability can be defined at all stages

of the development process. Therefore, a variability

management system or software is required for all

phases of system life cycle. In literature, several

mechanisms are proposed for a system variability

management intervening in the various phases of a

system life cycle. Some examples of these

mechanisms are presented below:

 Specification Phase: Iqbal, Zaidi and Murtaza

propose a model for the prioritization of

requirements using the Analytic Hierarchy

Process [5].

 Conception Phase: Several approaches were

proposed to model SPL using Feature Models,

for example the Feature Oriented Domain

Analysis (FODA) approach [6] that targets to

capture communalities and differences at

requirements level. Other approaches provide

extensions to the FODA approach such as the

Feature-Oriented Reuse Method (FORM) [7]

whose main contribution is the decomposition

of Feature Model layers to describe different

perspectives.

 Testing Phase: Erwing and Walkingshaw

propose the organization of the space of all

variations by dimensions, which provides

scoping and structuring choices [8]. They

consider the “variation programming” concept

for a flexible construction of all types of

variation structures [8].

 Implementation Phase: Trummer proposed a

corresponding data model [9] based on the

Composite Application Framework (Cafe)

model [1]. Applications are composed out of

components that could be provided distinctly.

2.2. Multi-Functional Systems and Separation of

concerns

The Separation of Concerns (SoC) concept

was very early regarded as a key artifact to master

the essential complexity of software development. It

is a pragmatic application of the general strategy of

"divide and rule". The underlying ideas of SoC come

from E. W. Dijkstra [10]. SoC appears in the various

software life cycle stages and thus it takes a variety

of forms. It may be the separation in time regarding

the treatment of from design to realization of the

different software facets, which are then

successively addressed during the development

process.

Designers focus on artifacts in a reduced

spectrum of concerns by using (i) generic languages

(e.g. UML) or Domain Specific Languages (DSLs)

sometimes called Domain Specific Modeling

Languages (DSMLs) and (ii) views - targeted

information encapsulation on user’s business. The

legitimacy of the point of views held by their

intelligibility and their communicability. Indeed, an

illustration of the SoC principle is the separation of

"views" of a system. It can be, for example, a

functional point of view describing the functional

and nominal behavior of system; a fault tolerance

point of view explaining the behavior in case of

failure; or a performance evaluation point of view to

calculate latencies, load flow, and other real-time

features, of robustness models for mechanical,

electromagnetic disturbance, etc. The point of view

are specialized and defined with a semantic

appropriate to the business domain [11].

About the architecture of a software

system, more users and stakeholder, which are

interested in different system aspects and its possible

deployment/usage, clearly appear. Several system

architectural views are defined, for example [12]. A

popular approach of architectural multiviews comes

from the “4+1”views methodology [13] proposed by

Kruchten for the conception with UML. The point of

view management irremediably brings to a

consistency management issues between these

views, source of many research as for example [14].

Functional domain define the main

dimension of any system. They describe system

activities and goals. System decomposition into a set

of functional domains already existed in the field of

database resulting the concept of view [15].

Multifunctional systems have been introduced to

overcome problems of inconsistency and overlap

between different system perspectives. The multi-

functionality notion was introduced under closely

related terms such as role, subject, aspect, and view,

etc.

Our contribution is mainly focused on the

notion of view as a mechanism of functional

separation. More recently, this concept was used in

service-oriented approaches to take into account the

variability of service customers' needs. For example,

Tran-Nguyen considers the view as a representation

of a whole system from the perspective of a related

set of concerns [16]. Dikanski and Abeck propose a

view based approach for the specification of a

service-oriented security architecture model

incorporating different interrelated views in order to

support the development and operation of secure

service oriented applications [17].

In the context of our work, we mix the

multi-functionality notion with the point of view

concept as a mechanism of separation of functional

concerns.

2.3. Cloud Computing and Multi-tenancy

The National Institute of Standards and

Technology (NIST) defines the Cloud Computing as

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 35 | P a g e

the access through a telecommunication network, by

demand and self-service, to a shared pool of

configurable computing resources [18]. Cloud

Computing is the use of computing resources,

hardware and software, which are provided as a

service on a network, generally the internet. Cloud

Computing loads remote services with user's data,

software and computation [18].

NIST defines three main types of cloud

services: Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service

(SaaS). Our work focuses on Cloud Computing SaaS

services. In this type of service, applications are

made available to consumers. Applications can be

manipulated using a web browser. As a tool to

exploit economies of scale, SaaS favors Multi-

Tenancy [19].

MT is the concept of sharing resources

within a large group of client organizations, called

tenants. In other words, a single application instance

serves multiple clients. But, although many

customers use the same instance, each one has the

impression that the instance is designated only for

themselves. This is achieved by isolating a tenant's

data from others. Unlike single-tenancy where

personalization is often done by creating branches in

the development tree, in MT configuration options

must be integrated into the product design as in

software engineering product lines. However, MT

has the advantage that the infrastructure can be used

as efficiently as possible to accommodate as many

guests as possible on the same instance. Thus,

maintenance and operating costs of the application

decreases [20].

In Multi-tenant SaaS applications,

variability may have different sources (evolution,

maintenance, tenants requirements, etc.), but it

occurs naturally [3].

III. PROBLEM IDENTIFICATION,

MOTIVATION, AND RESEARCH

GOAL
3.1. Problem Identification: Variability

management need for Cloud environments

Cloud Computing emergence has

necessitated more and more variability in the form of

service types, deployment types, and the different

roles of Cloud stakeholders. Thus, variability

modeling is necessary to manage the complexities of

cloud systems.

SaaS applications are consumed by

different customers. Moreover, customers who use

the same application generally have different

requirements needs. Such requirements usually

requires variant software architectures. In other

words, when application requirements change,

software architectures of these applications must be

adapted to meet them. Consequently, requirements

and architectures have intrinsic variability

characteristics.

Furthermore, other problems are raised by

MT, among other things, the need to ensure the

accuracy of all possible configurations of the

application. It is not enough to guarantee the

accuracy of a unique configuration of an application.

On an other hand, in multi-tenant SaaS

applications consumers don't have to worry about

making updates and upgrades, adding security and

system patches, or ensuring service availability and

performance. In addition, rapid elasticity and

resources pooling are essential characteristics of

cloud [18], which promote the variability for cloud

computing environment, especially for MT

environments.

The different points cited above show the

need of variability management for a cloud

environment what motivated our present work

benefiting from multi-functionality and MT. In this

sense, our model variability will be modeled using

the Multiview components as well as some graph

theory concepts.

3.2. Motivation by running scenario
To illustrate our model through a use case,

we consider a SaaS application for a private school

management accessible through a Web browser. To

simplify, we reduce the application of our example

into six functionalities F1 to F6 mentioned in Fig. 1.

Moreover, we restrict end users of a private school

management application to: administrator, professor,

and student. The EGA (Education Guardianship

Authority) represents the authority of education

ministry and it is a special tenant that must be able to

supervise schools services.

Figure 1. Treated application functionalities

Besides, we consider six private schools tenants of

the application that are listed in Table 1. Schools

which are application tenants can express their

deployment requirements on sharing each

application functionality.

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 36 | P a g e

Table 1. List of Schools Tenants of The Application

School Name City

Sc1 ABC school Rabat

Sc2 IJK school Rabat

Sc3 LMN school Rabat

Sc4 IJK school Oujda

Sc5 IJK school Agadir

Sc6 QRS school Agadir

3.3. Research Questions and Research Goal

As a key enabler to exploit economies of

scale, SaaS promotes MT which brings several

advantages, however, it only satisfies requirements

that are common to all tenants as well as tenants

themselves hesitate about sharing. So, how can we

enable providers exploiting economies of scale while

avoiding the problem of customers hesitation about

sharing with others and allowing better

communication between client communities. In the

purpose of solving this problem, we need to answer

the following research questions:

 Q1:How can customers' deployment

requirements be captured ?

 Q2:How can deployment information be

formally represented ?

 Q3:How can an optimal distribution be deduced

?

Based on the research questions, our

contribution is a framework from which the

information is exchanged between the provider and

its customers. Our contribution, as shown in Fig. 2,

can be structured into three part C1, C2, and C3 ,

each one dealing with one of research questions Q1,

Q2, and Q3, respectively.

Figure 2. Description of our Framework

IV. OUR CONTRIBUTION: A USER-

AWARE TENANCY APPROACH

BASED ON RICH-VARIANT

COMPONENT
In order to provide a more flexible, more

dynamic, and more reusable environment for SaaS

application providers, our approach offers a users-

aware tenancy based on the use of Rich-Variant

Component (RVC). Through our work, we seek to

exploit economies of scale while avoiding the

problem of customers hesitation about sharing with

others and allowing better communication between

client communities.

Our approach proposes a provider platform

from which the information is exchanged between

the provider and its customers . The provider

presents its offers and clients express their needs and

requirements.

Getting by capturing tenants deployment

requirements, our work aims to calculate application

instances optimal distribution on tenants while

respecting their deployment requirements.

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 37 | P a g e

In addition to client functional requirements

recovery, the main idea of our work is to recover

deployment-sharing requirements as well. This

allows thereafter considering deployment

requirements of individual tenants when calculating

an application instances optimal distribution on

clients of this application.

Deployment requirements expression

allows tenants to express with which other tenants

they wish or do not wish to share every part of the

application.

A customer who pays to use an application

is a tenant of this application. An application tenant

may be an enterprise, a company, an association or

any other organization wishing to rent the

application.

Each tenant has a number of end users who

are in general its employees and its staff. When

designing an application, we put different roles or

points of view categorizing the different users needs

according to their business and missions.

In our approach, SaaS applications are built

of a number of RVCs, each RVC provides atomic

functionality and dynamically changes behavior

according to the available user point of view. SaaS

applications built based on RVC then behave

differently depending on the available point of view.

The overall vision of our approach

architecture is shown in Fig. 3, where all tenants use

the same execution engine that executes the Rich-

Variant Configurations specific to each tenant.

 In the first level, the highest level of

abstraction, we have the provider's catalog, which is

a formal description of all available applications

offered by that provider. The catalog presents

applications functional variability through each

application functionalities description as well as

variability points specification showing thus to

customers how an application can be customized.

Considered as an instantiation of the catalog related

with an application, the Configuration Template

comes in a second level describing the RVCs that

must be linked to create the specified application.

Generated from a given Configuration Template, a

Rich-Variant Configuration describes a specific

application tailored to a specific tenant needs with a

behavior that changes dynamically at runtime

depending on the available end-user's role or point of

view. At this level, values of the parameters or

variability points of each RVC are defined, it is the

description of the practical application that will be

provided to the tenant.

As we have already mentioned, our SaaS

applications are built from RVCs. Each RVC has a

number of variants. And each application

functionality is performed using a number of

variants of RVCs which build the application.

Figure 3. Overall architectural vision

An RVC is a Multiview component which

dynamically change its behavior according to the

enabled point of view. Each RVC has a number of

variants that it can be deployed according of one of

them each time.

From our platform, tenants choose the

functionalities they desire have in the application

and specify their deployment requirements for each

functionality. An example of a deployment

requirement is "I do not want to share the

functionality F with any other tenant," or "I want to

share functionality F with the tenant X" ... When a

tenant doesn't precise any deployment requirement

for a functionality, it means that he has no problem

sharing this functionality. In this case, we consider

the default value which is "Share with anyone". The

next chapter shows how we formalized the

expression of deployment requirements to facilitate

their capture.

On customers or tenants side we talk about

sharing functionalities, while on provider's side we

talk about sharing RVC variants. Therefore, the

initial step of our work is to translate customer

requirements concerning functionalities to

requirements concerning RVC variants. Two tenants

can't share a functionality means that they can't share

the variants involved in achieving this functionality.

Computing the optimal distribution of an

application instances ends up to computing the

optimal distribution of instances of RVCs building

the application. The remainder of our approach is a

treatment that breeds on each RVC. Thereafter, we

will need deployment information of each RVC

resulting from the translation of tenants requirements

about functionalities and which indicate for each two

tenants if they can share or not each specific RVC

variant.

The representation of these deployment

information is in the form of graphs, one graph for

each RVC. We work with an Undirected Edge

Labeled Graph. While vertices represent tenants,

edges represent if two tenants can share variants or

not. Besides, labels on edges indicate the variants

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 38 | P a g e

involved in sharing relationship represented by the

edge. If an edge has no label, it means that sharing

relationship concerns the RVC with all its variants.

Fig. 4 presents an example of deployment

information represented by a graph.

Figure 4. Example of deployment information graph

To derive an optimal distribution of

application instances on tenants, we were inspired

from well-known problems of graph theory literature

[21]. Our treatment can be seen as finding a

minimal clique cover of our Undirected Edge

Labeled Graph. So the three steps of our treatment

are as follows:

Step 1: Inverse the undirected edge labeled graph

 Keep the same vertices;

 Make each two non-adjacent vertices become

adjacent with an unlabeled edge;

 Make each two adjacent and unlabeled vertices

become non-adjacent;

 Make each two adjacent and labeled vertices

become adjacent with a label containing the

complement of variants in the initial label.

For example, for a RVC with five variants

V1, V2, V3, V4, and V5, if the original label

contains "V2, V5" then the label on the inverse

graph is "V1, V3, V4".

Step 2: Divide vertices by RVC variants number

The second step is to divide the vertices by

the number of RVC variants. If the number of

variants is n, there will be n parts on each vertex

each referring to a RVC variants.

Step 3: Color the Inverse Graph

The third step is to color the inverse graph.

Our coloring function assigns a color to each section

of each vertex so that two adjacent vertices

according to a variant have different colors in the

sections referring to that variant.

 Give a color to all sections of a first vertex;

 For each next vertex, for each section referring

to a variant, for each color:

o if the vertex is not adjacent to vertices of that

color according to that variant, then we give it

the same color;

o if the vertex is adjacent to at least one vertex of

that color, we go to next color.

 At the last color, if we didn't give any color to

that section of that vertex, then we assign a new

color.

This coloring part returns a set of used

colors C={C1, ..., Cd}. Each used color is a set of

sections of vertices colored by this color.

Lemma 1: When instantiating a RVC

according to a variant, we can use the same instance

according to the other variants.

Taking Lemma 1 into account, we deduce

that the number of instances required to complete the

deployment is the number of used colors, what

means that it is the cardinality of the set C.

Moreover, we can also deduce the optimal

distribution of these instances on the different

tenants, and that from the same return of the coloring

function. Indeed, each color Ck designates a specific

instance of the RVC and the elements of this color

Ck refer to tenants who will use this instance and

according to which variant they will use it.

In conclusion, our treatment seeking to

compute valid and optimal deployment for a RVCs,

can be simplified and concluded in Algorithm 0

which takes as input an Undirected Edge Labeled

Graph representing deployment information about

the RVC, and returns as output the set of used

colors.

V. OUR CONTRIBUTION

ALGORITHMIC PART
In this chapter, we will present our work in

a more formal way using formulas, algorithms and

mathematical concepts.

5.1. Deployment requirements Capture: C1

In the aim of facilitating the capture of

deployment requirements expressed by tenants, we

defined four possible cases. Tenants can express

their requirements for each application functionality

using the following expressions:

 SWAny: Share with anyone (default value)

 SWJ(X): Share with just X ;

 DSW(X): Don't share with X ;

 DSWAny: Don't share with anyone.

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 39 | P a g e

Where X can take the values: "P" (as

Partners), "Cp" (as Competitors), "Ti" (for a specific

Tenant), or a list of the previous values.

Requirements are ordered in a table where

we store the requirements of each tenant for each

application functionality. We have a such table for

each application. As a result of the translation of

requirements concerning functionalities to

requirements concerning variants, we obtain a table

by RVC containing each tenant requirements for

each RVC variant. However, there may be several

expressions in one table cell, to settle this problem

we apply the following transition rules:

 SWAny and Z give Z

 DSWAny and Z give DSWAny

 DSW(X) and DSW(Y) give DSW(X,Y)

 SWJ(X) and SWJ(Y) give DSWAny

 DSW(X) and SWJ(Y) give SWJ(Y)

 DSW(X) and SWJ(X) give DSWAny

Where Z can take any of the four possible

expressions (i.e. Whatever Z).

5.2. From requirements to the graph: C2

From this step the work is the same for

each RVC, so for the remainder of the paper we

keep working on a single RVC. Then, let's have a

RVC with n variants. And let m be the number of

tenants. We formalize the table of m tenants

Requirements about the n RVC variants by R a two

dimensions (m x n) table in which each element rik is

the requirement of tenant i about variant k, as shown

by (1):

R = (rik), (i=1,...,m, k=1,...,n) (1)

The deployment information Graph is

formalized by a Boolean three-dimensional matrix G

(m x m x n) where the gijk value indicates if tenant i

and tenant j may share the variant k, as shown by

(2):

G = (gijk), (i, j= 1,...,m, k=1,...,n) (2)

If the gijk value is 1 then both tenants i and j

can share variant k, and if the gijk value is 0 then they

cannot share. By default, all tenants can share all

variants unless they declare the opposite. Therefore,

we initiate the gijk values of the matrix G by 1.

Thereafter, we traverse cells of requirements table R

and decides whether to change the gijk value

according to the expression of rik.

 If rik = DSWAny then gijk = gjik = 0 where i and j

are different.

 If rik = SWJ(tenants' LIST) then gijk = gjik = 0

where tenant j does not belong to the LIST and

where i and j are different.

 If rik = DSW(tenants' LIST) then gijk = gjik = 0

where tenant j belongs to the LIST.

 If rik = SWAny then we change nothing.

This step is formalized by Algorithm 1

thereafter. The end of this step makes the transition

from tenant requirements to deployment information

graph.

5.3. From the graph G to its inverse: Algo.2

Thereafter, we pass from the graph G to the

inverse graph formalized by a Boolean three-

dimensional matrix G(m x m x n) where the g'ijk

value takes the opposite of gijk, as shown in (3):

Algorithm 2 formalize the transition from graph G to

Graph G':

5.4. Towards the optimal distribution: Algo.3

The optimal distribution of RVC instances

is formalized by a two-dimensional matrix D (m x n)

where the dik value takes an integer indicating the

color assigned to the part referring to the variant k

from the graph vertex referring to the tenant i, as

shown by (4):

D = (dik), (i=1,...,m, k=1,...,n) (4)

As we had already explained in the

previous chapter, to color the inverse graph we first

give a first color to all parts of a first vertex. So as an

initialization, we give the value 1 to all elements of

the first line of the matrix D, as shown in (5):

d1k = 1 , (k=1,...,n) (5)

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 40 | P a g e

Let h be the number of used colors, we

initiate h at the value 1. And let w and u be

indicators initiated to 0. Coloring of the inverse

graph is completely formalized by the Algorithm 3

which takes as input the graph G' and gives as output

the matrix D. The number of instances required to

complete the deployment is the number of used

colors, it means that it is the number h. Moreover,

we can also derive the optimal distribution of these

instances on the various tenants, and that from the

matrix D returned by the algorithm. Indeed, each

color refers to a specific instance of the RVC and the

elements of the matrix D with the same value -

referring to the color- show tenants who will use this

instance and according to which variant they will use

it.

The following chapter includes an

illustrative example to better understand and

visualize the result of our approach. Moreover, in

order to verify the expected results we had think

about the implementation of our algorithm.

VI. ILLUSTRATING EXAMPLE
Let us reconsider the SaaS application for a

private school management initiated above. We

reduced the application of our example in six

functionalities F1 to F6 as mentioned in Fig. 1. In

addition, we have limited the end-users in:

administrator, teacher, student and EGA. The

various RVCs used to make our functionalities are

presented in Fig. 5. The figure illustrates the usage

variants of each RVC according to the needs of end-

users. The "Schedules" component has four variants

A, B, C, and D, it can be used for the organization of

timetables per class or per teacher, as well as for

accounting hourly volume per subject or per teacher.

The "Absences Monitoring" component includes two

variants E and F, it can be used to account students

absence or to record the current session for a teacher.

The "Online Payment" component also includes two

variants G and H, it can be used to make students

payment or to pay part-time teachers. Finally, the

"Absences Statistics" component has two variants J

and K, it can be used to make absence statistics per

student or per subject.

Figure 5. The used RVCs

Using these RVCs, we developed the

Configuration Template presented in the top of Fig.

6. This template links the various RVCs needed to

achieve the six functionalities of our application.

Each application functionality uses a number of

various RVCs variants that build the application.

The figure shows the paths to achieve these

functionalities as well as the users who need to

perform each functionality. For example, the

achievement of "F1: Online Payment For

Professors" starts from the component RVC1,

specifically from the second variant B of RVC1

which involves the organization of timetables by

Professor and that to view timetable of teacher to

pay. Then we move to the second variant F of the

component RVC2 for accounting class sessions

conducted by the teacher. And finally, it ends at the

component RVC3, by its second variant H to make

the payment of the teacher. This functionality F1 is

only performed by an administrator.

As shown in Fig. 6, the functionality "F3:

Absence statistics per subject " is performed by the

teacher in order to assess the presence in its own

subjects, as it is performed by an administrator to

monitor the progress of the various school subjects.

Similarly, the functionality "F4: Absence statistics

per student" is performed by the administrator and

the student each for its own purpose. The

functionality "F2: Student Online Payment" is done

exclusively by the student. Both functionalities "F5:

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 41 | P a g e

Accounting hourly volume per subject" and "F6:

Accounting hourly volume per professor" are

performed by the administrator or by the EGA users

to control school services. Both of these

functionalities are realized by the third (C) and the

fourth (D) variants of RVC1.

In general, a school does not wish to share

with its competitors that it may specify or can be

defined as the schools of same type (primary school,

middle school, high school, vocational training

school, college ...) from the same town.

Figure 6. Configuration Template achieving functionalities

Table 2. Deployment Requirements Expressed By The Six Tenants Concerning The Six Application

Functionalities

Feature Variant Sc1 Sc2 Sc3 Sc4 Sc5 Sc6

F1 B, F, H DSWAny DSW(Sc3) DSW(Cp, Sc6) DSW(P) DSW(Sc3) SWAny

F2 G DSWAny SWJ(P) ---------- ---------- ---------- SWAny

F3 A, E, K DSWAny ---------- DSW(Cp) SWJ(P) ---------- SWAny

F4 A, E, J DSWAny ---------- DSW(Sc4) SWJ(P) DSW(Sc2) SWAny

F5 C DSWAny ---------- ---------- ---------- ---------- SWAny

F6 D DSWAny DSW(Cp) DSW(Sc6) SWJ(P) DSW(Cp) SWAny

Also a school may wish to share instances

with its partners to collaborate in their work. The

partners of a school are, in general, schools of the

same group of schools located in other cities, in

addition to schools in partnership mentioned by the

school tenant of the application. The schools of the

same group may, for example, wish to share the

instance of the component "Absences Statistics" to

compare and analyze the results. On the other hand,

schools have to share instances of the component

"Schedules" with the EGA to enable it to monitor

schools through both F5 and F6 functionalities

accounting the hourly volumes. The application used

by the EGA may be different from those used by

schools (less functionalities), but it must at least

contain the component "Schedules".

Application tenants schools express their

deployment requirements on sharing a specific

application functionality. Tenants expression of

deployment requirements concerning application

functionalities is technically translated in

deployment requirements concerning variants of

application RVCs.

According to Competitors and Partners

definitions mentioned previously, the relationships

between the six private schools tenants of the

application listed in Table 1 are: Sc1, Sc2, and Sc3

are competitors; Sc2, Sc4, and Sc5 are partners; Sc5

and Sc6 are competitors. Tenants deployment

requirements concerning the illustrating example are

presented in Table 2. Each tenant expresses its

requirements for each functionality, otherwise it

means that the tenant has no problems to share with

other tenants. Thus, the empty cells of the table take

the default value, which is SWAny.

The initial step is to translate requirements

about functionalities to requirements about RVCs

variants. Using the transition rules cited in the

previous chapter and detailing lists of tenants

partners and competitors, we pass from Table 2 to

Table 3 which includes four tables each for a RVC.

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 42 | P a g e

Table 3. Deployment Requirements Concerning Application Rvcs Variants

RVC Variant Sc1 Sc2 Sc3 Sc4 Sc5 Sc6

1 A DSWAny SWAny DSW(T1,T2,T4) DSW(T2,T5) DSW(T2) SWAny

B DSWAny DSW(T3) DSW(T1,T2,T6) DSW(T2,T5) DSW(T3) SWAny

C DSWAny SWAny SWAny SWAny SWAny SWAny

D DSWAny DSW(T1,T3) DSW(T6) SWJ(T2,T5) DSW(T6) SWAny

2 E DSWAny SWAny DSW(T1,T2,T4) DSW(T2,T5) DSW(T2) SWAny

F DSWAny DSW(T3) DSW(T1,T2,T6) DSW(T2,T5) DSW(T3) SWAny

3 G DSWAny SWJ(P) SWAny SWAny SWAny SWAny

H DSWAny DSW(T3) DSW(T1,T2,T6) DSW(T2,T5) DSW(T3) SWAny

4 J DSWAny SWAny DSW(T4) SWJ(T2,T5) DSW(T2) SWAny

K DSWAny SWAny DSW(T1,T2) SWJ(T2,T5) SWAny SWAny

Figure 7. Deployment information graph concerning

the RVC1 resulting from the use of our algorithm

To simplify the illustration of our

algorithms, we focus on a single RVC - the same

work is done for the other RVCs - and we will just

give the results for the other RVCs. So, for the

illustration of the different remaining steps of the

algorithm, we consider the first component of Fig. 5,

the RVC1 named "Schedules". This component has

four variants. The framed portion of Table 3 shows

requirements concerning variants of RVC1. We take

this portion as input of our algorithm, it is the Table

R. The algorithm deduces the matrix G. Fig. 7 shows

the numerical values of G elements as well as its

graphical representation.

Figure 8. Inverse graph of deployment information

graph concerning the RVC1

The next step is to inverse the graph G to

obtain the graph G '. The resulting inverse graph is

shown in Fig. 8 in the form of a numerical matrix

and in the form of an Undirected Edge Labeled

Graph.

The final step is to apply Algorithm 3 to

color the inverse graph. The algorithm takes as input

the matrix G' presented in Fig.8 and gives as output

the matrix D de dimension (6 x 4). The result

obtained by the application of the Algorithm 3is

presented in Fig. 9. We have the information for

each tenant which RVC instance should get

according to each variant.

Figure 9. Output of Algorithm 3 application

From Algorithm 3 output we deduce the

optimal distribution of RVC1 instances exposed in

Table 4. Each number from Fig. 9 refers to an

instance, for example, instance number 1of RVC1

must be given to tenant Sc1 only and according to all

variant.

Table 4. RVC1 instances distribution resulting from

the algorithm

\Instance I1 I2 I3 I4

Variant

A Sc1 Sc2, Sc4 Sc3,

Sc5, Sc6

B Sc1 Sc2, Sc5, Sc6 Sc3, Sc4 ----

C Sc1 Sc2, Sc3, Sc4,

Sc5, Sc6

---- ----

D Sc1 Sc2, Sc4, Sc5 Sc3 Sc6

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 43 | P a g e

As regards the other RVCs, instances

distribution resulting from the application of our

algorithms is presented in Table 5. Only three

instances are needed for RVC2 and RVC4. And a

more instance is necessary for the RVC3 but only

according to variant H. So, for the six tenants, we

only need four instances to respect all tenants

requirements about deployment and sharing

functionalities.

Table 5. RVCs instances distribution resulting from algorithms application

RVC Variant\ Instance I1 I2 I3 I4

RVC1 A T1 T2, T4 T3, T5, T6 ----

B T1 T2, T5, T6 T3, T4 ----

C T1 T2, T3, T4, T5, T6 ---- ----

D T1 T2, T4, T5 T3 T6

RVC2 E T1 T2, T4 T3, T5, T6 ----

F T1 T2, T5, T6 T3, T4 ----

RVC3 G T1 T2, T5 T3, T4, T6 ----

H T1 T2, T4, T6 T3 T5

RVC4 J T1 T2, T3, T6 T4, T5 ----

K T1 T2, T4, T5 T3, T6 ----

VII. RELATED WORK
Several works have been performed to

address the realization and variability of Multi-

tenancy systems in general and Multi-tenancy SaaS

applications in particular. In [22], the authors

propose a SaaS customization policy as well as a

supporting framework that is realized through a

design-time tooling and a run-time environment.

However, this work mainly focuses on the unique

issues in service customization for a given set of

requirements. Reference [23] is an example of

several works that addresses the challenge of

introducing flexibility into Multi-Tenancy

applications. Its authors discus the configuration

issues and challenges related to it, and propose a

competency model and a methodology framework

that both aim to support SaaS providers in planning

and evaluating their configuration and customizing

strategies. In [24], the authors use a directed

hypergraph based service model to represent

hierarchical services and Multi-Tenancy

applications. Based on these graphs, it is possible to

represent dependencies between services and

application structures from which Multi-Tenancy

applications can be constructed fulfilling customer

requirements.

Several research works have been

performed in the context of architectural patterns for

developing and deploying customizable multi-tenant

applications for Cloud environment. Several

approaches from those - cited below - was studied

and compared in Table 6. The comparison is based

on common characteristics shared by the studied

approaches.

Approach A: (Composite as a Service

(CaaS) [1][25]) show how applications built of

components, using different Cloud service models,

can be composed to form new applications that can

be offered as a new service.

Approach B: (Matchmaking of IaaS Offers

Leveraging Linked Data [2][26]) present models of

Expressive Search Requests and Service Offer

Descriptions allowing matchmaking of highly

configurable services that are dynamic and depend

on request.

Approach C: (Service line engineering [3])

present an integrated service engineering method,

that supports co-existing tenant-specific

configurations and that facilitates the development

and management of customizable, multi-tenant SaaS

applications.

Approach D: (Mixed-tenancy Systems

[19]) addresses the deployment variability based on

the SaaS tenants requirements about sharing

infrastructure, application codes or data with other

tenants. It proposes a hybrid solution between multi-

tenancy and simple tenancy.

The new notion brought by our approach

and that is not proposed by the others approaches is

the roles accessibility based on the concept of

Multiview. All cited approaches aim to improve

flexibility and reusability in their ways. To exploit

economies of scale some approaches rely on the

multi-tenancy, we do the same in our approach but

in addition we benefit from the use of Multiview

notion to exploit more and more economies of scale.

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 44 | P a g e

Table 6. A Comparative Study On Customizable Approaches For Cloud Environment

Approaches Composite as a

Service Approach

Matchmaking of IaaS

Offers Leveraging

Linked Data

Approach

Service line

engineering

Approach

Mixed-

tenancy

Systems

Approach

Our

Approach

Cloud

application area

SaaS IaaS, Service

Computing

SaaS SaaS SaaS

Variability -Functional

-Deployment

Deployment Functional -Deployment

-Functional

-Functional

-Deployment

Accessibility by

roles

Not proposed Not proposed Not

proposed

Not proposed Use of

Multiview

concept

Flexibility Dynamically scale

based on customer

demand

Service consumer

might specify a flexible

search request using

enumerations

and ranges

Use of

Service line

and

Workflows

Flexibility to

use depending

to the tenant

using the

application

Flexibility

according to

tenants, and

flexibility

according to

enabled view

Reusability Use of component-

based

software

Service Variant

Hierarchy promotes

reuse

Modular

middleware

layer

Use of

application

component

Use of RVCs

Economies of

scale

Use of highly

flexible templates

enabling

increasing

customers base

Not proposed Application-

level multi-

tenancy

Mixed tenancy

(hybrid

solution

between multi-

tenancy and

simple tenancy)

- Multi-

tenancy

- Multiview

notion

VIII. CONCLUSION
Flexibility and reusability are challenging

issues for multi-tenancy SaaS applications. In this

regard, our user-aware SaaS approach consists in

integrating two types of variability to create a more

flexible and reusable SaaS environment while

exploiting economies of scale and avoiding the

problem of tenants hesitation about sharing with

others. In this context, this paper addresses the

algorithmic part formalization, which aims to

compute a valid and optimal RVC instances

distribution on tenants while respecting their

deployment requirements. For this purpose, we first

presented the context and motivations of the

problem. Then, we presented our User-Aware SaaS

Approach. Then, we treated the formalization of our

approach using some mathematics concepts. Finally,

to illustrate our model we applied our algorithm to a

case study. As future work, we think about

projecting our approach in the domain of Model-

driven engineering for a more modern and more

general vision.

REFERENCES

[1]. R. Mietzner, A method and implementation

to Define and Provision Variable

Composite Applications, and its Usage in

Cloud Computing, doctoral diss., Stuttgart

University, 2010.

[2]. M. Zaremba, T. Vitvar, S. Bhiri, W.

Derguech, and F. Gao, Service Offer

Descriptions and Expressive Search

Requests - Key Enablers of Late Service

Binding, Proc. 13th International

Conference on E-Commerce and Web

Technologies (EC-Web), Vienna, Austria,

2012, 50-62.

[3]. S. Walraven, D. V. Landuyt, E. Truyen, K.

Handekyn, and W. Joosen, Efficient

customization of multi-tenant Software-as-

a-Service applications with service lines,

Journal of Systems and Software, vol. 91,

2014, 48-62.

[4]. M. Aiello, P. Bulanov, and H. Groefsema,

Requirements and tools for variability

management, Proc. the 2010 IEEE 34th

Annual Computer Software and

Applications Conference Workshops

(COMPSACW '10), Washington, DC, USA,

2010, 245-250.

[5]. M. A. Iqbal, A. M. Zaidi, and S. Murtaza,

A new requirement prioritization model for

market driven products using analytical

hierarchical process, Proc. DSDE’10,

IEEE, Feb. 2010, 142-149.

[6]. K. C. Kang, S. G. Cohen, J. A. Hess, W. E.

Novak, and A. S. Peterson, Feature-

oriented domain analysis (FODA)

feasibility study, Technical report,

CMU/SEI TR-21, USA, Nov. 1990.

[7]. K. C. Kang, S. Kim, J. Lee, K. Kim, G. J.

Kim, and E. Shin, FORM: A feature-

oriented reuse method with domain-specific

Houda Kriouile. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.33-45

www.ijera.com 45 | P a g e

reference architectures, Annals of Software

Engineering, vol. 5, 1998, 143-168.

[8]. M. Erwig, and E. Walkingshaw, Variation

programming with the choice calculus,

Generative and Transformational

Techniques in Software Engineering,

Springer-Verlag Berlin Heidelberg, 2012,

55-100.

[9]. I. Trummer, Cost-Optimal Provisioning of

Cloud Applications, doctoral diss.,

University of Stuttgart, Faculty of computer

science, Feb. 2010.

[10]. Edsger W. Dijkstra, Springer-Verlag New

York (Ed.), Selected Writings on

Computing: A Personal Perspective,

chapter EWD 447: On the role of scientific

thought (1974), New York, USA, 1982, 60-

66.

[11]. S. Creff, Une modélisation de la variabilité

multidimensionnelle pour une évolution

incrémentale des lignes de produits,

doctoral diss., University of RENNES 1,

Decembre 2013.

[12]. IEEE, Ieee recommended practice for

architectural description of software

intensive systems. IEEE Std 1471-2000,

pages i-23, 2000.

[13]. P. Kruchten, The 4+1 view model of

architecture. IEEE Software, vol. 12,

November 1995, 42-50.

[14]. C. Nentwich, W. Emmerich, A. Finkelstein,

and E. Ellmer, Flexible consistency

checking, ACM Trans. Softw. Eng.

Methodol., 12(1), January 2003, 28-63.

[15]. L. Debrauwer, Des vues aux contextes pour

la structuration fonctionnelle de bases de

données à objets en CROME, doctoral

diss., Laboratoire d'Informatique

Fondamentale de Lille I, Lille, décembre

1998.

[16]. H. Tran-Nguyen, View-Based and Model-

Driven Approach for Process-Driven,

Service-Oriented Architectures, doctoral

diss., Vienna University of Technology,

2009.

[17]. E. Dikanski, and S. Abeck, A View-based

Approach for Service Oriented Security

Architecture Specification, Proc. the 6th

International Conference on Internet and

Web Applications and Services, 2011.

[18]. NIST, Definiton of Cloud Computing -

National Institute of Standards and

Technology, Gaithersburg, MD, 2009.

[19]. S. T. Ruehl, Mixed-Tenancy Systems A

hybrid Approach between Single and Multi-

Tenancy, doctoral diss., Department of

Informatics, Clausthal University of

Technology, June 2014.

[20]. C. P. Bezemer, and A. Zaidman, Multi-

tenant SaaS applications: maintenance

dream or nightmare?, Proc. the 4th

International Joint ERCIM/IWPSE

Symposium on Software Evolution (IWPSE-

EVOL), Antwerp, Belgium, 20-21

September 2010, 88-92.

[21]. R. M. Karp, Reducibility among

combinatorial problems, Tech. rep.

Springer, 1972, 85-103.

[22]. K. Zhang, X. Zhang, W. Sun, H. Liang, Y.

Huang, L. Zeng, and X. Liu, A Policy-

Driven Approach for Software-as-Services

Customization, Proc. the 9th IEEE

International Conference on ECommerce

Technology and the 4th IEEE International

Conference on Enterprise Computing, E-

Commerce, and E-Services, 2007, 123-130.

[23]. W. Sun, X. Zhang, C. J. Guo, P. Sun, and

H. Su, Software as a Service: Configuration

and Customization Perspectives, Proc.

Congress on Services Part II, IEEE,

Beijing, China, 2008, 18-25.

[24]. R. Wang, Y. Zhang, S. Liu, L. Wu, and X.

Meng, A Dependency-Aware Hierarchical

Service Model for SaaS and Cloud

Services, Proc. IEEE International

Conference on Services Computing (SCC),

July 2011, 480-487.

[25]. C. Fehling, and R. Mietzner, Composite as

a Service: Cloud Application Structures,

Provisioning, and Management, It -

Information Technology Special Issue:

Cloud Computing, April 2011, 188-194.

[26]. M. Zaremba, S. Bhiri, T. Vitvar, and M.

Hauswirth, Matchmaking of IaaS cloud

computing offers leveraging linked data,

Proc. the 28th Annual ACM Symposium on

Applied Computing (SAC), New York,

USA, 2013, 383-388.

