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ABSTRACT 
Seismic wavelet estimation is an important step in processing and analysis of seismic data. Inversion methods as 

Narrow-Band and theConstrained Sparse-Spike ones require information about it so that the inversion solution, 

once it is not a unique problem, may be restricted by comparing the real seismic trace with the synthetic 

generated by convolution of the estimated reflectivity and wavelet. Besides helping in seismic inversion, a good 

estimate of the wavelet enables an inverse filter with less uncertainty to be computed in the deconvolution step 

and while tying well logs, a better correlation between the seismic trace and well log can be achieved. 

Depending on the use or not of well log information, the methods of wavelet estimation can be divided into two 

classes: statistical and deterministic. This work aimed to test the sensitivity of acoustic post-stack seismic 

inversion algorithms to wavelets statistically estimated by two distinct methods. 

Keywords-Narrow-band, Seismic Inversion, Seismic Wavelet Estimation, CSSI 

 

I. INTRODUCTION 
Geophysical techniques are used to 

investigate indirectly the structures and properties 

associated with the geology of the subsurface. 

Depending on the features of the desired target, a set 

of techniques will be chosen. Among the existing 

methods, the seismic is the most used, considering it 

provides good resolution even for great depths and 

allows for estimation of the acousticaland elastic 

properties of a medium.Estimating these properties 

involves an approach through Inverse Problem 

Theory to define a suitable method for the problem 

at hand. Considering the Earth surface as an acoustic 

medium a group of methods can be classified as 

acoustic and post-stack (following classification 

proposed in [1]) . The latter term refers to the fact 

the data is supposed noiseless and generated through 

a zero-offset geometry (source and receiver in the 

same spatial position) a limitation that can be fairly 

approximated using standard processing flows. The 

main purpose of these methods is to generate a 

consistent impedance (i.e. product of density and 

velocity) model. Under the scope of this work the 

methods discussed are: Narrow-Band and Sparse-

Spike (CSSI). Narrow-band, occasionally referred as 

SEISLOG or VERILOG, is the simplest method of 

seismic inversion being common routine in the 90's 

[2],[1].CSSI on the other hand, includes more robust 

methods which allow fora prioriinformation and 

admits more consistent assumptions about 

reflectivity. Under a deterministic approach, 

nowadays even though model-based methods hold as 

most used, there are still applications of CSSI in 

light of its robustness as in [3].There is a wide 

literature on CSSI methods and often they differ 

only in the deconvolution technique employed to 

reflectivity estimation. As examples of these, there 

are the ones that perform deconvolution using 

maximum likelihood estimation [4],[5],[6]; the L1 

norm [7],[8],[9]; and methods developed under a 

Bayesian point of view [10].The source signature 

(signal) as a parameter of the seismic experiment is a 

required input to inversion algorithms. The 

combination of this signature and the effects on 

wave propagation is called seismic wavelet. Thus, its 

estimate from the treated data is a fundamental step 

to ensure a reliable acoustic model is achieved. 

There exists a vast range of works dealing with 

wavelet estimation techniques and a possible 

classification is to divide them in deterministic and 

statistical, their difference being related to the 

introduction of well log information. Much of the 

work in the area until 1996 can be found in [11]. In 

[11] a solution isproposed using the Kolmogorov 

method, based on the assumption that the wavelet 

has minimum phase and its phase spectrum can be 

obtained by the Hilbert transform of the natural 

logarithm of the estimated amplitude spectrum. 

In[13], authorsseek an estimate using the theory of 

homomorphic systems presented in [14]. The work 

of[15] seeks a solution to this problem through a 

strategy based on a simulated annealing algorithm. 

More recent studies have evolved to more efficient 

methods at the cost of more complexity as[16], 

[17]and [18].Sensitivity of the inversion algorithms 

was analyzed for wavelets estimated using the 
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methods: Kolmogorov (or Hilbert Transform)as in 

[12]and a combination of smoothing the 

seismogram's amplitude spectrum and setting a 

constant linear model to the phase spectrum, similar 

to the methodology used in [19]. To reduce 

uncertainty in the phase estimate, after estimation a 

correction in the phase spectrum based on[20] was 

applied. In this work it was possible to analyze the 

behavior of the seismic inversion methods: Narrow-

band and Bayesian, regarding wavelets estimated by 

the aforementioned methods and noise. In general 

the second got far superior results, admitting more 

robust estimates of the impedance in all tests. For 

wavelet estimation methods, the second (smoothing) 

obtained better results, although for both, the phase 

estimates were not good. 

 

II. THEORETICAL BACKGROUND 
A. Convolutional Model 

The convolutional model in its simplest 

form was originally described in [12] and is a valid 

approximation for several steps of seismic 

processing. Its validity depends on some 

assumptions two of which are: (1) the reflectivity is 

a random process and (2) the wavelet has minimum 

phase. Considering a reflectivity series r and a 

wavelet w, the seismic trace or seismogram s can be 

mathematically represented as:  

𝑠𝑡 =  𝑤𝑘𝑟𝑡−𝑘       𝑜𝑟      𝑠(𝑡)

∞

𝑘=0

= 𝑤(𝑡) ∗ 𝑟(𝑡)              

(1) 

It can be viewed as an approximation to an 

ideal zero-offset acquisition where the wavelet is an 

idealization of a waveform that could account both 

for the one created by the source and all the wave-

field propagation phenomena changing it along time 

(i.e. dispersive effects). As long as a suitable 

processing workflow is applied to the recorded data, 

the final post-stack section or volume reasonably 

satisfies the convolutional model assumptions thus 

admitting inversion with the latter discussed 

methods. 

 

B. Wavelet estimation 

The two methods discussed here are: 

Hilbert transform method and Smooth spectra 

method. Before going further the fact they are a 

good approximation to wavelet amplitude spectrum 

while producing a poor estimate of phase spectra 

must be emphasized. To overcome this drawback of 

both methods a correction based on the Automatic 

Phase Correction (APC as referred herein) 

introduced in [20] was adopted. In the original APC 

the wavelet phase spectrum is rotated by a constant 

angle and a synthetic calculated for each rotation 

until an entropy norm is maximized. Here the best 

solution was found considering the minimum error 

norm seeking an increase in correlation. 

 

1) The Hilbert Transformor Kolmogorov 

factorization method 

This method estimates the wavelet 

amplitude spectrum of its minimum phase version 

considering the data auto-correlation. However the 

actual phase might not be minimum thus phase 

spectrum must also be estimated. Using the 

convolutional model and assuming reflectivity as a 

random (white Gaussian) series, the wavelet auto-

correlation can be fairly approximated by the 

seismogram's one, differing only by a scale factor 

equal to the total energy of reflectivity, as shown in 

[21]. 

As stated in [22], calculation of spectral density of a 

signal can be accomplished by the Fourier transform 

(FT) of its auto-correlation (ɸ) and by the square of 

its magnitude spectrum ( 𝑊(𝜔) ) which are related 

through: 

 𝑊(𝜔) =   ɸ(𝜔)    (2) 

Therefore using the above relation an estimate of a 

minimum phase wavelet amplitude spectrum can be 

found from the square root of the seismogram's 

spectral density. 

The phase spectrum is obtained using the equation 

derived in [12]: 

∡𝑊(𝜔) =

−2  𝑠𝑖𝑛(𝜔𝑡)  
1

2𝜋
 𝑐𝑜𝑠(𝜔𝑡) ln 𝑊(𝜔) 𝑑𝜔
𝜋

0
 ∞

1    (3) 

 

Derivation of the above equation can be done using 

the Hilbert transform of the logarithm of the 

wavelet's amplitude spectrum as stated in [23] thus 

the method's name.  

 

2) Smoothing Spectra method 

The theory behind this method is simpler 

than the previous one. Under the assumption 

reflectivity is a white Gaussian series and the 

wavelet has a band-limited smooth varying 

amplitude spectrum, the smooth "trend" of the 

seismogram's amplitude spectrum would be 

associated with the wavelet. Though simple it holds 

for most of the cases hence leading to good wavelet 

estimates. Numerical implementation involves the 

choice of a smoothing operator to the amplitude 

spectrum of the seismogram and a minimum , mixed 

or maximum phase guess for the spectra, where the 

most common is the selection of a constant value. 

The parameter that most influences the final result is 

the operator's size, which can be a simple moving 

average filter. 

C. Seismic inversion methods 

For seismic data inversion Narrow-band and a 

Bayesian method were used, both discussed below. 
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1) Narrow-band inversion 

Considering a wavelet, an estimated earth 

reflectivity and an initial value for most superficial 

layer a recursive equation can be used to calculate an 

impedance model iteratively using the index i: 

𝑟𝑖 =  
𝑍𝑖+1 − 𝑍𝑖

𝑍𝑖+1 + 𝑍𝑖
 

   (4) 

From algebraic manipulation of (4) we achieve: 

𝑍𝑖+1 =  𝑍𝑖
1 + 𝑟𝑖

1 − 𝑟𝑖
 

   (5) 

(5)represents a recursive process for obtaining the 

acoustic impedances of subsurface and is the base 

for several seismic inversion methods. 

The big difference between the Narrow-

band method other recursive involves the choice 

ofdeconvolution technique used for reflectivity 

estimation. In this specific case, techniques 

following the theory of optimum Wiener filters[24], 

are adopted. The deconvolution filers are 

constructed in an adaptive way, being however 

highly sensitive to noise. Seismic deconvolution 

comes from image processing theory, citing 

Yilmaz[21], "it is responsible for estimating the 

reflectivity by compressing the wavelet and 

attenuating reverberations and short period 

multiples, hence providing greater temporal 

resolution".Optimum Wiener deconvolution in the 

broad sense of Narrow-band inversion has a very 

low computational cost. However for seismic 

inversion purposes it represents the worst alternative 

due to the limited bandwidth property, characteristic 

of the estimated reflectivity. Low frequency loss 

represents absence of information regarding the 

main trend of the geological model of subsurface, 

while the loss of high frequency components leads to 

reduction in temporal resolution. This problem is 

extensively discussed in literature, e.g.[1], and as it 

is not the focus of this paper, a workaround would 

be to use a wavelet with small central frequency to 

ensure the low frequency part of the spectrum is 

present. 

 

2) A Bayesian approach (CSSI) 

Seeking to overcome the limited bandwidth 

problem discussed above, the sparse-spike methods 

emerged. Considering the deconvolution algorithms 

used, they will try to estimate a reflectivity 

comprised of sparse deltas, ensuring an increase in 

the estimated frequency band [10]. Sparsity will be 

provided by constraining the estimated model 

through minimization of a some sparse norm (e.g. 

L1, Huber,Cauchy). Considering the inversion 

methods, a bigger band will lead to less uncertainty 

in the results. Additionally toincreasing the 

bandwidth through the sparsity assumption,a set of 

constraints are usually input asa priori information, 

commonly low frequency information (a smooth 

model) calculated from well logs. Nevertheless 

improvement is associated with higher complexity 

algorithms and consequently  a rise in computational 

cost, which in this case become irrelevant compared 

to the robustness of results. In a Bayesian framework 

both sparsity regularization norms and constraint 

dependence can be introduced in the objective 

function describing the problem. As in [10] a blocky 

impedance model can be found from minimization 

of the functional: 

𝐽 =  𝜅𝐽𝑐
1

2
 

1

𝜎
 𝑊𝑟 − 𝑠  

2

+
1

2
 𝑁−1 𝐶𝑟 − Β  2 

(6) 

 

In (6)𝜅 is a hyperparameter that ponders 

sparsity in reflectivity, 𝐽𝑐  is the sparsity norm, 𝜎 is 

an estimate of the noise level, 𝑊is the convolution 

matrix associated with the wavelet, 𝑟 is the 

reflectivity, 𝑠 the observed seismic data, 𝐶 is an 

integration operator and Β is the natural logarithm of 

the normalized impedance or double the cumulative 

sum of reflectivity. The term 𝑁 is the diagonal 

matrix 𝑁𝑘 ,𝑘 = 𝜗𝑘  where 𝜗𝑘  can be seen as a vector 

of the uncertainties associated with a priori 

information, thus 𝑁 imposes some restrictions on the 

estimated model. 

Following the options for the sparsity norm in [10] 

the Cauchy norm was chosen, 

𝐽𝐶𝑎𝑢𝑐 ℎ 𝑦 =
1

2
 ln 1 +

𝑟𝑘
2

𝜗𝑘
2  

𝑘

 
 (7) 

 

Finally, it is noteworthy to comment that the choice 

of parameters 𝜅 and 𝜎 as well as the initial model 

must be carefully made to ensure convergence to the 

solution or to the global minimum of the objective 

function. 

 

III. NUMERICAL EXPERIMENTS 
The methodology used for sensitivity 

testing, in general, involved modeling of a synthetic 

seismogram from an input model, wavelet 

estimationand finally the inversion.The acoustic 

model assumed here is the Marmousi, shown in 

Fig.1. It was created in 1988 by the French 

Petroleum Institute, based on a geological profile in 

the Kwanza basin in North Quenguela. It represents 

a complex geological environment and is one of the 

most widespread models for seismic analysis, 

modelling and inversion, hence its choice.For 

modelling of the reference (observed) seismogram 

the convolution of reflectivity with a Ricker wavelet 

with center frequency of 10 Hz was used. The choice 

of this value is a way to overcome the problem of 

absence of low frequencies as previously discussed. 

The results can be divided into two stages; the first 

was analysis of the wavelet estimation methods the 

second of inversion techniques. Results of the 

wavelet estimation considered synthetic models 

generated with minimum and zero phase wavelets 
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(Fig.2), both tests admittingalso the existence of 

noise. The inversion analysis used a seismogram 

modeled with a zero phase wavelets as reference and 

also accounted for noise influence. The noise used in 

both analyses is white Gaussianwith standard 

deviation 𝜎 = 10−3. 

 

D. Wavelet estimation analysis 

As stated above, the tests to estimate the 

wavelet were performed assuming data modeled 

with minimum and zero phase Ricker wavelets. 

Fig.2show modeled traces without noise. For the 

Hilbert transform method, the results are shown in 

figures Fig.3andFig.4. As expected, better results are 

reached for the minimum phase situation. For the 

zero phase case even after APC the estimated 

wavelet does not have a shape similar to the true. It 

was discussed in the subsection B that this method 

depends on the assumption that the wavelet is 

minimum phase, which explains the results. 

Moreover noise addition to the trace worsens the 

algorithm's performance, creating artifacts on the 

shape of the estimated wavelet and for the zero 

phase case satisfactory results cannot be achieved 

showing the method is highly sensitive to noise. 

 

 
Fig.1 -Marmousi model and trace 276 in two-way-travel-time. 

 
Fig.2 - Ricker wavelets with zero and minimum phase, their respective amplitude spectrum and modeled traces 
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Fig.3 -Minimum phase ricker wavelet estimation with Hilbert transform method. (a) without and (b) with noise 

 

 
Fig.4 -Zero phase ricker wavelet estimation with Hilbert transform methods. (a) without and (b) with noise. 

 

Analyzing the results of estimation with the 

Smoothing spectra method, shown in Fig.5 and 

Fig.6, it can be noted that the presence of noise 

doesn't have as much influence on the results as for 

the previous method. Also, as there is not a 

dependency of results with assumptions about the 

phase, the APC correction proved more effective for 

this technique. However, it can be seen that the best 

estimates for the shape and phase spectrum 

correspond to the zero phase case.It was observed 

that better performance of the method is achieved 

when guessing a linear phase spectrum for the 

estimated wavelet before APC. The best results for 

the zero phase case were obtained when considering 

small values inside the interval [1,2] for the phase 

spectrum; for the minimum phase case, larger values 

achieved more success. Adopting a moving average 

filter for spectral smoothing is largely responsible 

for attenuation of noise effects as the shape artifacts 

as seen for the previous method. 

 

 
Fig.5 -Minimum phase ricker wavelet estimation using Smooth spectra method. (a) without and (b) with noise. 

 

 
Fig.6 -Zero phase ricker wavelet estimation using Smooth spectra method. (a) without and (b) with noise. 
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In general the second method can achieve 

an estimate with less uncertainty for the wavelet 

when analyzed with respect to noise and phase. An 

option for improvement of the results of both 

techniques would be to use a more suitable 

algorithm for correction and estimation of the phase 

spectrum considering the estimated phase spectra are 

far from the real (Fig.7,Fig.8,Fig.9 andFig.10) while 

good estimates were obtained for the amplitude 

spectrum, as shown by Fig.11, Fig.12, Fig.13 and 

Fig.14. 

 

 
Fig.7 -Phase spectra of minimum phase ricker wavelet estimated with Hilbert transform method. (a) without and 

(b) with noise. 

 

 
Fig.8 -Phase spectra of zero phase ricker wavelet estimated with Hilbert transform method. (a) without and (b) 

with noise. 

 

 
Fig.9 -Phase spectra of minimum phase ricker wavelet estimated with Smooth spectra method. (a) without and 

(b) with noise. 

 

 
Fig.10 -Phase spectra of zero phase ricker wavelet estimated with Smooth spectra method. (a) without and (b) 

with noise. 
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Fig.11 -Amplitude spectra of minimum phase ricker wavelet estimated with Hilbert transform method. (a) 

without and (b) with noise. 

 

 
Fig.12 -Amplitude spectra of zero phase ricker wavelet estimated with Hilbert transform method. (a) without 

and (b) with noise. 

 

 
Fig.13 -Amplitude spectra of minimum phase ricker wavelet estimated with Smooth spectra method. (a) without 

and (b) with noise. 

 

 
Fig.14 -Amplitude spectra of zero phase ricker wavelet estimated with Smooth spectra method. (a) without and 

(b) with noise. 
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E. Seismic inversion analysis 

As previously stated synthetics used as the 

observed (reference) data for the inversion analysis 

were modeled with a zero phase wavelet. For 

simplicity, density was assumed to be constant so 

that the estimates, even when referred to as 

impedance, are the velocities of P-wave propagation. 

Results are presented and discussed below. First the 

performance of the methods for situations when 

noise is present is analyzed, then their sensitivity to 

the estimated wavelets is observed. Considering the 

Narrow-band method for the case where the real 

wavelet is used, Fig.15 and 16show that problem is 

solved even in the presence of noise, although the 

results are not as good as in the absence of it. It can 

be concluded that if the wavelet is well estimated, 

even in the presence of noise good results are 

obtained. In  

Fig.16 this idea is well represented, 

showing the similarity between the estimated and 

synthetic models. It is necessary to discuss here the 

parameter µ which represents knowledge about the 

noise. A good estimate will lead to results with less 

uncertainty. One can think of it as a regularization 

parameter to the inversion since the results are 

highly influenced by its choice. This constant will 

also act on situations with estimated wavelets, even 

in the absence of noise, as will be seen ahead, once 

these wavelets carry an amount of uncertainty 

associated with the estimation process which will be 

interpreted as noise by the inversion algorithm. It 

was observed that for the tests with noise addition 

𝜎 = 10−3, a value that achieve good results is 

𝜇 = 0.1. 

 
Fig.15 -Narrow-band inversion with true wavelet and without noise addition. 

 
Fig.16 -Narrow-band inversion with true wavelet and with noise (𝜎 = 10−3) addition for trace 276. 
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The use of an estimated wavelet, contrary 

to the above results, will not produce such reliable 

results as previously discussed. Figs. 17, 18, 19 and 

20 show the results to the sensitivity of the Narrow-

band inversion to the estimated wavelets. The 

striking effect in all cases is the discrepancy between 

amplitudes, although interfaces have been well 

delimitated. This effect on the other hand is related 

to the previously mentioned problem of lack of low 

frequencies, in fact, during the tests it was observed 

that lowering the central frequency of the wavelet 

to5Hz produces better results. It must be noted that 

the method has not failed; it succeeded in identifying 

the most significant subsurface 

interfaces.Nevertheless since this method does not 

use an initial model this behavior is something one 

should expect in absence of low frequencies, 

therefore a solution would be to add the low 

frequency impedance model to the final estimate 

from Narrow-band inversion. For results with noise 

and an estimated wavelet, the noise does not show 

significant influence when a good estimate for µ was 

used. This confirms the earlier statement that the 

method can solve, to some extent, effects related to 

the presence of noise. It could also be noticed that, 

the results using a wavelet estimated by the Hilbert 

method are more sensitive to noise, requiring larger 

values ofµ in comparison with the Smooth spectra 

ones.. 

Comparison of the results using different estimation 

techniques again shows that the results of Smooth 

are superior ( 

Fig.17 and  

Fig.19). As a final statement regarding Narrow-band 

inversion results, it must be pointed out the need to 

estimate a value for µ even in the absence of noise. 

This relates to numerical noise introduced by the use 

of the Discrete Fourier Transform algorithm 

(calculation of the deconvolution step is performed 

in the frequency domain). Looking now at the results 

of the Bayesian method, Fig.21, Fig.22 and 

Fig.22Fig.23 show the inversion results using the 

true wavelet. One can see that the method can obtain 

good estimates for impedance even if noise is 

present. In general, the algorithm converged well to 

all methods.The first discussion regarding the 

Bayesian inversion must be about the parameters 

chosen for the purpose of ensuring better results. In 

(6) and (7) all parameters involved are shown, 

however the ones actually used as input to the 

algorithm are: an estimate of the standard noise 

deviation (𝜎) and the uncertainty vector associated 

with the a priori information (𝜗). Nonetheless, for 

each test performed a new set of parameters should 

be selected once each setting possesses different 

levels of uncertainty. Complementing the discussion 

in the paragraph above, it is necessary to talk about 

the use of an initial impedance model. The one used 

here was generated by smoothing the true model. It 

is responsible to introduce a priori information and 

consequently increase bandwidth, therefore ensuring 

better convergence. As previously discussed, the low 

frequency components carry relevant information 

about trends of subsurface geology and thereby, use 

of an initial model allowed incorporation of these 

components and hence of the actual impedance 

trend, constraining the results as observed in the 

tests. 

 

 
Fig.17 - Narrow-band inversion with wavelet estimated using Hilbert transform method for trace 276. 
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Fig.18 -Narrow-band inversion with wavelet estimated using Hilbert transform method and noise (𝝈 = 𝟏𝟎−𝟑) 

addition for trace 276 

 
Fig.19 -Narrow-band inversion with wavelet estimated using Smooth spectra method for trace 276. 

 

 
Fig.20 -Narrow-band inversion with wavelet estimated using Smooth spectra method and noise (𝜎 = 10−3) 

addition for trace 276 

 

By observing the influence of noise, Fig.23, 

Fig.24 and Fig.25 prove the method as more 

efficient than the previous to deal with these 

situations, even when using estimated wavelets. A 

characteristic effect of noise are the artifacts with 

oscillatory behavior in the calculated impedance, 

easily noticeable in the last two above-mentioned 

figures what however, does not prevent the 

identification of the main interfaces. Finally it is 

reiterated that the good performance of the method is 

highly dependent on the above mentioned 

parameters so that, good results can only be 

achieved through a good estimate of these.Regarding 

the performance tests with estimated wavelets, again 

this method outperforms  the Narrow Band, 

achieving good results for the two estimation 

techniques. In tests with the noise, however, the 

presence of the artifacts discussed is significant, 

especially when using wavelets estimated by Hilbert 

transform method (Fig.24). By observing the results, 

once again the Smooth appeared as the best 

alternative, although in the tests discrepancies were 

not as evident, showing that the Bayesian can solve 

for uncertainties associated with the estimation of 

the wavelet.  Fig.26 and Fig.27 illustrate the 

differences for results with both estimated wavelets. 

As a final discussion about this method, the 

artifacts in Fig. Fig.21 will be treated. They emerge 

as a consequence of numerical instability during the 

Conjugate Gradient optimization. As the inversion is 

performed trace by trace, situations where the 

method cannot converge well or when errors 

associated with numerical approximation appear 

might happen, justifying the artifacts in a few traces. 

Nonetheless, the Conjugate Gradient method 

minimizes the misfit with a step size per iteration, 

the search for this step size is referred as line search 

and was implemented here in a somehow empirical 

way, where from an initial value the next was found 

through fitting a polynomial between the previous 

and values closer to it. Therefore the selected step 

size could go over the global minimum hence 

increasing the error and leading to the discussed 

discontinuities.Comparison of the above results 

show that Bayesian inversion has guaranteed less 

estimation errors, proving superior to Narrow-band 

for all tests. However, it is necessary to mention that 

its computational cost is higher, in some cases 

requiring more than 100 iterations for convergence 

to an acceptable result. In any case, its sensitivity to 

the uncertainties introduced by noise and estimated 

wavelet is smaller, what can justify its choice over 

the Narrow-band. 

 

IV. CONCLUSION 

Arising from the need to obtain estimates of 

the parameters associated with subsurface geology 

mainly with the purpose of exploration, geophysical 

methods have increasingly gained space once it is an 

indirect way and therefore more economical. In the 

case of the seismic method, probably the most 

popular, information on acoustic properties can be 

obtained using seismic inversion algorithms, among 

which two were discussed here, Narrow band and 

Bayesian.The proposed methodology aimed to test 

the sensitivity of the inversion methods considering 
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estimated wavelets and noise. Comparison of the 

wavelet estimation methods showed that Smooth 

produces better results. However, the amplitude 

spectrum of the estimated wavelets showed that both 

can solve the problem. Phase spectrum analysis 

indicates otherwise, so that even after APC phase 

correction the spectrum was not well approximated. 

Techniques that are able to produce better estimates 

to the phase spectrum would obtain in this way, 

superior results.For inversion, the tests indicated 

Bayesian as the most efficient once it converged to 

the real model in all tests, even in the most complex 

situation with wavelet estimated and noise, though 

artifacts appeared in the inverted data. Anyway this 

method produces good estimates of the impedance 

model, delimiting all the interfaces and solving the 

uncertainties related with both the noise and an 

estimated wavelet. Summarizing, through the tests 

carried out, the inversions methods performed well 

under a low noise level situation (which can be 

accomplished through robust pre-conditioning 

techniques) and showed uncertainty in the wavelet 

estimation can affect drastically inversion results. 

Moreover, even though no well information was 

input to the experiments, statistical wavelets 

provided good results. Finally It can also be inferred 

that by using a consistent low frequency model these 

wavelets are valid though a comparison between 

them and deterministic wavelets in the seismic 

inversion context should be performed to confirm 

this.  
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Fig.21 -Marmousi estimated with Bayesian inversion for full seismogram and 1000 iterations per trace. 
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Fig.22 -Marmousi estimated with Bayesian inversion. Trace 276. 

 

 
Fig.23 - Marmousi estimated with Bayesian inversion and noise 𝜎 = 10−3. 

 

 
Fig.24 - Marmousi estimated with Bayesian inversion using Hilbert transform method for wavelet estimation 

and noise (𝜎 = 10−3). 
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Fig.25 - Marmousi estimated with Bayesian inversion using Smooth spectra method for wavelet estimation and 

noise (𝜎 = 10−3). 

 
Fig.26 - Marmousi estimated with Bayesian inversion using Hilbert transform method for wavelet estimation 

without noise. 

 

 
Fig.27 -Marmousi estimated with Bayesian inversion using Smooth spectra method for wavelet estimation and 

without noise. 


