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ABSTRACT 
The Walsh and Haar spectral transforms play a crucial part in the analysis, design, and testing of digital devices. 

They are most suitable for analysis and synthesis of switching or Boolean functions (BFs). It is well known that, 

the connection between the two spectral domains is given in terms of the Walsh-Paley transform. This paper 

derives an alternative expression of the Walsh-Paley transform in terms of the Haar transform. The work 

demonstrates the possibility of obtaining both the Haar spectrum and the Walsh-Paley spectrum using only the 

Haar transform domain. The paper introduces a new Haar-based transform algorithm (Haar-Paley-Recursive 

Transform, HPRT) in the form of a recursive function along with its fast transform version. The new algorithm 

is then explored in its interpretation of the Walsh-Paley transform and its connection to the Autocorrelation 

function (ACF) of a BF. The connection is given analogously in terms of the Haar-Paley power spectrum via the 

Wiener-Khintchine theorem. The paper then presents the simulation results on the execution times of both 

derived algorithms in comparison to the existing Walsh benchmark. The work shows the advantages of using the 

Haar transform domain in computing the Walsh-Paley spectrum and in effect the ACF. 

Keywords – Autocorrelation, Haar/Walsh-Paley, Power Spectrum, Recursive Transform, Spectral Transform.  

 

I. INTRODUCTION 
The Walsh and Haar spectral transforms are 

significant in their use for various engineering 

applications [1-6]. They are considered suitable for 

representation of switching functions and have been 

applied not only in logic synthesis but as well in 

their related analysis including the design and testing 

of digital devices. Each one has its own advantages 

over the other when it comes to different area of 

applications [7]. The Walsh transform is global in 

nature while its Haar counterpart is characterized 

locally [1-7]. Their connection has been well studied 

and presented within existing research works 

including their respective hybrid transforms and 

underlying benefits [7-12]. The Walsh-Paley 

transform, in particular, is of more interest to this 

work as it is directly linked with the Haar transform. 

The link between the two is through their spectral 

zones and the transformation between the two 

domains can be induced via the Walsh-Paley 

transform [7-12]. In other words, the transformation 

from one spectral domain to another can simply be 

done through the Walsh-Paley transformation. On 

the other hand, the connection between the 

Autocorrelation function (ACF) of a BF and the 

Walsh transform domain is given by the well-known 

Wiener-Khintchine theorem [1,2,7,13]. The theorem 

states that the Walsh transform of the power 

spectrum gives the ACF of the respective BF. This 

connection coupled with the fast Walsh-Hadamard 

transform (FWHT) makes it easier and affordable to 

compute the ACF from the perspective of the 

computational complexity [7,13]. In this paper we 

focus on the transformation between the Walsh-

Paley and Haar transform spectral domains. In this 

case, we introduce a new algorithm in form of a 

recursive function. This algorithm utilizes the Haar 

transform in its processing and answers the 

following posed question, “what happens when the 

Haar transform is applied to a given vector and then 

repeatedly being applied to the zones within the 

transformed vector and their sub-zones 

recursively?” We refer to this transformation process 

as the Haar-Recursive Transform (HRT). 

In the process of answering the posed 

question, we deduce the consequence of the HRT 

and derive a new algorithm that we refer to as the 

Haar-Paley-Recursive Transform (HPRT). This 

algorithm is given in terms of the Haar recursive 

function and/or the HRT.  We also present the HRT 

and HPRT from the matrix point of views and based 

on the related matrix structures, we then deduce the 

fast transform version of the HPRT algorithm (called 

here the Fast-Haar-Paley-Recursive Transform - 

FHPRT). It is also shown that the result of the HPRT 

is nothing other than the Walsh-Paley spectrum. The 

consequence of this interpretational point of view is 

the connection between the HPRT and the 

Autocorrelation function (ACF) of a BF. In this 

sense, we deduce the connection between the HPRT 

and the ACF by exploiting the well known Wiener-

Khintchine theorem.  In the process, we derive the 

expression of the ACF in terms of the Haar-Paley 

power spectrum. We then proceed to compare the 
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average execution times of the two derived 

algorithms (HPRT and FHPRT) with the existing 

Walsh benchmark (FWHT) and discuss the 

advantages of the new transform algorithm. The 

paper is organized as follows. Section 2 presents an 

overview of Boolean functions including the spectral 

transform methods and some of the known results to 

be employed in the later sections. In section 3, the 

HPRT is presented where the section is divided into 

three sub-sections each of which representing the 

HRT along with the related matrix representations, 

the HPRT, and the FHPRT respectively. The section 

also reviews the complexity of the FHPRT and 

compares it to that of the fast Walsh-Hadamard 

Transform (FWHT). Additionally, the HPRT 

connection to the ACF is presented in the same 

section as well. The derived algorithms have been 

simulated in terms of their average execution times 

and in comparison to the existing Walsh-Hadamard 

benchmark. The results of the simulation 

experiments are then presented in section 4 and 

including the discussion on the advantages and 

benefits of the HPRT and FHPRT. Finally, in section 

5, we present the conclusion of the paper and 

discussion on future work.  

 

II. PRELIMINARIES 
1.1 Boolean Functions  

An n-variable Boolean function 𝑓, is a mapping of n 

binary inputs to a single binary output. It can 

formally be defined as [1,2,3]: 𝑓: 𝔽2
𝑛 → 𝔽2 Maps 

 𝑥1, … , 𝑥𝑛 ∈ 𝔽2
𝑛  𝑓(𝑥) ∈ 𝔽2 

The input is an n-dimensional binary vector 𝑥 =
 𝑥1, 𝑥2 , … , 𝑥𝑛 ∈ 𝔽2

𝑛  (𝑥𝑖 ∈ 𝔽2), while the output of 

the function is given by 𝑓 𝑥 ∈ 𝔽2. The set of all 

Boolean functions is denoted by  𝐵𝑛 . Any 𝑓 ∈ 𝐵𝑛  

has a unique representation in each of the following 

forms [2]: 

The binary truth table of f – Ordered tuple given 

by  𝑇𝑓 = (𝑓 𝑥 0  , 𝑓 𝑥 1  , … , 𝑓 𝑥 2
𝑛−1 )  which 

lists the output of the function for all 2𝑛  input 

combinations, where 𝑥 0 =  0,… ,0  and 𝑥 2
𝑛−1 =

 1,… ,1  (𝑥 𝑘  is the binary vector representation of 

the integer 𝑘, for 0 ≤ 𝑘 ≤ 2𝑛 − 1 with the 

relationship 𝑘 =  2𝑛−𝑖𝑥𝑖
𝑛
𝑖=1 ).  

The polarity truth table of f – This is the real 

valued representation of the function referred to as 

the sign function 𝑓  (𝑓 ∈ {−1,1}), which is defined 

as 𝑓  𝑥 = (−1)𝑓(𝑥) ≡ 1 − 2𝑓 𝑥 , ∀𝑥 ∈ 𝔽2
𝑛 . Its truth 

table is called the sequence of 𝑓. This representation 

is considered more advantageous in some of 

engineering applications. 

The Algebraic Normal Form (ANF) – The 

polynomial representation expressed uniquely as a 

sum (XOR) of products (AND): 𝑓 𝑥 = 𝑎0 ⊕
𝑎1𝑥1 ⊕⋯⊕𝑎12𝑥1𝑥2 ⊕⋯⊕𝑎12⋯𝑛𝑥1𝑥2 ⋯𝑥𝑛  

where  𝑎𝑖 , 𝑥𝑖 ∈ 𝔽2. 

 

1.2 Spectral Transforms 
In this section we look at the Haar and 

Walsh spectral transforms of Boolean functions. The 

focus of this work is on the Paley ordering of the 

Walsh transform. That is, all the considerations will 

be done with regards to the Walsh-Paley transform 

and its connection to the Haar transform. We also 

present some of the existing results that will be 

employed in the subsequent sections of the paper. 

Throughout this paper the following notations and 

abbreviations will be assumed: WH and WP are the 

Walsh-Hadamard and Walsh-Paley orderings 

respectively; 𝑦 𝑗  is the 𝑗-th row (𝑌 function) in the 

respective transform matrix; 𝑟 0𝑠  is a row-vector 

whose elements are all ones (1  ) with size 1 × 2𝑠;  

𝑟 1𝑠  is a balanced row-vector whose first half 

elements are all ones and the second half elements 

are all negative-ones with size 1 × 2𝑠 ; 𝐼𝑙  as the  

2𝑙 × 2𝑙  identity matrix; and 𝑌𝑗 ∙ 𝑓 is the inner dot 

product between the elements of  𝑌 and  𝑓. 

Walsh-Hadamard Transform (WHT) of a function 

f̂  on 𝔽2
𝑛  is denoted by 𝐹 𝑊𝐻  and given by [1, 2]: 

 𝐹 𝑊𝐻(𝑢) =   −1 𝑓 𝑥 ⊕𝑥∙𝑢
𝑥,𝑢∈𝔽2

𝑛 ≡ 𝑊𝐻        
𝑢 𝑥 ∙ 𝑓  𝑥                         

(1) 

Where 𝑊𝐻        
𝑢 𝑥 =  −1 𝑢∙𝑥  defines the WH 

function, and the transform can be given 

equivalently in matrix form as [12]: 

𝐹 𝑊 =  𝑊𝑛  ∙  𝑓  
𝑡
                                             (2) 

Where  𝑊𝑛  =  𝑊    𝑗   is a 2𝑛 × 2𝑛  Walsh transform 

matrix whose rows (0 ≤ 𝑗 < 2𝑛 ) constitutes the 

Walsh functions (𝑤   𝑗 ), and  𝑓  
𝑡
 is a column vector 

of 𝑓 . 
Generator Matrix: the Walsh transform matrices 

can be generated recursively depending on which 

ordering is being considered. In the context of this 

paper, we will consider the generator for the Walsh 

matrices in Paley ordering as it will be employed 

later in the derivations. The following is the 

recursive generation of the Walsh matrices in Paley 

ordering [9,10,11]: 

  𝑊𝑃𝑛  =    
1    1
1 −1

 ⊗ 𝑟𝑝     𝑖𝑛−1
 , ∀ 𝑖 ∈  0, 2𝑛−1    (3) 

Where  𝑊𝑃0 =  1 , ⊗ is the Kronecker product 

and  𝑟𝑝     𝑖𝑛−1
′𝑠  are the rows of the previous lower 

order matrix   𝑊𝑃𝑛−1  . Note that each row in the 

 𝑛 − 1 𝑡𝑕 -order produces two rows in the  𝑛 𝑡𝑕 -

order, i.e. the 𝑖-row in  𝑛 − 1 𝑡𝑕 -order produces 

rows 2𝑖 and 2𝑖 + 1 in the  𝑛 𝑡𝑕 -order. 

Consequently, the rows in the interval  2𝑙 , 2𝑙+1  (in 

 𝑛 − 1 𝑡𝑕 -order) will produce the rows in the 

interval  2𝑙+1, 2𝑙+2  (in the  𝑛 𝑡𝑕 -order). 

Autocorrelation Function (ACF): denoted as 

(𝑟 𝑓(𝑎)), the ACF of a BF f can be defined simply 
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based on equation (4) [1,2,13]. The expression 

𝑓 (𝑥) ∙ 𝑓 (𝑥 ⊕ 𝑎) is referred to as the directional 

derivative of the respective BF.   

𝑟 𝑓 𝑎 =  𝑓 (𝑥) ∙ 𝑓 (𝑥 ⊕ 𝑎)𝑥∈𝔽2
𝑛           (4) 

Haar Functions: The set of Haar functions 𝐻𝑙
𝑞
 

(resp.  𝐻𝑗 ) forms a complete set of orthogonal 

rectangular basis functions [7,9]. They are defined 

on the interval [0, 2𝑛) as un-normalized taking the 

values of 0 and ±1 as follows: 

 𝐻0
(0)

= 𝐻   0 𝑥 = 1, ∀𝑥 ∈  0, 2𝑛   

𝐻   𝑗  𝑥 =  

1, 𝑢0 ∙ 2𝑛−𝑙−1 ≤ 𝑥 < 𝑢1 ∙ 2𝑛−𝑙−1

−1, 𝑢1 ∙ 2𝑛−𝑙−1 ≤ 𝑥 < 𝑢2 ∙ 2𝑛−𝑙−1

0, 𝑒𝑙𝑠𝑒 𝑖𝑛 [0, 2𝑛)

      (5)         

Where 𝑢𝑖 = 2𝑞 + 𝑖; l and q are degree and order of 

the Haar functions respectively. With  𝑗 = 2𝑙 + 𝑞 

and for each value of  𝑙 = 0, 1, … , 𝑛 − 1, we 

have  𝑞 = 0, 1, … , 2𝑙 − 1. 

Haar Transform: The Haar transform (𝐹 𝐻) of 𝑓  is 

defined by equation (6) [7,9,14] and its equivalent 

matrix representation is given by equation (7) 

respectively [7,8,9,14]. 

𝐹 𝐻 𝑗  =  𝐻𝑙
𝑞 𝑥 ∙ 𝑓  𝑥 𝑥=2𝑛−1

𝑥=0 ≡  𝐻   𝑗 ∙ 𝑓 𝑥 𝑥    (6)   

𝐹 𝐻 =  𝐻𝑛  ∙  𝑓  
𝑡
                                                     (7) 

Where  𝐻𝑛  = [𝐻   𝑗 ] is a 2𝑛 × 2𝑛  Haar transform 

matrix whose rows consist of Haar functions (𝐻𝑗 ′𝑠), 

and with the following generator: 

  𝐻𝑛  ≡  
𝑟 0𝑛

 𝐼𝑙 ⊗ 𝑟 1𝑛−𝑙  
     (For 𝑙 ∈  0, 𝑛 )                (8)  

The calculation of the Haar Spectrum in terms of 

fast transforms is based on a simple algorithm that 

involves s-recursive construction of the 

sequence  𝑎𝑠 𝑥   𝑠 = 1,2,… , 𝑛; 𝑥 = 0,1, … , 2𝑛−𝑠+1 . 
This algorithm is a result of the following theorem 

which was first introduced by Karpovsky [7]. 

Theorem 1: let  𝑓  be a step function representing a 

system of Boolean function of  𝑛  arguments 

and   𝐹𝐻 𝑥 , its Haar spectrum.Where: 𝑙 ∈
 0, 𝑛 ; 𝑞 ∈  0, 2𝑙 ;  𝑠 ∈  1, 𝑛  . Set 

𝑎0 𝑥 = 𝑓 𝑥 ,  𝑥 = 0,1, … , 2𝑛 − 1  
𝑎𝑠 𝑥 = 𝑎𝑠−1 2𝑥 + 𝑎𝑠−1 2𝑥 + 1 , 𝑥 ∈  0, 2𝑛−𝑠   
𝑎𝑠 2

𝑛−𝑠 + 𝑥 = 𝑎𝑠−1 2𝑥 − 𝑎𝑠−1 2𝑥 + 1  

Then,  𝐹𝐻𝑛−𝑠
 𝑞 = 2−𝑠𝑎𝑠 2

𝑛−𝑠 + 𝑞                        (9) 

Lemma 1: Relationship between the Haar functions 

Hl
q

(x) and the Walsh-Paley (WP) functions[7] is 

based on equation (10), ∀𝑙 ∈  0, 𝑛 ; 𝑞 = 0,1, … , 2𝑙 −
1 as: 

 𝐻𝑙
𝑞 𝑥 =  

𝑊𝑃2𝑙
 𝑥 , 𝑥 ∈ 𝑆𝑞

𝑙

      0,     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                           (10) 

Let  𝑆𝑊𝑃2𝑛
𝑙   be the Walsh-Paley sub-matrix and 

 𝑆𝐻2𝑛
𝑙   be the Haar sub-matrix, then the two 

respective sub-matrices are of dimension  2𝑙 × 2𝑛 , 

and can be defined based on the spectral zones 

(degrees 𝑙 ∈  0, 𝑛 ) as follows [10, 12]; 

 𝑆𝑊𝑃2𝑛
𝑙  =

 
 
 
 
 
 𝑊𝑃        

2𝑙

𝑊𝑃        
2𝑙+1

⋮
⋮

𝑊𝑃        
2𝑙+1−1 

 
 
 
 
 

;  𝑆𝐻2𝑛
𝑙  =

 
 
 
 
 
 𝐻   2𝑙

𝐻   2𝑙+1

⋮
⋮

𝐻   2𝑙+1−1 
 
 
 
 
 

     (11) 

The sub-matrices are simply obtained by dividing 

the respective transform matrices based on the sub-

intervals  2𝑙 , 2𝑙+1  defined by the degrees  𝑙 and 

including the global functions. Which are equivalent 

to the structure of  𝐼2 ⊗ 𝑟 11
  as given in equation 

(8). 

Lemma 2: The Relationship between the Haar and 

the Walsh-Paley (WP) sub-matrices is defined by 

[10, 12]: 

 𝑆𝑊𝑃2𝑛
𝑙  =  𝑊𝑃𝑙 ∙  𝑆𝐻2𝑛

𝑙  , 𝑙 = 0,… , 𝑛 − 1        (12) 

Where  𝑆𝑊𝑃2𝑛
𝑙   is a 2𝑙 × 2𝑛  Walsh-Paley sub-

matrix,  𝑆𝐻2𝑛
𝑙   is the Haar sub-matrix (2𝑙 × 2𝑛 ) and 

 𝑊𝑃𝑙  is the Walsh-Paley transform matrix of order 

l. 

Lemma 3: Relationship between the Haar (F H (x)) 

and the Walsh-Paley (F WP  x ) spectral coefficients 

∀𝑙 ∈  1, 𝑛  [7, 10]: 

𝐹 𝑊𝑃 𝑥 =  
𝐹 𝐻(𝑥), 𝑥 = 0, 1

 𝑊𝑃𝑙 ∙  𝐹 𝐻 𝑥  
𝑡
, 𝑥 ∈  2𝑙 , 2𝑙+1 

      (13)       

Theorem 2: A relation between the Walsh transform 

and the Autocorrelation function is given by (based 

on Wiener-Khintchine theorem) [1, 2]: 

𝑅 𝑊 𝑥 = 𝐹 𝑊
2
 𝑥    ∀𝑥 ∈ 𝔽2

𝑛                                  (14) 

 

III. THE HAAR-PALEY RECURSIVE 

TRANSFORM (HPRT) 
In this section, we present the Haar-Paley 

Recursive Transform (HPRT). The section is divided 

into three parts. The first part examines the Haar-

Recursive transform (HRT) as a recursion algorithm. 

This idea is then extended in the second part to 

introduce the related spectral transform (called here 

HPRT). The third part on the other hand, considers 

the fast transform version of the HPRT from the 

algorithmic point of view and fast signal flow. The 

resulting fast transform in this sense, is referred to as 

the FHPRT.  

 

1.3 Haar-Recursive Transform (HRT)  
In this part, we introduce and define the 

notion of the Haar-Recursive Transform (HRT) 

which will be deployed further in the next sub-

section. We define this notion in terms of a recursive 

function and demonstrate its interpretation with 

relevant examples. 

Definition 3.1: Let 𝑉 be a vector with dyadic length 

(2𝑛  elements) then define dyadic partitioning of  𝑉 

by its partition into sub-vectors of dyadic lengths 

∀𝑙 ∈  0, 𝑛  as  

  𝑉 =  𝑉 0 , 𝑉 1 , … , 𝑉 2𝑛 − 1   
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        =  𝑉 0 , [𝑉𝑙]                                                (15) 

Where  𝑉𝑙 =  𝑉 2𝑙 , 𝑉 2𝑙 + 1 , … , 𝑉 2𝑙+1 − 1    
It should be noted that if 𝑉 from Definition 3.1 

represents the Haar spectrum, then it is obvious that 
 𝑉𝑙  represents nothing other than the Haar spectral 

zones defined by the respective degrees 𝑙. 
Definition 3.2: Let  𝑉  be a vector with dyadic 

partitioning (𝑙𝑒𝑛𝑔𝑡𝑕 = 2𝑛 , 𝑛 ≥ 1), then define the 

Haar-Recursive Transform (HRT) of  𝑉 (𝐻𝑅𝑇𝑉 𝑛 =
𝑊) by the following recursion steps: 

1. Base-Case: 𝑙𝑒𝑛𝑔𝑡𝑕  𝑉 = 2 

        𝑊 = 𝐻𝑅𝑇𝑉 𝑛 = 𝐹𝐻𝑇 𝑉  
2. Recursion-step: 

i. 𝑊 = 𝐻𝑅𝑇𝑉 𝑛 = 𝐹𝐻𝑇 𝑉  
ii. ∀𝑙 ∈  1, 𝑛  ∧   ∀𝑥 ∈  2𝑙 , 2𝑙+1 : 

 𝑊 𝑥 = 𝐻𝑅𝑇𝑊 𝑙 = 𝐹𝐻𝑇 𝑊 𝑥           (16) 

Note: the recursion algorithm can also take a sub-

matrix as its input. An alternative definition of the 

HRT’s recursion-step (Definition 2) can be given in 

matrix representation as follows. 

Definition 3.3: Let a 2𝑛 × 2𝑛  matrix be denoted by 
 𝐻𝑅𝑛   and represents the HRT matrix, then it can 

simply be defined as a product of a recursive matrix 

and the respective Haar transform matrix ( 𝐻𝑛  ). The 

recursive matrix is a diagonal matrix with the lower 

HRT matrices ( 𝐻𝑅𝑖  , 𝑖 ∈  0, 𝑛 ) as the sub-blocks 

down the diagonal. Its definition is given as follows: 

  𝐻𝑅𝑛  =  

 1  

  𝐻𝑅0 
0

0
⋱  
  𝐻𝑅𝑛−1 

 ∙  𝐻𝑛       (17) 

Where  𝐻𝑅0 =  𝐻0 =  1  
Definition 3.4: Let  𝑉  be as defined in the 

Definition 3.2, then an equivalent definition of HRT 

of  𝑉 in terms of the transform matrix  𝐻𝑅𝑛   can be 

given by:  

𝑊 = 𝐻𝑅𝑇𝑉 𝑛 =  𝐻𝑅𝑛 ∙  𝑉 
𝑡                          (18) 

Remark: What the HRT does is as follows: it takes 

a vector and then apply Haar transform to it 

recursively first by dealing with the entire vector. 

Then it divides the resulting transformed vector into 

sub-vectors (with dyadic length) and then for each of 

them, it repeats the same procedure until it gets to a 

sub-vector of length 2 only when it quits (see Fig. 1 

below). The arrows in Figure 1 represents recursive 

process of applying the Haar transform to the 

original vector then followed by the same procedure 

to the zones and their sub-zones. 

The following example (Example 1) demonstrates 

the idea behind Definitions 3.3 and 3.4 with the 

matrix interpretation of the HRT. 

 

 
Fig. 1: Visual Aspect of HRT for n = 3 (𝑙𝑒𝑛𝑔𝑡𝑕  𝑉 = 23) 

 

Example 1: Consider the case of  𝑛 = 1,2,3 then 

based on Definition 3.3 we have the HRT matrices 

as follows ( 𝐻𝑅0 =  1 ):  

 𝑛 = 1 ⇒   𝐻𝑅1 =  
 1 0

0  𝐻𝑅0 
 ∙  𝐻1 =  𝐻1  

 𝑛 = 2 ⇒   𝐻𝑅2 =  

 1  0

  𝐻𝑅0  

0   𝐻𝑅1 
 ∙  𝐻2  

 𝑛 = 3 ∶ 

⇒  𝐻𝑅3 =

 
 
 
 
 1   

  𝐻𝑅0  

   𝐻𝑅1 
0

0  𝐻𝑅2  
 
 
 

∙  𝐻3  

 

The following proposition (Proposition 1) entails the 

consequence of the HRT matrix in its connection to 

the Walsh-Paley transform matrix by summarizing 

the relationship between the two transform matrices. 

Proposition 1: Given an 𝑛-variable domain, then the 

HRT matrix is equal to the Walsh-Paley transform 

matrix. That is, for 𝑛 ≥ 1 
 𝐻𝑅𝑛  =  𝑊𝑃𝑛                                              (19) 

Proof: we prove this proposition using induction on 

the HRT matrix as follows 

Base case: Let  𝑛 = 1, then the HRT matrix is 

  𝐻𝑅1 =  𝐻1 =  
1    1
1 −1

 =  𝑊𝑃1 . Which is true 

for the proposition.  

Induction step: Let  𝑛 ≥ 1 be given and suppose 

that the proposition is true for  𝑛 = 𝑘. This means 

that the proposition holds for  𝑛 ≤ 𝑘, then by 

induction hypothesis and deploying Lemma 1, 2 with 

equation (17) we have 

  𝐻𝑅𝑘+1 =  

 1  

  𝐻𝑅0 
0

0
⋱  
  𝐻𝑅𝑘  

 ∙  𝐻𝑘+1  

Now, with the induction hypothesis followed by the 

use of Lemma 1 and Lemma 2 we then get 
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 =  

 1  

  𝐻𝑅0 
0

0
⋱  
  𝐻𝑅𝑘  

 ∙

 
 
 
 
 
 
 
 𝐻   0
 𝑆𝐻

2𝑘+1
0  

 𝑆𝐻
2𝑘+1
1  

⋮

 𝑆𝐻
2𝑘+1
𝑘−1  

 𝑆𝐻
2𝑘+1
1   

 
 
 
 
 
 
 

 

 =

 
 
 
 
 
 
 
 𝐻   0

 1 ∙  𝑆𝐻
2𝑘+1
0  

 𝑊𝑃1 ∙  𝑆𝐻2𝑘+1
1  

⋮
 𝑊𝑃𝑘−1 ∙  𝑆𝐻2𝑘+1

𝑘−1  

 𝑊𝑃𝑘  ∙  𝑆𝐻2𝑘+1
𝑘   

 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 𝑊𝑃        

0

 𝑆𝑊𝑃
2𝑘+1
0  

 𝑆𝑊𝑃
2𝑘+1
1  

⋮
 𝑆𝑊𝑃

2𝑘+1
𝑘−1  

 𝑆𝑊𝑃
2𝑘+1
𝑘   

 
 
 
 
 
 
 

=  𝑊𝑃𝑘+1  

Thus, the proposition holds for 𝑛 = 𝑘 + 1 and this 

completes the proof of the induction step. Hence by 

using the principle of induction, the proposition 

holds for all 𝑛 ≥ 1.                                                   □ 

Now, the proposition can naturally be extended to 

the relationship between the Haar and Walsh-Paley 

sub-matrices. This is done simply by modifying the 

relationship given in Lemma 2 and use the HRT in 

place of the Walsh-Paley transform matrix. 

Proposition 2:  Consider the Haar sub-

matrix   𝑆𝐻2𝑛
𝑙  , 𝑙 ∈  1, 𝑛 , 𝑞 ∈  0, 2𝑙 , and dyadic 

intervals  2𝑙 , 2𝑙+1 , then the Haar recursive 

transform of this sub-matrix 

(𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐻𝑅𝑇𝑆𝐻 𝑙 ) results into the Walsh-

Paley sub-matrix   𝑆𝑊𝑃2𝑛
𝑙  : 

 𝐻𝑅𝑇𝑆𝐻 𝑙 =  𝑆𝑊𝑃2𝑛
𝑙                                           (20) 

Proof: The proof follows directly from definition of 

the HRT, the use of Lemma 2 and the proposition 1 

as follows: 

⇒ 𝐻𝑅𝑇𝑆𝐻 𝑙 =  𝐻𝑅𝑙 ∙  𝑆𝐻2𝑛
𝑙    (Definition 3.4) 

              =  𝑊𝑃𝑙 ∙  𝑆𝐻2𝑛
𝑙    (Proposition 1) 

              =  𝑆𝑊𝑃2𝑛
𝑙    (Lemma 2)                     □ 

The next example demonstrates the results given by 

proposition 2.  

Example 2: Consider a given Haar matrix of order 

3 ( 𝐻3 ) and its Haar sub-matrices   𝑆𝐻23
1  ,  𝑆𝐻23

2   , 

then the steps (with respect to the degrees  𝑙) 
involved in the execution of the 𝐻𝑅𝑇 are given by: 

𝑙 = 1 ⇒  𝐻𝑅1 ∙  𝑆𝐻23
1  = 

    
1   1
1 −1

 ∙  
1   1
0   0

−1  −1
   0     0

0   0
1   1

   0    0
−1 −1

  

            

=  
1   1
1   1

−1  −1
−1  −1

   1   1
−1 −1

−1 −1
   1     1

  

𝑙 = 2 ⇒  𝐻𝑅2 ∙  𝑆𝐻23
2   

           =  
 
1    1
1    1

   1   1
−1 −1

 

 
1   1
1 −1

 ∙  𝐼1 ⊗ 𝑟 11
 
 ∙  𝐼2 ⊗ 𝑟 11

  

           =  𝑊𝑃2 ∙  𝑆𝐻23
2  =  𝑆𝑊𝑃23

2   

           =  

1 −1    1 −1
1 −1    1 −1
1 −1 −1    1
1 −1 −1    1

   1 −1    1 −1
−1    1 −1    1
   1 −1 −1    1
−1    1    1 −1

  

(End of Example) 

 

1.4 Haar-Paley Recursive Transform (HPRT) 
The HRT presented in the previous section 

gives the connection between the Haar and the 

Walsh-Paley sub-matrices. The consequence is that, 

the Walsh-Paley transform matrix can be given 

alternatively based on the proposition 1. This is true 

since, the first two global coefficients for both the 

Haar and the Walsh-Paley spectra are the same and 

the rest are connected via the spectral zones. The 

zones from the two spectra can be connected in this 

sense through the HRT relationship.Additionally, 

performing the HRT transform on a given vector 

only once, gives the Haar spectrum of the respective 

vector. On the other hand, performing it repeatedly 

on a given vector gives the Walsh-Paley spectrum of 

the same vector. For the case of the transformed 

vector being a Boolean function, then we refer to the 

HRT process in this work as the “HPRT”. In turn, 

the effect of applying the HPRT to a given vector is 

nothing other than the Haar-Paley-Recursive-

Spectrum (HPRS). In essence, the HPRS is simply 

the Walsh-Paley spectrum obtained through the use 

of the Haar transform. A summary of the 

relationship between the Haar and Walsh-Paley 

transforms is given in the following figure (see Fig. 

2 below). 

 

 
Fig. 2: Relationship between the Haar and Walsh-Paley Transforms 

In the figure below (Fig. 3), we give the algorithm 

for the steps involved in the computation of the 

HPRS. The algorithm in this case, depicts the 

recursion steps defined in the HPRT. The input to 
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the algorithm is an arbitrary Boolean function 𝑓, 

which is transformed using the HPRT to get the 

respective HPRS as an output vector. The first two 

steps of the algorithm determine the length of  𝑓 and 

its corresponding number of variables respectively. 

The third step represents the base case for the 

recursive algorithm, while steps 4 and 5 gives the 

respective recursion step defining the HRT process. 

The HPRS is given as the output 

vector  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑣𝑒𝑐𝑡𝑜𝑟  in the final step of the 

algorithm. 

Remark: The HPRT is given here as a recursion 

algorithm in terms of the Haar-recursive function. In 

the next sub-section we will consider it from a fast 

transform perspective with the related computational 

complexity. 

 

1.5 Fast Haar-Paley Recursive Transform 

(FHPRT) 
The Haar transform as given in the preliminary 

section involves a sequence of transforms denoted 

as 𝑎𝑖
′𝑠  𝑖 ∈  0, 𝑛  . It is carried out as follows: 

 

 
Fig. 3: The HPRT Algorithm 

 

The original signal to be transformed is 

taken first as  𝑎0 and then recursively transformed n 

times in a sequential order (n is the number of 

variables). The resulting vector in this case is the 

Haar spectrum given by 𝑎𝑛 . During the sequence of 

transforms, the length of the transformed signal for 

any two successive sequences 𝑎𝑖  and  𝑎𝑖+1 is 

reduced by a factor of 2. That is, the length of 𝑎𝑖  is 

twice as much that of 𝑎𝑖+1. The signal-flow example 

of the Haar transform of a 3-variable Boolean 

function is depicted in Fig. 4(a) below. 

 

 
Fig. 4: Signal Flows for 𝑛 = 3 - (a) The FHT (b) The FHPRT 

 

On the other hand, the Haar transform 

process is applied repeatedly to the zones of the 

Haar spectrum and recursively to their subzones for 

the case of the HPRT algorithm. At any given 

sequence of transform 𝑎𝑖 , the HPRT basically 

process the entire sequence by simply repeating the 

same procedure of the Haar transform for the entire 

sequence and not just a portion of it. This fills up the 

entire current processed sequence and therefore not 

having the processing reduction of a factor of 2. In 

turn, the number of processing for each sequence of 

the transform is the same. The signal flow of the 

Fast Haar-Paley-Recursive Transform (FHPRT) for 

the case of a 3-variable function is depicted in Fig. 

4(b). The HRT over the Haar transform in this case, 

is portrayed by the blue colour highlight in the signal 

flow. That is, the added recursion or the repetitions 

of the Haar transform procedure for the entire 

processed signal. We define the fast Haar-Paley-

Recursive transform as according to the following 

definition. 

Definition 3.4 Let  𝑓(𝑥)  be an n-variable Boolean 

function and 𝐹𝐻𝑃𝑅 (𝑥) its Haar-Paley recursive 

spectrum (HPRS), set   
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𝑎0 𝑥 = 𝑓 𝑥 , 𝑥 ∈  0, 2𝑛   
   For 𝑠 ∈  1, 𝑛 , 𝑘 ∈  1, 2𝑠−1 , 𝑥 ∈   𝑘 − 1 ∙ 𝛿, 𝑘 ∙
𝛿, and  𝛿=2𝑛−𝑠 

𝑎𝑠 𝑥 +  𝑘 − 1 ∙ 𝛿 = 𝑎𝑠−1 2𝑥 + 𝑎𝑠−1 2𝑥 + 1 , 
          𝑎𝑠 𝑥 + 𝑘 ∙ 𝛿 = 𝑎𝑠−1 2𝑥 − 𝑎𝑠−1 2𝑥 + 1 , 
Then, 𝐹𝐻𝑃𝑅  𝑥 = 𝑎𝑛(𝑥)                                       (21)  

This definition is an extension of Theorem 1 given 

in preliminary section. It can simply be pictured 

through the butterfly pair as: 

 

Note that, the parameter 𝛿 represents the 

step for the butterfly output pair (how far apart) of 

coefficients. The parameter 𝑘 on the other hand, 

defines the Haar-recursive transform over the 

processed signal sequence. If 𝑘 is only restricted to 

one (𝑘 = 1 only) then the algorithm becomes 

nothing other than the Haar transform. A summary 

of the steps describing this algorithm is given in the 

figure below (Fig. 5), as well as the flow chart 

depicting the algorithm’s steps (Fig. 6). 

 

 
Fig. 5: The FHPRT Algorithm 

 

Fig. 5 depicts the steps involved in the 

FHPRT algorithm. Step 1 involves assigning the 

Boolean function f, as the initial sequence to be 

processed during transformation.  The 

transformation is carried out through n steps (n is the 

number of variables for the Boolean function) 

defined by the parameter s where each step involves 

computing the current sequence (𝑎𝑠) using the 

previous one (𝑎𝑠−1) (step 2 of the algorithm). For 

each of the current processed step s, two parameters 

are used (𝛿 and 𝑘) in step 2 of the algorithm. These 

two parameters were defined along with the 

definition of FHPRT in the previous paragraphs.The 

Flow chart given in Fig. 6 provides a better view of 

the steps of the algorithm. There are three main 

loops in the algorithm, the first one determined by 

the parameter s, the second one by the parameter k, 

and the last one with the variable x. The first one 

decides the transform steps, the second decides how 

many Haar transform repetitions to be carried out for 

the current step, and the last one does the butterfly 

operation for each repeated Haar transform. The 

algorithm stops when  𝑠 > 𝑛, giving out the HPRS 

as 𝑎𝑛 . 

 

 
Fig. 6: Flow Chart for the FHPRT Algorithm 

Remark: As the HPRT coincides with the Walsh-

Paley transform then it is obvious that the HPRT 

matrix ( 𝐻𝑅𝑛  ) is also a self inverse matrix with 

appropriate normalizing weight factor, that is the 

inverse matrix is simply  𝐻𝑅𝑛 
−1 = 2−𝑛 ∙  𝐻𝑅𝑛  . 

Consequently, the HPRT is a self inverse transform 
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meaning that the fast algorithm can be applied for 

both forward and inverse (with the respective weight 

factor) transforms. 

FHPRT Time Complexity: Operations considered 

are Additions and Subtractions during the process of 

sequence of transforms from the initial sequence to 

the final sequence. For each butterfly pair, there are 

two operations involved which are: 1 addition and 1 

subtraction. In turn, the number of processing for 

each sequence of the transform is the same. Each 

sequence of transforms now has 2𝑛−1 butterfly pairs 

to be processed, each of which involves two 

operations of addition and subtraction. This gives a 

total number of operations within a step of transform 

as 2 × 2𝑛−1 = 2𝑛 , which consequently makes a total 

of 𝑛 ∙ 2𝑛  number of operations for the completion of 

all the  𝑛 steps of the transform. This coincides with 

the complexity of the fast Walsh-Hadamard 

transform [7].The presented algorithms in this 

section were implemented using MATLAB software 

and their performances on a PC machine were 

compared along with the Walsh-Hadamard 

algorithm as a benchmark. The last but one section 

(see Section 4 below) presents the results of this 

experiment. The following sub-section (Section 3.4) 

explores the connection between the HPRT and the 

ACF. 

 

1.6 The FHPRT and Its Consequence to the 

Autocorrelation Function of a BF 
As the FHPRT gives directly the Walsh-

Paley spectrum, it is natural to connect this 

interpretation to the Wiener-Khintchine theorem for 

expressing the Autocorrelation function in terms of 

the HPRT. The following proposition summarizes 

this relationship 

Proposition 3: Let  𝑓 (𝑥)  be an n-variable Boolean 

function, 𝐹𝐻𝑃𝑅 (𝑥) its Haar-Paley recursive spectrum 

(HPRS), and 𝑟 𝑓 𝑎  its Autocorrelation function. 

Then the Autocorrelation function can be expressed 

in terms of the Haar-Paley power spectrum as 

follows: 

 𝑟 𝑓 𝑥 = 2−𝑛 ∙  𝐹 𝐻𝑃𝑅
2
 𝑥  

𝐻𝑃𝑅
   ∀𝑥 ∈ 𝔽2

𝑛            (22) 

Proof: we utilize theorem 2 and the fact that the 

HPRT coincides with the Walsh-Paley transform 

(WPT). From theorem 2 we have, the Walsh-Paley 

transform of the Autocorrelation function is the 

Power spectrum in Paley ordering which is given 

by 𝑅 𝑊𝑃 𝑥 = 𝐹 𝑊𝑃
2
 𝑥    ∀𝑥 ∈ 𝔽2

𝑛 . The Walsh-Paley 

inverse transform of the Power spectrum in turn 

gives the Autocorrelation function as  𝑟 𝑓 𝑥 =

 𝑊𝑃𝑛  
−1 ∙  𝐹 𝑊𝑃

2
 
𝑡

= 2−𝑛 ∙  𝑊𝑃𝑛  ∙  𝐹 𝑊𝑃
2
 
𝑡

. Since 

the HPRT is equivalent to the WPT and their 

transform matrices are self inverses with appropriate 

weight factors then it follows that  𝑟 𝑓 𝑥 = 2−𝑛 ∙

 𝐻𝑅𝑛  ∙  𝐹 𝑊𝑃
2
 
𝑡

= 2−𝑛 ∙  𝐹 𝐻𝑃𝑅
2
 𝑥  

𝐻𝑃𝑅
.               □ 

The next example demonstrates the relationship 

portrayed by the Proposition 3. In this case the 

consideration is done for three 4-variable BFs 

including a Bent function, a nonlinear balanced BF, 

and a Linear BF. Bent functions are considered as 

the class of BFs farthest from being linear and 

comprise of all zero ACF coefficients except the 

global element [1,2,3,14]. 

Example 3: Consider the following 4-variable 

BFs  𝑓 1, 𝑓 2 and 𝑓 3. The first function is a Bent BF, 

the second one is a nonlinear balanced BF, and the 

third is a linear BF.  The functions’ Haar-Paley-

Recursive spectra (HPRS, 𝐹 𝐻𝑃𝑅 ), including the Haar-

Paley power spectra (𝐹 𝐻𝑃𝑅
2
) and their HPRTs 

(𝑕𝑟 𝑓 = 2−𝑛 ∙  𝐹 𝐻𝑃𝑅
2
 
𝐻𝑃𝑅

) are given in the Table 1 

below. Their polarity truth-tables are given 

respectively as follows: 

𝑓 1 =  1,1,1, −1,1,1, −1,1, −1, −1,−1,1,1,1, −1,1 , 

𝑓 2 =
 1,1, −1,−1,1, −1,−1,1,1, −1,1, −1, −1,−1,1,1 , 

𝑓 3
=  1,1,1,1, −1, −1,−1,−1,−1,−1,−1,−1,1,1,1,1  

 

Table 1: HPRSs, Haar-Paley Power Spectra and their HPRTs for BFs given in Example 3 

 
 

IV. SIMULATION RESULTS 
The algorithms for the HPRT and FHPRT 

were implemented using the MATLAB software, 

and the experiments on performance comparisons 

between these two algorithms and the Walsh-

Hadamard algorithm were conducted. The 
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experiments were carried out on laptop computer 

with the following specifications; Dell-Vostro-3450, 

Intel Core i5-2410M, CPU @ 2.30GHz, and 4.0GB 

RAM. The focal point of the experiments was on 

execution time (using the tic-toc MATLAB 

function). The fast Walsh-Hadamard transform 

(FWHT) provided as a built-in MATLAB function 

was used as the benchmark.The execution of each 

algorithm was conducted in the following manner: 

number of iterations on which the same algorithm 

executed was picked as 200 (ignoring the first time 

execution for the fetch delay), at the end of each run 

the average execution time was computed for the 

number of variables between 3 and 20 inclusive.  

The following tables (Table 2 and Table 3) show the 

results of the experiment, for the average execution 

times of the algorithms. The execution times during 

the different iterations for the given number of 

variables are presented in the figures below (see Fig. 

7, Fig.8 and Fig. 9). 
 

Table 2: Algorithms’ Average Execution Times (sec) for 𝑛 ∈  3,11  
n HPRT FHPRT FWHT 

3 0.00008 0.00001 0.00021 

4 0.00017 0.00002 0.00023 

5 0.00039 0.00005 0.00028 

6 0.00073 0.00009 0.00040 

7 0.00154 0.00019 0.00065 

8 0.00320 0.00043 0.00122 

9 0.00671 0.00091 0.00246 

10 0.01337 0.00212 0.00539 

11 0.02636 0.00460 0.01222 
 

Table 3: Algorithms’ Average Execution Times (sec) for 𝑛 ∈  12,20  
n HPRT FHPRT FWHT 

12 0.05944 0.01042 0.03036 

13 0.11640 0.02488 0.05678 

14 0.23005 0.04871 0.12858 

15 0.47885 0.10482 0.26154 

16 0.98741 0.27912 0.68846 

17 2.49517 0.57414 1.45983 

18 4.96914 1.20209 3.09637 

19 9.92213 2.46331 6.29882 

20 18.73959 4.10494 12.05639 

 

As it can be seen from both tables (Table 2 

and Table 3) and the figures (Fig. 7, 8 and 9), on 

average execution times and with low number of 

variables the algorithms are performing at almost the 

same level (𝑛 ∈  3,5 ). At the beginning of the 

experiment (first iteration), the execution time is 

somewhat high, but as the number of iterations 

change then the execution time for the algorithms 

tend to stabilize to a certain level. On the other hand, 

as the number of variables increases, the 

performance of the fast algorithms is almost same 

(see Fig. 9 below) but for the recursion function 

(HPRT), the execution time increases relative to the 

other two. Even though the two fast algorithms 

perform way better than the one based on recursion, 

yet the FHPRT outperforms the MATLAB built-in 

FWHT by a factor of almost three. Note that, the 

average execution time given in Fig. 9 is computed 

in common logarithm. 

 

 
Fig. 7: Algorithms’ Average Execution times (sec) for 200 Iterations and 𝑛 ∈  3,11  
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Fig. 8: Algorithms’ Average Execution times (sec) for 200 Iterations and 𝑛 ∈  12,20  

 

 
Fig. 9: Algorithms’ Average Execution times (log(sec)) for 200 Iterations and 𝑛 ∈  3,20  

 

The advantage of the HRT is simply that, it 

gives one the freedom of determining how far they 

would want to go recursively and in turn flexibility 

in computations and complexity. The following 

considerations can be taken with regard to the HRT 

advantages: 

 

1. Local Property Flexibility and Linear 

Correlation: Since the recursive transform can 

be applied locally then there is a computational 

flexibility. This transform is applied to each 

zones (defined by the degree 𝑙) of the Haar 

spectrum independently. Each zone is related to 

a correlation between the given Boolean 

function and a specific set of Linear Boolean 

functions (related to the degree 𝑙). This gives the 

flexibility of restricting computations locally 

depending on one’s interest on finding the 

respective linear correlations.  

 

2. Local Property Flexibility and Testing: 
Consider a case where the resulting Walsh-

Paley spectrum is required to have a flat 

spectrum, where all the spectral coefficients 

have to be with the same absolute magnitude. 

The testing for such case-scenario becomes 

easier and computationally efficient since it can 

be conducted zone-wise and if the requirement 

is violated in one zone then there is a prevention 

of further unnecessary computations with the 

rest of the zones. The worst case scenario is 

when the violation is within the last zone of the 

spectrum. This advantage does not count only 

for flat-based spectrum, but rather the testing 

can be conducted by computing the spectrum 

partially and avoiding computing the entire 

spectrum first and then conduct the testing 

afterwards. 

 

3. Local Property Flexibility and the Possibility 

of Parallel Processing: Since each zone of the 

Haar-spectrum is processed independent of the 

other zone, then this gives rise to the possibility 

of parallel processing being applied on each 

individual zone independently. 

The following section presents the conclusion of 

the paper. 

 

V. CONCLUSION 

Spectral transforms play a crucial part in 

the analysis, design, and testing of digital devices. 

Such transforms based on the Walsh and Haar basis 

are the two most suitable for analysis and synthesis 

of switching or Boolean functions. The main 

contribution of this work is related to the Walsh-

Paley transform from the Haar domain point of 

view.The paper has reviewed the connection 

between the Walsh-Paley and the Haar transforms. 

The work has introduced another alternative view on 

the connection between the two spectra. The paper 

derived the expression of the Walsh-Paley transform 

in terms of the Haar transform. In the process, the 
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work has demonstrated the possibility of obtaining 

both the Haar spectrum and the Walsh-Paley 

spectrum using only the Haar transform domain. In 

turn, the paper introduced a new Haar-based 

transform algorithm (Haar-Paley-Recursive 

Transform, HPRT) in the form of a recursive 

function along with its fast transform version called 

the fast-Haar-Paley-Recursive transform (FHPRT). 

The proposed algorithm coincides with the Walsh-

Paley transform in terms of its interpretation. The 

consequence of this interpretation was then exploited 

in the work to derive the relationship between the 

Autocorrelation function (ACF) of a BF and the 

HPRT. This relationship has been given based on the 

Wiener-Khintchine theorem, and analogously the 

ACF has been expressed in terms of the Haar-Paley 

power spectrum. The paper then presented the 

simulation results on the average execution times of 

both derived algorithms in comparison to the 

existing Walsh benchmark. The work has shown the 

advantages of using the Haar transform domain in 

computing the Walsh-Paley spectrum. 
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