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ABSTRACT 
Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear 

MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is 

compared with the solution got by using a linear membership function. Some numerical examples are presented 

to illustrate this. 
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I. PROBLEM FORMULATION 
The transportation problem usually 

involves multiple, incommensurable and 

conflicting objective functions in the real-world 

situations. This kind of problem is called multi-

objective transportation problem. Similar to a 

typical transportation problem in a MOTP a 

product is to be transported from m sources to n 

destinations and their capacities are 𝑎1, 𝑎2 , … . , 𝑎𝑚  

and  𝑏1 , 𝑏2 , … . , 𝑏𝑛   respectively. In addition, there 

is a penalty 𝑐𝑖𝑗  associated with transporting a unit 

of product from source i to destination j. The 

penalty may be cost or delivery time or safety of 

delivery or etc. A variable 𝑥𝑖𝑗  represents the 

unknown quantity to be shipped from source i to 

destination j. A mathematical model of MOTP can 

be written as follows: 

                

                         Min   

𝑧𝑟 =     𝑐𝑖𝑗
𝑟  𝑥𝑖𝑗  ,     𝑟 = 1,2, … . . , 𝑘𝑛

𝑗=1
𝑚
𝑖=1  

                         Subject to 

                                   

                                         𝑥𝑖𝑗 =  𝑎𝑖  ,       𝑖 =𝑛
𝑗=1

1,2,…..𝑚, 
 

                                         𝑥𝑖𝑗 =  𝑏𝑗  ,       𝑗 =𝑚
𝑖=1

1,2,…..𝑛, 
 

                                        𝑥𝑖𝑗   ≥ 0,               for all i, 

j                                                              (1) 

 

The subscript in 𝑍𝑟  and superscript in  𝑐𝑖𝑗
𝑟  

are related to the 𝑟𝑡ℎ  penalty criterion. Without loss 

of generality, it will be assumed that 𝑎𝑖  ≥ 0 for all 

i, 𝑏𝑗  ≥ 0 for all j and the equilibrium condition  

 𝑎𝑖 =   𝑏𝑗
𝑛
𝑗=1

𝑚
𝑖=1  is satisfied. 

We denote by S the set of all feasible solutions of 

the MOTP, i.e., 

 

       S = {x∈  ℝ𝑚×𝑛 |   𝑥𝑖𝑗 = 𝑎𝑖 ,
𝑛
𝑗=1    𝑥𝑖𝑗 =𝑚

𝑖=1

 𝑏𝑗 ,    𝑥𝑖𝑗  ≥0,  i=1,2,…..m,  j = 1,2,…..n} 

 

1.1. Definition:  

A feasible solution 𝑋∗ =  𝑥𝑖𝑗 ∗ ∈ 𝑆 is an 

efficient (non-dominated) solution for MOTP if 

and only if there do not exist another X = {𝑥𝑖𝑗 }∈ 𝑆 

such that𝑍𝑟 𝑋 ≤ 𝑍𝑟 𝑋
∗ , 

  𝑟 = 1,2, … 𝑘 ,   𝑎𝑛𝑑 𝑍𝑙 𝑋 ≠ 𝑍𝑙(𝑋
∗) for some l, 

1≤ 𝑙 ≤ 𝑘. 
 

1.2. Definition:   

   A feasible solution 𝑋∗ =  𝑥𝑖𝑗 ∗ ∈ 𝑆 is a 

weak efficient solution for MOTP if and only if 

there does not exist another X = {𝑥𝑖𝑗 }∈ 𝑆 such that 

𝑍𝑟 𝑋 < 𝑍𝑟 𝑋
∗       𝑟 = 1,2, …𝑘 

 

1.3. Definition: [3]  

Optimal compromise solution for MOTP 

if it is preferred by DM to all other feasible 

solutions, taking into consideration all criteria 

contained in the multi-objective functions. 

Let E and 𝐸𝑤denote the set of all efficient 

solutions and all weak efficient solutions for 

MOTP, respectively, then E ⊆ 𝐸𝑤 . The best 

compromise solution of MOTP has to be a weak 

efficient solution of MOTP. 

 

II. MEMBERSHIP FUNCTIONS 
In solving fuzzy mathematical 

programming problems of the linear membership 

functions for all fuzzy sets involved in a decision 

making process. A linear approximation is most 

commonly used and is defined by fixing two 
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points, the upper and lower levels of acceptability. 

If fuzzy set theory is to be considered a purely 

formal theory, such an assumption is acceptable, 

even though some kind of formal justification of 

this assumption would be desirable. The fuzzy set 

theory is used to model real decision making 

processes, and a fact is made that the resulting 

models are true models of reality then the practical 

explanation for this assumption is necessary.  Such 

as concave or convex shaped membership 

functions are analyzed to determine their impact on 

the overall design process. 

Let 𝐿𝑟  and 𝑈𝑟  be the aspired level of 

achievement and the highest acceptable level of 

achievement for the 𝑟𝑡ℎ  objective function, 

respectively. Next, we study different membership 

functions. 

2.1. Linear Membership Function.  

A linear membership function can be defined as 

follows. 

 

                      

𝜇𝑟 𝑍𝑟 𝑋     =

 

1               if 𝑍𝑟  ≤  𝑈𝑟

1 − 
𝑍𝑟−𝐿𝑟

𝑈𝑟−𝐿𝑟  
     if  𝐿𝑟 < 𝑍𝑟 < 𝑈𝑟 ,

0               if 𝑍𝑟  ≥  𝑈𝑟

                                                      

   (2) 

2.2. Exponential Membership Function. 

An exponential membership function is defined by 

 

                         𝜇𝑟
𝐸 𝑍𝑟 𝑋  =

   

1                if  𝑍𝑟  ≤  𝐿𝑟    
𝑒−𝑠𝜓 𝑟 𝑥 −𝑒−𝑠

1−𝑒−𝑠
   if  𝐿𝑟 < 𝑍𝑟 < 𝑈𝑟 ,

0            if 𝑍𝑟  ≥  𝑈𝑟   

                                                        

(3) 

                              

Here 𝜓𝑟 𝑥 =
𝑍𝑟−𝐿𝑟

𝑈𝑟−𝐿𝑟
, 𝑟 = 1,2, … . , 𝑘 and s is a non-

zero parameter prescribed by the decision maker.      

 

   

2.3. Hyperbolic Membership Function.  

The hyperbolic function [27] is convex 

over a part of the objective function values and is 

concave over the remaining part. In our problem 

context is as follows: When the decision maker is 

worse off with respect to a goal, the decision maker 

tends to have a higher marginal rate of satisfaction 

with respect to that goal. A convex shape captures 

the behavior in the membership function. On the 

other hand, when one is better with respect to a 

goal, one tends to have a smaller marginal rate of 

satisfaction. Such behavior is modeled using the 

concave portion of the membership function.  

        𝜇𝑟
𝐻(𝑍𝑟(𝑥)) = 

 

 1                                          if  𝑍𝑟  ≤  𝐿𝑟 ,
1

2
tanh  

𝑈𝑟+𝐿𝑟

2
− 𝑧𝑟 𝑥 𝛼𝑟 +

1

2
     i𝑓 𝐿𝑟 < 𝑍𝑟 < 𝑈𝑟 ,

0                                            if 𝑍𝑟  ≥  𝑈𝑟    

                                                

Where    𝛼𝑟 =  
6

𝑈𝑟−𝐿𝑟
 

This membership function has the following formal 

properties [32]: 

(1)  𝜇𝑟
𝐻(𝑍𝑟(𝑥)) is strictly monotonously decreasing 

function with respect to 𝑍𝑟 𝑥 ; 

(2) 𝜇𝑟
𝐻 𝑍𝑟 𝑥  =

1

2
 ⇔  𝑍𝑟 𝑥 =

1

2
 (𝑈𝑟 + 𝐿𝑟 ); 

(3)  𝜇𝑟
𝐻 𝑍𝑟 𝑥  = is strictly convex for 𝑍𝑟 𝑥 ≥

1

2
 

(𝑈𝑟 + 𝐿𝑟 ) and strictly concave for 𝑍𝑟 𝑥 ≤
1

2
 

(𝑈𝑟 + 𝐿𝑟 ); 

(4) 𝜇𝑟
𝐻 𝑍𝑟 𝑥   Satisfies 0 < 𝜇𝑟

𝐻 𝑍𝑟 𝑥  <

1 𝑓𝑜𝑟 𝐿𝑟 < 𝑍𝑟(𝑥) < 𝑈𝑟  and approaches 

asymptotically  𝜇𝑟
𝐻 𝑍𝑟 𝑥  = 0 𝑎𝑛𝑑 𝜇𝑟

𝐻 𝑍𝑟 𝑥  =

1 𝑎𝑠 𝑍𝑟 𝑥 → ∞ 𝑎𝑛𝑑 − ∞, respectively. 

 

III. FUZZY GOAL PROGRAMMING 

APPROACH FOR SOLVING MOTP 
Mohamed [23] introduced fuzzy goal 

programming approach for solving multi-objective 

linear programming problem. In [31], Mohamed's 

approach was adopted to present a fuzzy goal 

programming approach for solving multi-objective 

transportation problems. 

Let 𝐿𝑟  and 𝑈𝑟  be the aspired level of 

achievement and the highest acceptable level of 

achievement for the 𝑟𝑡ℎ  objective function, 

respectively. 

To solve MOTP problem based on the 

fuzzy goal programming technique [31], one can 

use the following steps: 

Step 1: 

Solve the multi-objective transportation 

problem as a single objective transportation 

problem, taking each time only one objective 

function and ignoring all others. 

 

Step 2: 

Compute the value of each objective 

function at each solution derived in Step 1. 

 

Step 3:  

 From Step 2, find for each objective the 

best (𝐿𝑟 ) and the worst (𝑈𝑟 ) values corresponding 

to the set of solutions. Recall that 𝐿𝑟  and 𝑈𝑟  are the 

aspired level of achievement and the highest 

acceptable level of achievement for the 𝑟𝑡ℎ  

objective function, respectively. 
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Step4: Define a membership functions 𝜇𝑟  

(linear𝜇𝑟
𝐿, hyperbolic 𝜇𝑟

𝐻 , or exponential 𝜇𝑟
𝐸) for the 

𝑟𝑡ℎ  objective function. 

If we use the linear membership function 

as defined in (2) then an equivalent linear model 

for the model (1) can be formulated as: 

 

                      Min:    𝜑, 
                      Subject to, 

 

                      
𝑈𝑟−𝑍𝑟

𝑈𝑟−𝐿𝑟
+ 𝑑𝑟

− − 𝑑𝑟
+ = 1, 

 

                      𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

                      𝑑𝑟
+ 𝑑𝑟

− = 0, 
 

                       𝑥𝑖𝑗 =  𝑎𝑖 ,       𝑖 = 1,2, … . .𝑚,𝑛
𝑗=1  

 

                       𝑥𝑖𝑗 =  𝑏𝑗 ,       𝑗 = 1,2, … . . 𝑛,𝑚
𝑖=1  

 

                       𝑑𝑟
+ , 𝑑𝑟

−  ≥ 0, 
 

                        𝜑 ≤ 1, 𝜑 ≥ 0,    𝑥𝑖𝑗 ≥

0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗, 
 

Here the equilibrium condition   𝑎𝑖 =  𝑏𝑗
𝑛
𝑗=1

𝑚
𝑖=1   

is satisfied. 

If we use the exponential membership function as 

defined in (3), then an equivalent nonlinear model 

for the model (1) can be formulated as: 

                      Min:    𝜑, 
                      Subject to, 

 

                      
𝑒−𝑠Ζ𝜓𝑟 𝑥 −𝑒−𝑠

1−𝑒−𝑠
+ 𝑑𝑟

− − 𝑑𝑟
+ = 1, 

 

                      𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

                      𝑑𝑟
+ 𝑑𝑟

− = 0, 
 

                       𝑥𝑖𝑗 =  𝑎𝑖 ,       𝑖 = 1,2, … . .𝑚,𝑛
𝑗=1  

 

                       𝑥𝑖𝑗 =  𝑏𝑗 ,       𝑗 = 1,2, … . . 𝑛,𝑚
𝑖=1  

 

                       𝑑𝑟
+ , 𝑑𝑟

−  ≥ 0, 
 

                        𝜑 ≤ 1, 𝜑 ≥ 0,    𝑥𝑖𝑗 ≥

0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗, 
 

Here the equilibrium condition  𝑎𝑖 =  𝑏𝑗
𝑛
𝑗=1

𝑚
𝑖=1  is 

satisfied. 

If we use the hyperbolic membership function as 

defined in (4) then an equivalent nonlinear model 

for the model (1) can be formulated as: 

 

                     Min:    𝜑, 

                     Subject to, 

                      

1

2
+

1  𝑒
{
(𝑈𝑟+𝐿𝑟 )

2 −𝑍𝑟}𝛼𝑟
− 𝑒

−{
(𝑈𝑟+𝐿𝑟 )

2 −𝑍𝑟}𝛼𝑟

2 𝑒
{
(𝑈𝑟+𝐿𝑟 )

2 −𝑍𝑟}𝛼𝑟
+ 𝑒

−{
(𝑈𝑟+𝐿𝑟 )

2 −𝑍𝑟}𝛼𝑟
+ 𝑑𝑟

− − 𝑑𝑟
+ =

1, 
 

                      𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

                      𝑑𝑟
+ 𝑑𝑟

− = 0, 
 

                       𝑥𝑖𝑗 =  𝑎𝑖 ,       𝑖 = 1,2, … . .𝑚,𝑛
𝑗=1  

  

                       𝑥𝑖𝑗 =  𝑏𝑗 ,       𝑗 = 1,2, … . . 𝑛,𝑚
𝑖=1  

 

                       𝑑𝑟
+ , 𝑑𝑟

−  ≥ 0, 
 

                        𝜑 ≤ 1, 𝜑 ≥ 0,    𝑥𝑖𝑗 ≥

0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗, 
Here the equilibrium condition  𝑎𝑖 =  𝑏𝑗

𝑛
𝑗=1

𝑚
𝑖=1  is 

satisfied. 

 

Step 5: Solve the equivalent crisp model obtained 

in Step 4. The solution obtained in Step 5 will be 

the optimal compromise solution of MOTP model 

[29]. 

 

IV. EXAMPLES 

To illustrate the efficiency of the proposed 

method, using interval numbers we consider the 

following numerical example. 

             

      Min 𝑍1 =  16,18  𝑥11 +  19,21 𝑥12 +
 12,14 𝑥13 +  20,22 𝑥14 +  22,24 𝑥21    13,15 𝑥22  

               + 19,21 𝑥23 +  8,10 𝑥24 +  14,16  𝑥31

+  28,30 𝑥32 +  8,10 𝑥33

+  5,7 𝑥34  

                        

      Min  𝑍2 =  9,11 𝑥11 +  14,16 𝑥12 +
 12,14 𝑥13 +  4,8 𝑥14 +  16,18 𝑥21 +  10,12 𝑥22  

                     + 14,18 𝑥23 +  3,5 𝑥24 +
  8,10 𝑥31 +  20,22 𝑥32 +  6,8 𝑥33 +  5,7 𝑥34  

 Subject to, 

 

                           𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 =  7,9  
                                       

                              𝑥21 +  𝑥22 +  𝑥23 + 𝑥24  =
 17,21  
  

                          𝑥31 +  𝑥32 +  𝑥33 + 𝑥24  =  16,18  
                       

                          𝑥11 +  𝑥21 +  𝑥31 + 𝑥41  =  10,12  
  

                         𝑥12 +  𝑥22 +  𝑥32 + 𝑥42  =  2,4   
 

                             𝑥13 +  𝑥23 +  𝑥33 + 𝑥34  =  13,15   
 

                             𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 =  15,17   
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                          𝑥𝑖𝑗  ≥   0 i = 1,2,3  ,  j = 1,2,3,4 

In the following the proposed steps of the previous 

section are presented. 

Step 1: The solution of each single objective 

transportation problem is 

            𝑋1 = (𝑥11 = 0, 𝑥12 = 0, 𝑥13 = 8, 𝑥14 =
0, 𝑥21 = 11, 𝑥22 = 3, 𝑥23 = 5, 𝑥24 = 0, 

𝑥31 =  0, 𝑥32 = 0, 𝑥33 = 1, 𝑥34 = 0) 
     

          𝑋2 = (𝑥11 = 8, 𝑥12 = 0, 𝑥13 = 8, 𝑥14 =
0, 𝑥21 = 11, 𝑥22 = 3, 𝑥23 = 0, 𝑥24 = 16, 

𝑥31 = 8, 𝑥32 = 0, 𝑥33 = 14, 𝑥34 = 0) 

 

Step 2: The objective function values are: 

 

                 𝑍1 𝑋
1 = 604, 𝑍1 𝑋

2 = 568, 
𝑍2 𝑋

1 = 406, 𝑍2 𝑋
2 = 302         

 

Step 3: The upper and lower bounds of each 

objective function can be written as follows: 

 

             568≤ 𝑍1 ≤ 604  , 302 ≤ 𝑍2 ≤ 406 , 
             𝐿1 = 568, 𝑈1 = 604, 𝐿2 = 302, 𝑈2 = 406 
 

Step 4: If we use the linear membership function as 

defined in (2), an equivalent crisp model can be 

formulated as: 

                      Min:   𝜑, 
                      Subject to, 

 

                      
604−𝑍1

36
+ 𝑑1

− − 𝑑1
+ = 1, 

 

                      
406−𝑍2

104
+ 𝑑2

− − 𝑑2
+ = 1, 

 

                      𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

                      𝑑𝑟
+ 𝑑𝑟

− = 0,                          
       

                       

The problem is solved and the results are: 

         

        𝑥11
∗ = 4, 𝑥14

∗ = 4, 𝑥22
∗ =  3 , 𝑥23

∗ = 5 , 𝑥24
∗ =

11  , 𝑥31
∗ = 7, 𝑥33

∗ = 9 , 𝑥34
∗ = 1 

 

        𝑑1
− = 0.5 , 𝑑1

∗ = 0, 𝑑2
− = 0.5, 𝑑2

+ = 0, 𝜑 = 0.5 

 

        𝑍1
∗ = 586 , 𝑍2

∗ = 354 
 

The other variables that are not in the above have a 

zero value. 

If we use the exponential membership function as 

defined in (3) with the parameter 

 s = 1, an equivalent crisp model can be formulated 

as: 

                      Min:    𝜑, 
                      Subject to, 

 

                      
𝑒−(𝑧1−568 )/36−𝑒−1

1−𝑒−1 + 𝑑1
− − 𝑑1

+ = 1, 

 

                      
𝑒−(𝑧2−302 )/104−𝑒−1

1−𝑒−1 + 𝑑2
− − 𝑑2

+ = 1, 

 

                      𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

                      𝑑𝑟
+ 𝑑𝑟

− = 0 
                    

The problem is solved and the results are: 

         

        𝑥11
∗ = 4, 𝑥14

∗ = 4, 𝑥22
∗ =  3 , 𝑥23

∗ = 5 , 𝑥24
∗ =

11  , 𝑥31
∗ = 7, 𝑥33

∗ = 9 , 𝑥34
∗ = 1 

 

        𝑑1
− = 0.38 , 𝑑1

∗ = 0, 𝑑2
− = 0.38, 𝑑2

+ = 0, 𝜑 =
0.38 
 

        𝑍1
∗ = 586 , 𝑍2

∗ = 354 

 

The other variables that are not in the above have a 

zero value. 

If we use the hyperbolic membership function as 

defined in (4) then an equivalent crisp model can 

be formulated as: 

                     Min:    𝜑, 
                     Subject to, 

 

1

2
+

1  𝑒6(568−𝑧1)/36 − 𝑒−6(568−𝑧1)/36

2  𝑒6(568−𝑧1)/36  +  𝑒−6(568−𝑧1)/36  
+ 𝑑1

− − 𝑑1
+

= 1, 
1

2
+

1  𝑒6(406−𝑧2)/104 − 𝑒−6(406−𝑧2)/104

2  𝑒6(568−𝑧2)/104  +  𝑒−6(568−𝑧2)/36  
+ 𝑑2

− − 𝑑2
+

= 1, 
 

             𝜑 ≥  𝑑𝑟
− ,      𝑟 = 1,2, …… , 𝑘, 

 

            𝑑𝑟
+ 𝑑𝑟

− = 0, 
  

The problem is solved and the results are: 

         

        𝑥11
∗ = 4, 𝑥14

∗ = 4, 𝑥22
∗ =  3 , 𝑥23

∗ = 5 , 𝑥24
∗ =

11  , 𝑥31
∗ = 7, 𝑥33

∗ = 9 , 𝑥34
∗ = 1 

 

        𝑑1
− = 0.5 , 𝑑1

∗ = 0, 𝑑2
− = 0.5, 𝑑2

+ = 0, 𝜑 = 0.5 

 

        𝑍1
∗ = 586 , 𝑍2

∗ = 354 

 

The other variables that are not in the above have a 

zero value 

 

V. CONCLUSION 

Multi-objective fuzzy transportation 

problem can be solved by the non-linear 

membership functions. To solve the non-linear type 

of problem these nonlinear membership functions 

can be used. Apart from the transportation 
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problems, for the multi-objective nonlinear 

programming problems, nonlinear membership 

functions are useful. 
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