
Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 36 | P a g e

An Implementation on Effective Robot Mission under Critical

Environemental Conditions by Using Temporal Logic Based

Approaches

Chinnam Subbarao
1
, Dr.M M Naidu

2

1
Research Scholar, Dept. Of MCA, Acharya Nagarjuna University, Guntur(A.P), India.

2
Professor And Director Of CSE,IT,MCA, RVR & JC College Of Engineering, Guntur(A.P), India

ABSTRACT
Software engineering is a field of engineering, for designing and writing programs for computers or other

electronic devices. A software engineer, or programmer, writes software (or changes existing software) and

compiles software using methods that make it better quality. Is the application of engineering to

the design, development, implementation, testingand main tenance of software in a systematic method. Now a

days the robotics are also plays an important role in present automation concepts. But we have several challenges

in that robots when they are operated in some critical environments. Motion planning and task planning are two

fundamental problems in robotics that have been addressed from different perspectives. For resolve this there are

Temporal logic based approaches that automatically generate controllers have been shown to be useful for

mission level planning of motion, surveillance and navigation, among others. These approaches critically rely on

the validity of the environment models used for synthesis. Yet simplifying assumptions are inevitable to reduce

complexity and provide mission-level guarantees; no plan can guarantee results in a model of a world in which

everything can go wrong. In this paper, we show how our approach, which reduces reliance on a single model by

introducing a stack of models, can endow systems with incremental guarantees based on increasingly

strengthened assumptions, supporting graceful degradation when the environment does not behave as expected,

and progressive enhancement when it does.

Keywords: Robot Mission, Software Engineering, Temporal Logic Based Approaches, Automatic ntrollers.

I. INTRODUCTION
Software engineering is a field of

engineering, for designing and writing programs for

computers or other electronic devices. A software

engineer, or programmer, writes software (or

changes existing software) and compiles software

using methods that make it better quality. Is the

application of engineering to the design,

development, implementation, testingand main

tenance of software in a systematic method. Now a

days the robotics are also plays an important role in

present automation concepts. Motion planning and

task planning are two fundamental problems in

robotics that have been addressed from different

perspectives. Bottom-up motion planning

techniques concentrate on creating control inputs or

closed loop controllers that steer a robot from one

configuration to another [1], [2], while taking into

account different dynamics and motion constraints.

Controller synthesis and planning approaches based

on temporal logic have proven useful for generating

discrete event-based robot behaviors from high-

level specifications (e.g. [4, 30, 29]). Such

approaches rely on finite-state models that purport

to represent the operating environment and how the

robot can interact with it. However, any such model

is by definition an abstraction of the real

environment and its dynamics, and any such model

entails a risk that it is not a true representation of the

environment as encountered at runtime.

Fig: The Fundamental Steps in Software

Engineering.

RESEARCH ARTICLE OPEN ACCESS

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 37 | P a g e

In some scenarios, this risk, when materialized, may

lead to catastrophic failure of the mission. One

means to cope with this uncertainty [12] is to use

machine learning techniques that revise (or indeed

generate from scratch) the models on which

synthesis relies so that, over a period of time, the

models converge upon a \realistic" description of the

environment [27, 11, 14]. One drawback of using

such techniques is the computational cost of

learning, and the delay before the mission can begin

in earnest, which may be prohibitive in some

domains (e.g. safety-critical systems).Another

drawback is that the learned model may be of such

complexity that synthesis becomes computationally

infeasible, and in the worst case nothing can be

guaranteed in a world where anything can go wrong.

There is therefore a benefit in having an element of

manual abstraction involved in synthesizing robotic

behaviors. To that end, we have proposed an

approach [7] in which models at different levels of

abstraction are used to synthesize a controller

capable of gracefully degrading its guarantees when

the runtime environment diverges from one of the

more abstract models, and progressively enhancing

its guarantees when the environment behaves as

envisaged in the more idealized models.

Our approach uses a stack of models where

higher models are more idealised and can be

simulated by the lower models. A mission

requirement is associated with each tier of the stack.

Higher tiers allow to produce controllers

guaranteeing stronger requirements, while lower

tiers only allow for controllers with weaker

requirements because of their more realistic

description of the environment dynamics. Each tier

of the stack can be regarded as an independent

controller synthesis problem, but our approach

combines the resulting controllers in such a way that

a failure in a higher controller can be handled by a

graceful degradation to the controller of a lower tier,

resulting in a lower guaranteed `service level’.

Likewise, if the environment conforms to a higher

tier, we may attempt to synthesise a controller for a

higher tier and so enhance the guaranteed service

level.

In this paper, we show how synthesized

controller stacks can be used to provide robust

behavior for robot missions from high-level

temporal logic specifications. We apply it to an

existing case study involving a robot engaged in a

surveillance mission and show how, in addition to

automatic synthesis for cyclic missions (i.e.

missions in which the goals are achieved infinitely

many times, our approach enables the robot to

handle invalid environment models. Our Paper

mainly focus on to implement an novel method to

resolve all these thing in an easy manner.

II. LITERATURE SURVEY
Software testing, Systematic testing is one

of the most important and widely used techniques to

check the quality of software. Testing, however, is

often a manual and laborious process without

effective automation, which makes it error-prone,

time consuming, and very costly. Estimates are that

testing consumes 30-50% of the total software

development costs. The tendency is that the effort

spent on testing is still increasing due to the

continuing quest for better software quality, and the

ever growing size and complexity of systems. For

effective testing of software there are several

approaches(Steps) are done previously. Such as

1). Labelled Transition Systems

2). Parallel Composition

3). Legal LTS

4). Simulation & LTS Control.

1). Labelled Transition Systems
Labelled transition system is a structure

consisting of states with transitions, labelled with

actions, between them. The states model the system

states; the labelled transitions model the actions that

a system can perform. Definition 1. A labelled

transition system is a 4-tuple hQ, L, T, q0i where –

Q is a countable, non-empty set of states; – L is a

countable set of labels; – T ⊆ Q × (L ∪ {τ}) × Q,

with τ /∈ L, is the transition relation; – q0 ∈ Q is the

initial state.

2). Parallel Composition
(P || Q) expresses the parallel composition

of the processes P and Q. It constructs an LTS

which allows all the possible interleavings of the

actions of the two processes. Actions, which occur

in the alphabets of both P and Q, constrain the

interleaving since these actions must be carried out

by both of the processes at the same time. These

shared actions synchronize the execution of the two

processes. If the processes contain no shared actions

then the composite state machine will describe all

interleavings. In the following example, x is an

action shared by the processes A and B.

A = (a -> x -> A).

B = (b -> x -> B).

||SYS = (A || B).

Fig: Composition Parallel.

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 38 | P a g e

The diagram depicts the LTS for the

composite process SYS. It can be easily seen that, in

this simple example, the two possible execution

traces are < a,b,x> and <b,a,x>. That is the actions a

and b can occur in any order. Composite process

declarations are distinguished from primitive

process declarations by prefixing with the symbol ||.

Primitive processes may not contain the parallel

composition operator and composite processes may

not use action prefix, choice or recursion. This

separation is partly to ensure that FSP can only

generate finite systems. The parallel composition

operator is n-ary. The following example, with three

processes, is a system describing the behaviour of a

garage shared between two cars.

CAR(I=1) = (car[I].outside -> car[I].enter ->

car[I].ingarage -> car[I].exit -> CAR).

GARAGE(N=2) = (car[x:1..N].enter -> car[x].exit -

> GARAGE).

||SHARE = (CAR(1) || CAR(2) || GARAGE).

Note that an action label may consist of

more than one identifier (optionally indexed) joined

by ".". Processes referred to in composite process

definitions may be either primitive or composite. So,

for example, SHARE can be constructed in two

stages:

||CARS = (CAR(1) || CAR(2)).

||SHARE = (CARS || GARAGE).

3.(Legal LTS)

Is defined as ,Given LTSs M = (SM;A,∆M,

SM0) and E = (SE; A; ∆E; sE0), where A is

partitioned into actions controlled and monitored by

M (A = AC Ủ AM), we say that M is a legal LTS for

E if for all (SE; SM) € E//M.

4.Simulation
The simulation is defined as the relation

between two LTSs is formally defined as

follows,Let α be the universe of all LTSs with

communicating alphabet A. Given E and F in α,we

say that E simulates F, written E ≥F, when (E,F) is

contained in some simulation relation R Belongs to

α*α}.

Proposed Method
The central concept in our approach is that

of the control stack, which has in each tier a

controller synthesis problem for a particular mission

requirement and environment model.

Fig: Multi-tier control problem

Overall the control stack specifies the

robot's mission. The key requirements the approach

imposes in order to guarantee graceful degradation

and progressive enhancement are that (see below

Figure): (i) higher-level environment models must

be simulated by lower-level environment models,

capturing a notion of idealisation of higher-level

models; (ii) higher-level controllers used to achieve

enhanced functionality must be simulated by lower

levels controllers, ensuring a consistent overall

strategy; (iii) the runtime infrastructure must be

capable of detecting when an inconsistency between

an environment model (in any tier) and the runtime

environment occurs; (iv) a sound automated

replanning procedure for each tier that is expressive

enough to deal with the system requirements for its

tier must be provided, allowing progressive system

enhancement after inconsistencies have been

detected. Our implementation of the approach

provides the runtime infrastructure (iii) and planning

procedure (iv), guarantees controller simulation (ii),

and checks that the models given in a control stack

specification satisfy (i).

The environment models are expected to be

ranked in terms of the degree of idealisation of the

environment they represent. The environment model

M0 is the least idealised and require that

environment models further up the hierarchy allow

strictly less behaviour. This can be formally

captured via a simulation relation, Mi M j for i < j.

We require environment models to have the same

communicating alphabets partitioned identically into

con-trolled and monitored actions. Controlled

actions are those that the robot may choose to

perform, while monitored ac-tions are events that

the robot observes in the environment. In summary,

the less idealised the environment model is, the

more behaviour (in terms of unexpected actions and

non-determinism) may arise.Each tier i has an

associated requirement (Gi) to be achieved by the

system assuming that the runtime environment con-

forms to the environment model for that tier (Mi).

Each tier introduces a control problem Ei =

hMi; Gii. A solution to a control problem (a

controller) is a deterministic LTS that, when

composed with its environment, guarantees

requirement Gi (i.e. MikCi j= Gi). The control stack

introduces an additional constraint: each controller

must be simulated by controllers in lower tiers (Ci Cj

for i j). Intuitively, this requires that a controller

never do something that a lower-tier controller

would not do, thus ensuring that if a controller must

be stopped, because the assumptions for its tier are

discovered not to hold, decisions made by it up to

that point have been consistent with lower-tier

controllers. This allows for graceful degradation,

falling back to lower-tier controllers when needed.

Section 4 describes how this constraint is satisfied.

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 39 | P a g e

Control stack synthesis is executed bottom-up

through the tiers. The operation attempts to build a

controller that solves the control problem in a tier

while being simulated by the controller for the tier

immediately below. We do not require that control

problems for all tiers have solution. It is possible

that the system starts in a degraded mode, with

controllers solving problems up to level i. The

system, as the current state evolves, may

progressively enhance its behavior by synthesizing

controllers for tiers beyond tier i.

After synthesis, the enactment procedure

continuously monitors the environment and

concurrently executes the stack of controllers giving

priority to the controller of the upper-most enabled

tier. It continuously updates the current state based

on monitored actions and sensed state, disabling

tiers at level i and above should an inconsistency be

detected at tier i (Section 4 shows how this is

achieved). At any point, to progressively enhance

functionality, a re-planning attempt may be made

for the lowest disabled tier. Based on the cur-rent

state of the enabled tier immediately below, the state

of the disabled tier is automatically approximated

and an attempt is made to build a controller that will

work despite the uncertainty about the current state

of the tier. This demands that the controller

synthesis procedure be capable of solving problems

exhibiting non-determinism. Should a controller

exist, it is put into the controller hierarchy and the

tier is enabled. The approach does not prescribe

when re planning must be attempted. In principle

this can be done at any time, however in practice re

planning may be associated with a clock or with

heuristics related to the problem domain.

Implementation

The implementation of our framework consists of

two main components: 1).planner , 2).Entactor

Fig: The Fundamental Steps in the way of

Implementation.

1) Planner: a planner, which implements the controller

synthesis algorithms The Modal Transition System

Analyser (MTSA), is a tool for developing and

analysing compositional models of concurrent

systems, using the Finite State Processes (FSP)

process algebra. Importantly for our approach,

MTSA implements controller synthesis algorithms

for Generalized Re-activity(1) (GR(1)) goals, which

cover an expressive subset of linear temporal logic

including safety and liveness proper-ties. Our

general approach is agnostic as regards the synthesis

procedure, but GR(1) is expressive enough for many

domains. We extended MTSA to support the

specification and synthesis of complete control

stacks A control stack C is specified in MTSA as

follows.

controlstack ||C@{Controlled} {

tier(ENV, REQ)

...

}

where Controlled refers to a set of

controlled actions, and where each tier consists of

environment model ENV and mission requirement

specification REQ. A control stack may consist of

any number of tiers ordered such that the last tier

has the most realistic environment model.

Environment models and requirements are defined

using existing support in MTSA for process and

property specification in FSP and FLTL (fluent

linear temporal logic),Synthesis of the control stack

is achieved by solving the controller synthesis

problem of each tier bottom-up from the lowest tier.

If no solution is found for the problem in a

particular tier, synthesis of the stack terminates at

that tier. The procedure also includes a sanity check

that the environments of tiers simulate the one

immediately above.

Synthesis for a single tier i consists of the

following steps:

1. Compose the tier's environment model Ei in

parallel with the controller Ci 1 generated by the tier

below (if there is a tier below) to create E0 i. This

ensures that the controller for tier i will be simulated

by the controller of the tier below.

2. Solve the GR(1) controller synthesis problem for

the tier's requirement on E0i, to produce controller

Ci.

3. Complete controller Ci to produce C”i. The

completion consists of considering the monitored

actions enabled in each state of the controller, and

adding transitions to a designated exception state for

any monitored actions which are not enabled. These

transitions capture behaviors of the environment that

have not been anticipated in the present tier's

environment model. If the runtime environment

does not behave as the model describes, one of these

transitions will be taken to the exception state. A

single extra transition, which we call an exception

marker, is added at the exception state which

indicates to the enactor that a particular tier has been

disabled. It is these transitions that enable the

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 40 | P a g e

enactor to detect inconsistencies The final control

stack state machine CS is a parallel composition of

the completed controllers C”i, i.e. CS =

complete(C1)||…..||complete(Cn)=1
′
||….||

′
 .This

composition guarantees the requirements of every

tier of the stack until the exception marker for tier i

occurs, at which point it only guarantees the

requirements of the tiers up to i-1.

2. Enactor
An enactor, which handles run-time

execution of the control stack. The enactor extends

[3] to execute control stacks rather than individual

controllers. It keeps track of the stack's current state,

executing controlled actions (via domain-

specification implementations as in [3]) and

responding to monitored environment events. When

the current state is controlled, the enactor selects an

enabled action at random. When the state is

uncontrolled or a mixed controlled/uncontrolled

state, the enactor waits to receive an environment

event. In states where the only enabled action is an

exception marker for some tier i, the enactor notes

the degradation of the service to i-1 and reports this

to the rest of the framework. In e ect, this disables

the controller for tier i.

The planner may attempt at any point an

enhancement by re-synthesizing a controller for tier

i (or above).

Experimental Results

Fig: Nao executing mission.

We have experimented with our synthesis

and enactment infrastructure [3] in various robotic

settings, including an AR Drone 2.0, a Katana

robotic arm and a Nao H25 humanoid robot. A

video of the latter executing a synthesized mission

control stack similar to the one described above can

be found at

XXXXXXXX XXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX XXXXXXXX

XXXXXXX XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX XXXXXXX

XXXXXXXX XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX XXXXXXXX

XXXXXXX XXXXXXXX

http://www.doc.ic.ac.uk/~das05/naoq3.avi.

Controller enactment for these settings

requires implementing each of the controlled actions

in the control stack specification in terms of the

existing behaviors provided by the robot's API. For

instance, for the control of the Nao robot, the

detection of various types of reward is achieved by

recognizing balls of different colors using the Nao's

on-board camera. The balls are presented to the Nao

upon arrival in each region. The location of the Nao

within the environment (an o ce) is determined

using trilateration with respect to a number of

landmarks in positions known a priory (i.e. a

structured environment). The landmarks them-selves

are recognized using the on-board camera.

Similarly, rewards and locations can be recognized

on the AR Drone using its front and bottom cameras

respectively. The synthesized mission control stack

is executed by the enactor, which starts by assuming

the runtime environment behaves like the model in

the upper tier. Initially, in the video, we allow this

assumption to hold by providing the Nao with the

reward it is expecting. Later, we break the bound on

the number of damage events expected in the

uppermost tier, forcing the enactor to gracefully

degrade the level of service. Execution continues

seamlessly such that the Nao immediately seeks a

repair, as demanded by the lower tier requirement.

The experiments demonstrate that our general

approach can be deployed in a robotics setting on

top of a high-level API that encapsulates the

complexities of, for instance, con-trol of the system

dynamics that allows stable movement of the AR

Drone or the localization of the Nao robot. The

resulting system can then ensure that mission-level

guarantees can be gracefully and automatically

degraded (or enhanced) when necessary to cope

with unexpected mission-level events in the

environment.

IV.CONCLUSION & FUTURE SCOPE

In this paper we have presented an

approach for robust high-level control synthesis for

robot missions, and applied it in a various scenarios.

In contrast to the `all or nothing' approach of other

work based on temporal logic, our approach allows

a mission specification to include a range of

requirements of different `strengths' which entail

different levels of risk when operating in the

runtime environment. Our implementation ensures

that when the stronger requirements of higher tiers

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 41 | P a g e

cannot be met due to environmental uncertainty, the

level of service degrades gracefully to a level at

which requirements can be guaranteed. It then

permits progressive enhancement at a later stage. In

future work we are interested in quantifying the

level of risk associated with the tiers of our control

stack, and combining the approach with techniques

that can learn appropriate environment models for

disabled tiers in the stack before progressive

enhancement.

REFERENCES

[1]. R. Bloem, A. Cimatti, K. Greimel, G. Ho

erek, R.

[2]. Konighofer,• M. Roveri, V. Schuppan,

and R. Seeber.

[3]. Ratsy – a new requirements

analysis tool with synthesis. In Proceedings

of the 22Nd International Conference on

Computer Aided Veri cation, CAV'10,

pages 425{429, Berlin, Heidelberg, 2010.

Springer-Verlag.

[4]. A. Bohy, V. Bruyere, E. Filiot, N. Jin, and

J.-F. Raskin. Acacia+, a tool for ltl

synthesis. In Proceedings of the 24th

International Conference on Computer

Aided Veri cation, CAV'12, pages

652{657, Berlin, Heidelberg, 2012.

Springer-Verlag.

[5]. V. Braberman, N. D'Ippolito, N. Piterman,

D. Sykes, and S. Uchitel. Controller

synthesis: From modelling to enactment. In

Proceedings of the 2013 International

Conference on Software Engineering,

pages 1347{1350. IEEE Press, 2013.

[6]. I. Cizelj and C. Belta. Control of noisy di

erential-drive vehicles from time-bounded

temporal logic speci cations. In Robotics

and Automation (ICRA), 2013 IEEE

International Conference on, pages

2021{2026, May 2013.

[7]. L. de Alfaro and T. A. Henzinger. Interface

automata. In ESEC / SIGSOFT FSE, pages

109{120. ACM, 2001.

[8]. N. D'Ippolito, V. Braberman, N. Piterman,

and S. Uchitel. Synthesising non-

anomalous event-based controllers for

liveness goals. ACM Tran. Softw. Eng.

Methodol., 22, 2013.

[9]. N. D'Ippolito, V. A. Braberman, J.

Kramer, J. Magee, D. Sykes, and S.

Uchitel. Hope for the best, prepare for the

worst: multi-tier control for adaptive

systems. In ICSE, pages 688{699, 2014.

[10]. N. D'Ippolito, V. A. Braberman, N.

Piterman, and Uchitel. Synthesis of live

behaviour models for fallible domains. In

R. N. Taylor, H. Gall, and N. Medvidovic,

editors, ICSE 2011, Waikiki, Honolulu ,

HI, USA, May 21-28, 2011, pages

211{220. ACM, 2011.

[11]. N. D'Ippolito, D. Fischbein, M. Chechik,

and S. Uchitel. Mtsa: The modal transition

system analyser. In Proceedings of the

2008 23rd IEEE/ACM International

Conference on Automated Software

Engineering, ASE '08, pages 475{476,

Washington, DC, USA, 2008. IEEE

Computer Society.

[12]. R. Ehlers. Symbolic bounded synthesis. In

Proceedings of the 22Nd International

Conference on Computer Aided Veri

cation, CAV'10, pages 365{379, Berlin,

Heidelberg, 2010. Springer-Verlag.

[13]. Epifani, C. Ghezzi, R. Mirandola,

 and G. Tamburrelli. Model

 evolution by run-time

parameter adaptation. In

 ICSE 2009, pages

 111{121. IEEE, 2009.

[14]. N. Esfahani and S. Malek. Uncertainty in

self-adaptive software systems. In R. de

Lemos, H. Giese, H. A. Muller,• and M.

Shaw, editors, Software Engineering for

Self-Adaptive Systems, volume 7475 of

Lecture Notes in Computer Science, pages

214{238. Springer, 2010.

[15]. T. Fraichard and J. J. K. Jr. Guaranteeing

motion safety for robots. Auton. Robots,

32(3):173{175, 2012.

[16]. C. Ghezzi, M. Pezze, M. Sama, and G.

Tamburrelli. Mining behavior models from

user-intensive web applications. In ICSE,

pages 277{287, 2014.

[17]. D. Giannakopoulou and J. Magee. Fluent

model checking for event-based systems.

In Proceedings of the 9th European

software engineering conference held

jointly with 11th ACM SIGSOFT

international symposium on Foundations of

software engineering, ESEC/FSE-11, pages

257{266, New York, NY, USA, 2003.

ACM.

[18]. R. C. Hill, J. E. R. Cury, M. H. de Queiroz,

D. M. Tilbury, and S. Lafortune. Multi-

level hierarchical

[19]. interface-based supervisory control.

Automatica, 46(7):1152{1164, July 2010.

[20]. B. Jobstmann and R. Bloem. Optimizations

for ltl synthesis. In Proceedings of the

Formal Methods in Computer Aided

Design, FMCAD '06, pages 117{124,

Washington, DC, USA, 2006. IEEE

Computer Society.

[21]. B. Jobstmann, S. Galler, M. Weiglhofer,

and R. Bloem. Anzu: A tool for property

Chinnam Subbarao. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 11, (Part -1) November 2016, pp.36-42

www.ijera.com 42 | P a g e

synthesis. In Proceedings of the 19th

International Conference on Computer

Aided Veri cation, CAV'07, pages

258{262, Berlin, Heidelberg, 2007.

Springer-Verlag.

[22]. H. Kress-Gazit, G. Fainekos, and G.

Pappas. Temporal-logic-based reactive

mission and motion

[23]. planning. Robotics, IEEE Transactions on,

25(6):1370{1381, Dec 2009.

[24]. O. Kupferman and M. Y. Vardi. Model

checking of safety properties. Form.

Methods Syst. Des., 19(3):291{314, Oct.

2001.

[25]. M. Lahijanian, J. Wasniewski, S.

Andersson, and C. Belta. Motion planning

and control from temporal logic speci

cations with probabilistic satisfaction

guarantees. In Robotics and Automation

(ICRA), 2010 IEEE International

Conference on, pages 3227{3232, May

2010.

[26]. A. Medina Ayala, S. Andersson, and C.

Belta. Temporal logic control in dynamic

environments with probabilistic satisfaction

guarantees. In Intelligent Robots and

Systems (IROS), 2011 IEEE/RSJ

International Conference on, pages

3108{3113, Sept 2011.

[27]. R. Milner. Communication and

Concurrency. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989.

[28]. N. Piterman, A. Pnueli, and Y. Sa'ar.

Synthesis of reactive (1) designs. Lecture

notes in computer science, 3855:364{380,

2006.

[29]. A. Pnueli, Y. Sa'ar, and L. D. Zuck. Jtlv: A

framework for developing veri cation

algorithms. In Proceedings of the 22Nd

International Conference on Computer

Aided Veri cation, CAV'10, pages

171{174, Berlin, Heidelberg, 2010.

Springer-Verlag.

