On The Transition Probabilities for the Fuzzy States of a Fuzzy Markov Chain

J.E Earnest Lazarus Piriyakumar and V. Sreevinotha,
Department of Mathematics, Tranquebar Bishop Manickam Lutheran College, Porayar 609 307, Tamil Nadu, South India.

ABSTRACT
In this paper the theory of fuzzy logic is mixed with the theory of Markov systems and the abstraction of a Markov system with fuzzy states introduced. The notions such as fuzzy transient, fuzzy recurrent etc., were introduced. The results based on these notions are introduced.

KEY WORDS: Fuzzy Markov chain, Fuzzy transition probability and Fuzzy random functions.

I. INTRODUCTION
Markov chains are a widely known statistical model of a number of real physical, natural, and social phenomenon. Examples comprise such as biology, medicine [5] economy and also problems related to speech recognition [4]. Fuzzy Markov chain is a robust system with respect to fuzzy transition probabilities which is not the case for the classical probabilistic Markov chains. Fuzzy Markov chains have an inherent application in Fuzzy Markov algorithms proposed by Zadeh[11]. The theory of Markov system offers an effective and powerful tool for describing the phenomena since numerous applied probability models can be adopted in their framework. Roughly speaking the Markov property strand in need of that knowledge of the current state of the system capable of furnishing all the information relevant to forecasting its future. A Markov system can be used to describe a phenomena that evolves over time according to probabilistic laws. Oliniok [6] has given in his article a more abstract and about a Markov fuzzy process with a transition possibility measure in an abstract state space. Bellman and Zadeh [1] were the first considered stochastic system in a fuzzy environment. By a fuzzy environment they mean the system has fuzzy goals and fuzzy constraints. A distinct approach combining fuzzy reasoning with Markov system can be found in [9] where fuzzy inference systems are used to estimate transition probabilities. Schweizer [7] investigates the stationary distribution and fundamental matrix of an irreducible Markov chain as the transition probabilities vary slightly. Smith [8] describes the set of stationary probability vectors arising when the transition probabilities of an n-state Markov chain vary over a specified range.

Bhattacharyya [2] has introduced the Markov decision process with fuzzy states. Motivated by the fuzzy probability we introduce the concepts of fuzzy transient and related notions. We derive results based on these concepts.

In section 2 we briefly state some of the results related to dynamic fuzzy sets. These results will be frequently referred to in the subsequent sections.

In section 3 we introduce the preliminaries related to fuzzy markov chain and fuzzy transition probabilities.

II. DYNAMIC FUZZY SETS:
In what follows we denote the notions and notations of Dynamic fuzzy sets, introduced by Guangyuan wang et. Al [3].

Let U be a non-empty usual set P(U) denote the set of all subsets in U and F(U) denote the set of all fuzzy subsets in U. For A ∈ F(U) we define two subsets of U as follows.

\[A_\alpha = \{ x \in U ; A(x) \geq \alpha \} \quad \text{for any } \alpha \in [0,1] \]

\[A_\delta = \{ x \in U ; A(x) > \alpha \} \quad \text{for any } \alpha \in [0,1] \]

Where A(x) is the membership function of A.

DEFINITION:2.1
Let R be the real line and (R,B) be the Borel measurable space. Let \(F_\alpha(R) \) denote the set of fuzzy subsets \(A:R \rightarrow [0,1] \) with the following properties

1. \(\{ x \in R ; A(x) = 1 \} \neq \emptyset \)
2. \(A_\alpha = \{ x \in R ; A(x) \geq \alpha \} \) is a bounded closed interval in \(R \) for each \(\alpha \in (0,1] \) ie \(A_\alpha = [A^-_\alpha, A^+_\alpha] \)

Where \(A^-_\alpha = \inf A_\alpha \) \(A^+_\alpha = \sup A_\alpha \)

A \(\in F_\alpha(R) \) is called bounded closed fuzzy number.

MARKOV PROCESS WITH FUZZY STATES
Let \(X = \{ x_1, x_2, \ldots, x_n \} \) be a given set. A fuzzy pseudopartition or a fuzzy N-partition of X is a family of subset of \(\alpha \), denote by \(A = \{ A_1, A_2, \ldots, A_N \} \) with the corresponding membership function \(\mu_1, \mu_2, \ldots, \mu_N \) which satisfies the orthogonality
conditions $\sum_{i=1}^{n} \mu_{r}(i) = 1$ for all $x \in X$ and $0 < \sum_{i=1}^{n} \mu_{r}(i) < n$ for all $A \in A$ where n is a positive integer.

Let $F = \{F_1, F_2, ..., F_N\}$ be the fuzzy state space, i.e., the set of fuzzy states for the problem. Fr is a fuzzy set on $S = \{1,2,3,...,M\}$. Where S denotes the original non-fuzzy state space for the system, the element of which may or may not be exactly observable. Let $\mu_{r}(0): S \rightarrow [0,1]$ denote the membership function of the fuzzy state Fr, for $r = 1,2,3,....N$. It is assumed that $\{F_1, F_2, ..., F_N\}$ defines a pseudo partition of fuzzy set on S such that

$$\sum_{r=1}^{N} \mu_{r}(i) = 1 \text{ for all } i \in S$$ (2.5)

There are K possible alternatives available for each state. It is also assumed that the transition probability $P_r(k)$ of the system moving from state i to state j under the alternative k is known for all $i,j \in S$ and for all $k = 1,2,3,..,k$. It is further assumed that the initial probability denoted by Q_0 of the system being in the non fuzzy state i is known, for each $i \in S$. As we shall be dealing with the problem on fuzzy state space Fr for all $Fr \in F$.

TRANSITION PROBABILITY FOR FUZZY STATES

Let X^f_i, X^f_j denote the non fuzzy and fuzzy state of the system at time t respectively. The transition probability of the system moving from one fuzzy state to another can be computed as follows.

$$P_{FrFs} = \text{Prob}[X^f_i = Fr_i \wedge X^f_j = Fs_j]$$

Now using (2.6) we write

$$\text{Prob}[X^f_i = Fr_i, X^f_j = Fs_j] = \sum_{i=1}^{m} \mu_{Fr_i}(i) \mu_{Fs_j}(i) Q_{ij}$$ (2.7)

And using (2.6) – (2.7) we get

$$\text{Prob}[X^f_i = Fr_i, X^f_j = Fs_j] = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{Fr_i}(i) \mu_{Fs_j}(i) Q_{ij}$$

$$P_{FrFs} = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{Fr_i}(i) \mu_{Fs_j}(i) Q_{ij}$$

(2.8)

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{Fr_i}(i) \mu_{Fs_j}(i)$$

The above formula reduces to the following when all Q_{ij} are equal.

$$P_{FrFs} = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{Fr_i}(i) \mu_{Fs_j}(i)$$

Writing

$$\sum_{i=1}^{m} \mu_{Fr_i}(i) = m_{Fr}$$

Equation (2.10) further simplifies to

$$P_{FrFs} = \left(m_{Fr} \right)^{1} \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{Fr_i}(i) \mu_{Fs_j}(i)$$

(2.11)

The m-step transition probability for fuzzy states is given by

$$\text{Prob}[X^f_m = Fr_i \wedge X^f_0 = Fs_j] = \text{Prob}[Fr_i \wedge Fs_j]$$

(2.12)

$P_{FrFs}(m)$ gives the probability that from the fuzzy state Fr_i at the nth trial fuzzy state k is reached at $(m+n)$th trial in m-steps.

THEOREM 2.1

CHAPMAN – KOLMOGOROV EQUATION

For fuzzy states Fr_i and Fs_j

$$P_{FrFs} = \sum_{r=1}^{m} P_{FrFs}^{(r)} P_{Fsj}$$

(2.13)

Proof:

The one – step transition probabilities P_{FrFs} are denoted by P_{FrFs}

$$P_{FrFs} = \text{Prob}[X^f_2 = Fr_i \wedge X^f_1 = Fs_j]$$

(2.14)

The fuzzy state Fs_j can be reached from the fuzzy state Fr_i in two steps through some intermediate fuzzy state k. Consider the fixed value of r. Let $Pr[X^f_2 = Fr_i \wedge X^f_1 = Fs_j]$

$$\Rightarrow P_{FrFs} = P_{FrF} P_{FjFs}$$

Since these intermediate fuzzy state r can assume values $r = 1,2,3,..,n$ we have,

$$P_{FrFs} = \sum_{r=1}^{n} \text{Prob}[X^f_2 = Fr_i \wedge X^f_1 = Fs_j]$$

$$= \sum_{r=1}^{n} \text{Prob}[Fr_i \wedge Fs_j]$$

(2.15)

By induction we have

$$P_{FrFs} = \sum_{r=1}^{n} \text{Prob}[X^f_{n+1} = Fr_i \wedge X^f_n = Fs_j]$$

$$= \sum_{r=1}^{n} \sum_{k=1}^{m} \text{Prob}[X^f_{n+1} = Fr_i \wedge X^f_n = Fs_j]$$

$$= \sum_{r=1}^{n} \sum_{k=1}^{m} \text{Prob}[Fr_i \wedge Fs_j]$$

Similarly we get

$$P_{FrFs} = \sum_{r=1}^{n} \sum_{k=1}^{m} \text{Prob}[X^f_{n+1} = Fr_i \wedge X^f_n = Fs_j]$$

In general we have

$$P_{FrFs} = \sum_{r=1}^{n} \sum_{k=1}^{m} \text{Prob}[X^f_{n+1} = Fr_i \wedge X^f_n = Fs_j]$$

(2.16)

III. CLASS PROPERTY

A class of fuzzy states is a subset of the fuzzy state space such that every fuzzy state of the class communicates with every other and there is no other fuzzy state outside the class which communicates with all other fuzzy states in the class. A property defined for all fuzzy states of a chain is a class property if it possession by one fuzzy state in a class implies its possession by all fuzzy states of the same class. One such property is the periodicity of a state.
DEFINITION 3.1
Fuzzy state Fr is a return state if \(P_{FrFs}(n) > 0 \) for some \(n \geq 1 \). The period \(d_i \) of a return to state I is defined as the greatest common divisor of all \(n \) such that \(P_{FrFr}^{(m)} > 0 \). Thus
\[
d_i = \text{G.C.D} \{ m; P_{FrFr}^{(m)} > 0 \} \in (0, 1]
\]
Fuzzy state i is said to be aperiodic if \(d_i = 1 \) and periodic if \(d_i > 1 \). Clearly state i is aperiodic if \(P_{FrFr} \neq 0 \). It can be shown that two distinctive fuzzy states belonging to the same class have the same period.

Every finite Markov chain contains at least one closed set, i.e., the set of all fuzzy states or the fuzzy state space. If the chain does not contain any other proper closed subset other than the fuzzy state space, then the chain is called irreducible; the transition probability matrix of irreducible class is an irreducible matrix. In an irreducible Markov chain every fuzzy state can be reached from every other fuzzy state.

CLASSIFICATION OF STATES:
Suppose that a system starts with the fuzzy state Fr. Let \(f_{FrFs}^{(n)} \) be the probabilities that it reaches the state Fs for the first time at the nth step. Let \(P_{FrFs}^{(0)} \) be the probability that it reaches state Fs after n transitions. Let \(T_k \) be the first passage time to fuzzy state Fs, i.e.,
\[
T_k = \text{min} \{ n \geq 1, X_n = Fs \}
\]
And \(\{ f_{FrFs}^{(n)}\} \) be the distribution of \(T_k \) given that the chain starts at the fuzzy state Fr. A relation can be established between \(f_{FrFs}^{(n)} \) and \(P_{FrFs}^{(0)} \) as follows. The relation allows \(f_{FrFs}^{(n)} \) to be expressed in terms of \(P_{FrFs}^{(0)} \). We state the following theorem.

THEOREM 3.1
Whatever be the fuzzy state Fr and Fs
\[
P_{FrFs}^{(0)} = \sum_{r=0}^{\infty} f_{FrFs}^{(r)} P_{FsFs}^{(r-n)} ; n \geq 1
\]
With \(P_{FrFs}^{(0)} = 1, f_{FrFs}^{(0)} = 0, f_{FrFs}^{(1)} = P_{FrFs} \)
It can also be written as
\[
P_{FrFs}^{(0)} = \sum_{r=0}^{\infty} f_{FrFs}^{(r)} P_{FsFs}^{(r-n)} + f_{FrFs}^{(n)} ; n > 1
\]
FIRST PASSAGE TIME DISTRIBUTION
Let \(F_{FrFs} \) denote the probability that starting with the fuzzy state Fr the system will ever reach the fuzzy state Fs. Clearly
\[
F_{FrFs} = \sum_{n=1}^{\infty} f_{FrFs}^{(n)}
\]
We have
\[
\sum_{n=1}^{\infty} f_{FrFs}^{(n)} \leq F_{FrFs} \leq \sum_{m=1}^{\infty} P_{FrFs}^{(m)} \text{ for all } n \geq 1
\]
We need to consider two cases
\[
F_{FrFs} = 1, \text{ and } F_{FrFs} < 1
\]
The mean (first passage) time from fuzzy state Fr to fuzzy state Fs is given by
\[
\mu_{FrFs} = \sum_{n=1}^{\infty} n f_{FrFs}^{(n)}
\]
More over
\[
\mu_{FrFr} = \sum_{n=1}^{\infty} n f_{FrFr}^{(n)}
\]
Is known as the mean recurrence time for the fuzzy state Fr.
It is appropriate to express
\[
d_i = \text{G.C.D} \{ m; P_{FrFr}^{(m)} > 0 \} = \text{G.C.D}[m; f_{FrFr}^{(m)} > 0]
\]
LEMMA:
Let \(\{ f_n \} \) be a sequence of fuzzy functions such that \(f_n \geq 0 \), \(\sum f_n = 1 \) and \(\exists \lambda \) be the greatest common divisor of those n for which \(f_n > 0 \). Let \(\{ a_n \} \) be another sequence such that
\[
a_n = \sum_{r=1}^{n} f_{x_n-r} \text{ for } n \geq 1
\]
then
\[
limit_{n \to \infty} (a_n) = \frac{t}{\mu}
\]
Where \(\mu = \sum_n f_n \text{ the limit being zero when } \mu = \infty \) and
\[
limit_{n \to \infty} (U_n) = 0
\]
Whenever N is not divisible by t.

DEFINITION 3.2
A fuzzy state Fr is said to be fuzzy persistent
If \(F_{FrFr} = 1 \)
I.e., if \(F_{FrFr} = \cup_{a \in [0,1]} \alpha (F_{FrFr}) a = 1 \)
I.e.,
\[
\cup_{a \in [0,1]} [F_{FrFr}] - (F_{FrFr}) a \] = 1
\]
I.e,
\[
\cup_{a \in [0,1]} [F_{FrFr}] + (F_{FrFr}) a \] = 1
\]
DEFINITION 3.3
A fuzzy state Fr is said to be fuzzy transient if \(F_{FrFr} < 1 \)
I.e., if \(F_{FrFr} = \cup_{a \in [0,1]} \alpha (F_{FrFr}) a < 1 \)
I.e.,
\[
\cup_{a \in [0,1]} [F_{FrFr}] - (F_{FrFr}) a \] < 1
\]
I.e,
\[
\cup_{a \in [0,1]} [F_{FrFr}] + (F_{FrFr}) a \] < 1
\]
DEFINITION 3.4
A fuzzy persistent state Fr is said to be null persistent if \(\mu_{FrFr} = \infty \) and said to be non-null persistent if \(\mu_{FrFr} < \infty \).
Fuzzy state Fr is non-null persistent
If \(F_{FrFr} = \cup_{a \in [0,1]} \alpha (F_{FrFr}) a = \infty \)
I.e.,
\[
\cup_{a \in [0,1]} [F_{FrFr}] - (F_{FrFr}) a \] = \infty
\]
I.e,
\[
\bigcup_{\alpha \in (0,1]} \alpha \left(\left[\mu_{\alpha}^{-1} \right] \right) = \infty
\]

If is non-null persistent if
\[
\bigcup_{\alpha \in (0,1]} \alpha \left(\left[\mu_{\alpha}^{-1} \right] \right) < \infty
\]

THEOREM 3.2

Fuzzy state Fr is fuzzy persistent if and only if
\[
\sum_{n=0}^{\infty} P_{FrF_{Fr}}^{(n)} = \infty
\]

Proof:
Let
\[
P_{FrF_{Fr}}^{(n)}(s) = \sum_{n=0}^{\infty} p_{FrF_{Fr}}^{(n)} s^n = 1 + \sum_{n=1}^{\infty} p_{FrF_{Fr}}^{(n)} s^n
\]

And
\[
F_{FrF_{Fr}}^{(n)}(s) = \sum_{n=0}^{\infty} f_{FrF_{Fr}}^{(n)} s^n = \sum_{n=1}^{\infty} f_{FrF_{Fr}}^{(n)} s^n
\]

Be the generating function of the sequences \(\{P_{FrF_{Fr}}^{(n)}\} \) and \(\{f_{FrF_{Fr}}^{(n)}\} \) respectively.

We have from (3.6)
\[
\sum_{n=0}^{\infty} P_{FrF_{Fr}}^{(n)} = \infty \quad P_{FrF_{Fr}}^{(n)} = \sum_{r=0}^{\infty} p_{FrF_{Fr}}^{(n-r)}
\]

\[
= \sum_{r=0}^{\infty} \bigcup_{\alpha \in (0,1]} \alpha \left(f_{FrF_{Fr}}^{(n-r)} \right) \alpha \left(P_{FrF_{Fr}}^{(n)} \right)
\]

Multiplying both sides of (3.7) by \(s^n \) and adding for all \(n \geq 1 \) we get
\[
\bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) - 1 = \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) \alpha \left(P_{FrF_{Fr}}^{(n)} \right)
\]

Thus
\[
\bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) = 1
\]

Assume that Fr is fuzzy persistent which implies that
\[
\bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) = 1
\]

Using Abels lemma
\[
\lim_{s \to 1} \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) = 1
\]

Since the coefficients of \(\{P_{FrF_{Fr}}\} \) are non-negative. We get
\[
\sum_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) = \infty
\]

Conversely if the state j is fuzzy transient then by Abels lemma
\[
\lim_{s \to 1} \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) < 1
\]

From
\[
\lim_{s \to 1} \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) < \infty
\]

Since the coefficients
\[
\sum_{n=0}^{\infty} \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right) < \infty
\]

THEOREM 3.3

If state j is fuzzy persistent non-null then as \(n \to \infty \)

(i) \(P_{FrF_{Fr}}^{(nt)} \to \frac{t}{\mu_{FrF_{Fr}}} \) when fuzzy state Fr is periodic with period \(t \) and

(ii) \(P_{FrF_{Fr}}^{(nt)} \to \frac{1}{\mu_{FrF_{Fr}}} \) when fuzzy state Fr is aperiodic.

In case fuzzy state is persistent null then
\[
P_{FrF_{Fr}}^{(nt)} \to 0 \text{ as } n \to \infty.
\]

Proof:
Let fuzzy state Fr be persistent then
\[
\mu_{FrF_{Fr}} = \sum_{n=0}^{\infty} n f_{FrF_{Fr}}^{(n)}
\]

We have
\[
P_{FrF_{Fr}}^{(nt)} = \sum_{n=0}^{\infty} n f_{FrF_{Fr}}^{(n)}
\]

We put \(f_{FrF_{Fr}}^{(n)} \) for \(u_n \) \(p_{FrF_{Fr}}^{(n)} \) for \(u_n \) and \(\mu_{FrF_{Fr}} \) for \(u_n \) in lemma 3.1

Applying the lemma we get
\[
P_{FrF_{Fr}}^{(nt)} \to \frac{t}{\mu_{FrF_{Fr}}} \text{ as } n \to \infty
\]

When state Fr is periodic with period \(t \) when fuzzy state Fr is aperiodic then
\[
P_{FrF_{Fr}}^{(nt)} \to \frac{1}{\mu_{FrF_{Fr}}} \text{ as } n \to \infty
\]

In case fuzzy state Fr is persistent null \(\mu_{FrF_{Fr}} = \infty \) and \(P_{FrF_{Fr}}^{(nt)} \to 0 \) as \(n \to \infty \)

\[
\mu_{FrF_{Fr}} = \bigcup_{\alpha \in (0,1]} \alpha \left(P_{FrF_{Fr}}^{(n)} \right)
\]

\[
= \bigcup_{\alpha \in (0,1]} \left[\left(P_{FrF_{Fr}}^{(n)} \right) \left(\mu_{FrF_{Fr}} \right) \right]
\]

Where for any \(\alpha \in (0,1] \)
\[
\left(\mu_{FrF_{Fr}} \right) = \inf \{ \mu_{FrF_{Fr}} \}
\]

\[
\left(\mu_{FrF_{Fr}} \right) = \sup \{ \mu_{FrF_{Fr}} \}
\]

\[
\left(\mu_{FrF_{Fr}} \right) = \sum_{n=1}^{\infty} n \left(f_{FrF_{Fr}}^{(n)} \right)
\]

www.ijera.com
We put \((f_a^{(n)})_{FrFr}\) for \(fn, (p_a^{(n)})_{FrFr}\) for \(u_a\) and \((\mu_a)_{FrFr}\) for \(\mu\) in Lemma (3.1) above. Applying Lemma we get,
\[
(p_a^{(n)})_{FrFr} \xrightarrow{\alpha} \left(\frac{r}{u_a}_{FrFr}\right)\text{ as } n \to \infty.
\]
When state \(j\) is periodic with period \(t\).
\[
U_{ae(0,1)}(p_a^{(n)})_{FrFr} \xrightarrow{\alpha} U_{ae(0,1)}(\mu_a)_{FrFr}
\]

THEOREM: 3.4

If fuzzy state \(Fs\) is fuzzy persistent null, then for every \(Fr\)
\[
\lim_{n \to \infty} P_{FrFs}^{(n)} = 0 \quad (3.9)
\]
And if fuzzy state \(Fs\) is aperiodic fuzzy persistent non-null then
\[
\lim_{n \to \infty} P_{FrFs}^{(n)} \to \frac{F_{FrFs}}{\mu_{FrFr}} \quad (3.10)
\]
Proof:
\[
P_{FrFs}^{(n)} = \sum_{r=1}^{m} (f_{rFrFs})_{r} P_{rFs}^{(n-r)}
\]

\[
\cup_{ae(0,1)}(P_{rFs}^{(n)})_{a} = \sum_{r=1}^{m} \sum_{ae(0,1)} P_{rFs}^{(n-r)}(f_{rFrFs})_{a}
\]

Let \(n > m\) then
\[
(P_{FrFs}^{(n)})_{a} \leq \sum_{r=1}^{m} (f_{rFrFs})_{r} P_{rFs}^{(n-r)}(f_{rFrFs})_{a}
\]

Since fuzzy state \(Fs\) is fuzzy persistent null then \((P_{rFs}^{(n-r)})_{a} \to 0\) as \(n \to \infty\) for each \(a\).
Further since
\[
\sum_{m=1}^{\infty} (f_{rFrFs})_{a} < \infty
\]
\[
\sum_{r=m+1}^{n} (f_{rFrFs})_{a} \to 0 \text{ for each } a \in (0,1) \text{ and } n, m \to \infty.
\]
Therefore as \(n \to \infty\)
\[
\cup_{ae(0,1)}(P_{rFs}^{(n)})_{a} \to 0
\]

I.e.,
\[
P_{FrFs}^{(n)} \to 0
\]

From the equation
\[
(P_{FrFs}^{(n)})_{a} \to \sum_{r=1}^{m} (f_{rFrFs})_{r} P_{rFs}^{(n-r)} \leq \sum_{r=m+1}^{n} (f_{rFrFs})_{a} \quad (3.11)
\]
Since fuzzy state is aperiodic, fuzzy persistent and non-null then by theorem
\[
(P_{FrFs}^{(n-r)})_{a} \to \frac{1}{(\mu_{FrFr})_{a}} \text{ as } n \to \infty
\]
From the equation (3.11) we get \(n, m \to \infty\)
\[
\sum_{ae(0,1)}(P_{rFs}^{(n)})_{a} \cup_{ae(0,1)}(P_{rFs}^{(n)})_{a} \left(\frac{F_{FrFs}}{\mu_{FrFr}}\right)_{a}
\]

Therefore,
\[
P_{FrFs}^{(n-r)} \to \frac{F_{FrFs}}{\mu_{FrFr}}
\]

THEOREM: 3.5

In an irreducible chain all the states are of the same type. They are either all fuzzy transient all fuzzy persistent null or all fuzzy persistent non-null. All the fuzzy state are aperiodic and in the latter case they all have the same period.

Proof:

Since the chain is irreducible, every fuzzy state can be reached from every other state. If \(Fr, Fs\) are any two states then \(Fr\) can be reached from \(Fs\) and \(Fs\) from \(Fr\).
I.e., \(P_{FrFs}^{(N)} = a > 0 \text{ for some } N \geq 1\)
And \(P_{FsFr}^{(M)} = b > 0 \text{ for some } M \geq 1\)
I.e., \(P_{ae(0,1)}(P_{FrFs}^{(N)})_{a} = a > 0 \text{ for some } N \geq 1\)
And \(P_{ae(0,1)}(P_{FrFs}^{(M)})_{a} = b > 0 \text{ for some } M \geq 1\)
\[
\cup_{ae(0,1)}(P_{rFs}^{(n)})_{a} = \cup_{ae(0,1)}(P_{rFs}^{(m+n)})_{a}
\]
\[
(P_{FrFs}^{(n)})_{a} = \sum_{ae(0,1)}(P_{rFs}^{(n)})_{a} \quad (3.12)
\]
Hence
\[
(P_{FrFs}^{(n)})_{a} \geq (P_{FrFs}^{(n)})_{a} \quad (3.13)
\]
From the above it is clear that \(\Sigma_{n} P_{FrFs}^{(n)}\) and \(\Sigma_{n} P_{rFs}^{(n)}\) converge or diverge
together. Thus the two fuzzy states Fr, Fs are either
both fuzzy transient or fuzzy persistent.

Suppose that Fr is fuzzy persistent null then

\((P_{FrFr}^{(n)})_\alpha \to 0\) as \(n \to \infty\) for each \(\alpha \in (0,1]\) from

(3.12) \((P_{FsFs}^{(n)})_\alpha \to 0\) as \(n \to \infty\) for each \(\alpha \in (0,1]\) .

So that Fr is also fuzzy persistent null.

Suppose that Fr is persistent non-null and has period t then \((P_{FrFr}^{(n)})_\alpha > 0\) for each \(\alpha \in (0,1]\)
whenever \(n\) is a multiple of \(t\). Now

\[
(P_{FrFr}^{(N+M)})_\alpha \geq (P_{FrFs}^{(N)})_\alpha (P_{FsFs}^{(M)})_\alpha
\]

\[
\geq \bigcup_{\alpha \in (0,1]} \alpha (P_{FrFs}^{(N)})_\alpha \bigcup_{\alpha \in (0,1]} \alpha (P_{FsFr}^{(M)})_\alpha
\]

ie.,

\[
(P_{FrFr}^{(N+M)})_\alpha \geq (P_{FrFs}^{(N)})_\alpha (P_{FsFs}^{(M)})_\alpha = ab > 0
\]

So that \(N+M\) is a multiple of \(t\). From equations

(3.12 & 3.13),

\[
(P_{FsFs}^{(n+N+M)})_\alpha \geq ab(P_{FrFr}^{(n)})_\alpha > 0
\]

Thus \(n+N+M\) is a multiple of \(t\) and so \(t\) is the period
of \(Fs\) also.

Theorem 3.6

An irreducible aperiodic Markov chain belongs to
one of the following two classes.

(i) Either the states are all fuzzy transient or all
fuzzy recurrent. In this case \(p_{FrFs}^{(n)} \to 0\) and \(n \to \infty\) for all fuzzy states Fr and Fs and there
exists no stationary distribution.

(ii) Or else all states are positive fuzzy recurrent that

\[
\prod_{Fs} = \lim_{n \to \infty} p_{FrFs}^{(n)} > 0
\]

In this case \(\{\Pi_{Fs}, Fs = 0,1,2,...\}\) is a stationary
distribution and there exists no other stationary distribution.

Proof:

We will first prove (ii)

\[
p_{FrFs}^{(n)} = \bigcup_{\alpha \in (0,1]} \alpha (p_{FrFs}^{(n)})_\alpha
\]

\[
= \bigcup_{\alpha \in (0,1]} \alpha (p_{FrFs}^{(n)})^+ - (p_{FrFs}^{(n)})^-
\]

\[
\sum_{Fs=1}^{M} \prod_{Fs}^+(n) \leq \sum_{Fs=0}^{\infty} (p_{FrFs}^{(n)})_\alpha = 1
\]

Let \(n \to \infty\) yields

\[
\lim_{n \to \infty} \sum_{Fs=1}^{M} \prod_{Fs}^+(n) \leq 1
\]

\[
\sum_{Fs=1}^{M} \lim_{n \to \infty} (p_{FrFs}^{(n)})_\alpha \leq 1
\]

\[
\sum_{Fs=0}^{M} \prod_{Fs}^{(n)} \leq 1
\]

Which implies that

\[
\sum_{Fs=0}^{M} \prod_{Fs}^{(n)} \leq 1
\]

Now

\[
(p_{FrFs}^{(n+1)})_\alpha = \sum_{Fs=0}^{M} (p_{FrFs}^{(n)})_\alpha (p_{FrFs}^{(k)})_\alpha
\]

\[
\geq \sum_{Fs=0}^{M} (p_{FrFs}^{(n)})_\alpha (p_{FrFs}^{(k)})_\alpha
\]

Letting \(n \to \infty\)

\[
\prod_{Fs} \to \infty \quad \text{yields}
\]

\[
\prod_{Fs} \to \infty\]

Implying that

\[
\prod_{Fs} \geq \sum_{Fs=0}^{M} \prod_{Fs}^{(n)} (p_{FrFs}^{(n)})_\alpha
\]

To show that the above is actually an actually
equality, suppose that the inequality is strict for some
Fs. Then upon adding these inequalities we obtain

\[
\sum_{Fs=0}^{\infty} (\prod_{Fs}^{(n)})_\alpha > \sum_{Fs=0}^{\infty} \sum_{Fs=0}^{\infty} \prod_{Fs}^{(n)} (p_{FrFs}^{(n)})_\alpha
\]

\[
= \sum_{Fs=0}^{\infty} \prod_{Fs}^{(n)} \prod_{Fs=0}^{\infty} (p_{FrFs}^{(n)})_\alpha
\]

\[
= \sum_{Fs=0}^{\infty} \prod_{Fs}^{(n)}
\]

Which is a contradiction. \(Fk=0\)

Therefore

\[
(\Pi_{Fs})_\alpha = \sum_{Fs=0}^{\infty} (\Pi_{Fs})_\alpha (p_{FrFs}^{(n)})_\alpha \quad Fs = 0,1,...
\]

Putting \((p_{Fs})_\alpha = \frac{(\Pi_{Fs})_\alpha}{\sum_{Fs=0}^{\infty} (\Pi_{Fs})_\alpha}
\]

We observe that \(\{p_{Fs}\}\) is a stationary distribution
and hence at least one stationary distribution exists.

Now let \(p_{Fs}, Fs = 0,1,2,...\) be any stationary
distribution

Then

\[
p_{Fs} = p[X_n = Fs] = \sum_{Fr} p_{FrFs}^{(n)} [X_n = Fs | X_0 = Fs] p_{Fr} [X_0 = Fr]
\]

\[
= \sum_{Fr} \prod_{Fs} (p_{FrFs}^{(n)})_\alpha (p_{Fr})_\alpha
\]

(3.14)

From (3.14) we note that
\[
(p_{F_s})_a \geq \sum_{Fr=0}^M (p_{FrFs})_a (p_{Fr})_a \quad \text{for all } M.
\]

Letting \(n\) and then \(M\) approaches \(\infty\) yields
\[
(p_{Fr})_a \geq \sum_{Fr=0}^\infty (\Pi_{F_s})_a (p_{Fr})_a = (\Pi_{F_s})_a
\]
To get the other way and show that \((p_{Fr})_a \leq (\Pi_{F_s})_a\) use (3.14) and the fact that \((p_{FrFs})_a \leq 1\) to obtain
\[
(p_{F_s})_a \leq \sum_{Fr=0}^M (p_{FrFs})_a (p_{Fr})_a + \sum_{Fr=m+1}^\infty (p_{Fr})_a \quad \text{for all } M
\]
And letting \(n \to \infty\) gives
\[
(p_{F_s})_a \leq \sum_{Fr=0}^\infty (\Pi_{F_s})_a (p_{Fr})_a + \sum_{Fr=m+1}^\infty (p_{Fr})_a
\]
Since \(\sum_{Fr=0}^\infty (p_{Fr})_a = 1\) we obtain
Upon letting \(M \to \infty\) that
\[
(p_{F_s})_a \leq \sum_{Fr=0}^\infty (\Pi_{F_s})_a (p_{Fr})_a = (\Pi_{F_s})_a \quad (3.14)
\]

If the states are fuzzy transient or null fuzzy recurrent and \(\{F_s \; , \; Fs=0,1,2,\ldots\}\) is a stationary distribution then \((p_{FrFs})_a \to 0\) which is clearly impossible. Thus for case (i) no stationary distribution exists and completes the proof.

REFERENCES