
G. Gopinath Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.96-99

www.ijera.com 96 | P a g e

High Speed Fault Injection Tool Implemented With Verilog HDL

on FPGA for Testing Fault Tolerance Designs

G. Gopinath Reddy
*
, A. Rajasekhar Yadav

**
, Y. Mahesh

*(Department of ECE, CREC, Tirupati)

** (Department of ECE, CREC, Tirupati)

*** (Department of ECE, CREC, Tirupati)

ABSTRACT

This paper presents an FPGA-based fault injection tool, called FITO that supports several synthesizable fault
models for dependability analysis of digital systems modeled by Verilog HDL. Using the FITO, experiments

can be performed in real-time with good controllability and observability. As a case study, an Open RISC 1200

microprocessor was evaluated using an FPGA circuit. About 4000 permanent, transient, and SEUfaults were

injected into this microprocessor. The results show that the FITO tool is more than 79 times faster than a pure

simulation-based fault injection with only 2.5% FPGA area overhead.

KEY WORDS : Fault Tolerance Design , Gate level Fault Injection, Emulation Phase.

I. INTRODUCTION
Fault injection is mainly used to evaluate

fault-tolerant mechanisms. In the last decade, fault
injection has become a popular technique for

experimentally determining dependability parameters of

a system, such as fault latency, fault propagation and

fault coverage [1]. Within the numerous fault injection

approaches that have been proposed, there are two

classifications for fault injection methods [2] hardware-

based fault injection [3], [4], and software-based fault

injection [5-11]. Software-based fault injection

methods are divided into software-implemented fault

injections (SWIFI) and simulation-based fault

injections. In the simulation-based fault injection, faults
are injected into the simulation model of the circuits

using VHDL [1], [7], [8], [9] or Verilog[10], [11]

languages. The main advantage of simulation-based

fault injection as compared with other fault injection

methods is the high observability and controllability

[10],[2]. However, simulation-based fault injection

methods are too time-consuming [2]. One way to

provide good controllability and observability as well

as high speed in the fault injection experiments is to use

FPGA-based fault injection. An effective FPGA-based

fault injection technique should support several

properties as below:
1. High controllability and observability,

2. High speed fault injection experiments with the

target system running at full speed,

3. Capability of injecting permanent and

transient faults,

All FPGA-based fault injection techniques

that mentioned above inject faults at synthesizable

VHDL models of the systems. Because of the use

of Verilog hardware description language in

implementation of many digital systems, the lack of

FPGA-based fault injection tool which supports this

hardware description language can be felt. This paper

describes the FPGA-based fault injection tool, called,

FITO which support all of the fourth properties as

mentioned above and is based on Verilog description of

the systems. FITO supports several fault models into
RTL and Gate-level abstraction levels of the target

system which has been described by the Verilog

HDL2. For supporting high speed fault injection

experiments, the fault injector part of FITO with low

area overhead is implemented with synthesized

microprocessor core inside the FPGA.

II. FAULT MODELS
Digital circuits which are developed by

the hardware design languages have hierarchical

modeling and can be implemented by several abstract

levels. FITO performs fault injection experiments into

the gate level and RTL3 level of the circuits Verilog

models.The fault models which are introduced in gate

level are the permanent and transient faults. In addition,

bit-flip fault is proposed for the RTL level of the

digital circuits. Fault injection process can be done by

applying some extra gates and wires to the original

design description and modifying the target Verilog

model of the system. One of these extra wires is the

Fault Injection Signal (FIS) which playing the key role
in the fault injection experiments. If a FIS takes the

value 1, fault would be activated and if it takes the

value 0, the fault would become inactive. For each FIS

there would be a path through all levels of hierarchy to

its modified circuit. After the modification, the final

synthesizable Verilog description will be produced

which is suitable to use in emulators. In the rest of the

paper the synthesizable modification into the Verilog

model of the circuit for supporting each fault model has

been described.

RESEARCH ARTICLE OPEN ACCESS

G. Gopinath Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.96-99

www.ijera.com 97 | P a g e

II.1. Gate Level Fault Injection

FITO supports permanent and transient fault

models by generating the modified Verilog source

code of the target system for each fault model. The

modified Verilog description of the circuit is
synthesizable and can be used for FPGA-based

fault injection experiments. For supporting the

permanent faults in Verilog design, FITO nominates

wires for fault injection and apply the FIS signal

with one extra gate. So, by selecting the FIS signal

high at fault injection time, the permanent fault into the

specified wire will be injected.

Figure 1 shows the Verilog source

code modification for supporting stuck-at fault

models. FITO uses one timer for determining the fault

injection time. It also uses another timer for finishing

the fault injection experiment (workload execution).
After reaching the fault injection time, the FIS signal

will be high and another timer starts to count. As

shown in figure 1 wire TX is the additional wire which

is applied to the original design and the every wire

namely X will be replaced by TX.In addition, FITO

can generate synthesizable modified Verilog source

code of the target system for supporting transient

faults. The modified circuit that is suitable for

transient fault injection is shown in figure 2. After

reaching the fault injection time, the FIS signal will be

high and the timer which have been loaded with the
duration of the transient fault injection start to

count. Therefore, the FIS will be high (at logic 1) for

the specified duration of time. As similar to the

permanent fault, the additional wire (TX) will be used

and each wire, namely X will be replaced with TX.

Note, the fault injector part of FITO which is called

Fault Injection Manager.

II.2. RTL Level Fault Injection
The fault model that is used by FITO at this

level is bit-flip (or Single Event Upset). SEUs are the

random events and may flip the content of the memory
element at unpredictable times. FITO generate

modified circuit for each memory element that is

specified for fault injection.The modified circuit for

supporting bit-flip fault model is shown in figure3.

FIS[0]

Figure 1. Synthesizable bit-Flip fault model

For supporting the bit-flip fault model,

FITO produces the additional signals such as Bit

and FIS with one multiplexer. The Verilog

synthesizable code for supporting this fault model is

shown in figure 3. The inverted input will be goes to

the flip-flop for the next clock that FIS and Bit are

1. FIS indicates the target register and the Bit will be

high for the target register's bit. The fault injection

manger part of FITO is responsible for setting and
resetting the FIS and Bit signals.

III. THE FITO ENVIRONMENT
FITO is made of three main parts that every

part is used in different fault injection phases. These

parts are:

1. Source Code Modifier & Fault List Generator

2. Fault Injection Manager

3. Result Analyzer

Source Code Modifier & Fault List Generator

and Result Analyzer are the software parts of the

FITO which are located on the host computer. On the

other hand, Fault Injection Manager is responsible

for performing the real-time fault injection. This

hardware part is implemented on the FPGA board.

The fault injection process with FITO has been

shown in Figure 4. As shown in this figure, each

FITO's part that were mentioned before are used in

different phases of the fault injection process. In the

rest of the paper, each fault injection phases and the
main work of each FITO's part in these phases will be

described in more details.

Figure 2. Fault injection process with FITO

III.1. The Setup Phase
The main objectives of this phase are

achieving modified Verilog source codes of the

original model that is synthesizable and generating

correspond fault list for each fault injection

experiments.

In setup phase the Verilog models have been given to

the FITO. First, by selecting all or some of the

considered fault models, the Source Code Modifier

processes the Verilog model of the system. After user
specifies the main module, a source navigator shows

G. Gopinath Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.96-99

www.ijera.com 98 | P a g e

the wires and registers to user. After selecting the fault

injection properties and the observation points,

FITO generates the corresponding fault list, time list

and the synthesizable modified source code. The

synthesizable modified source code has additional

flip-flops for each observation points.
Each time list indicates the time for triggering each

fault injection experiment and the fault list is used for

indicating the fault injection location. A typical fault

list is described in figure 5. As shown in figure 5, the

first bit of fault list is used for performing the fault

injection experiment. In addition, two bits and eight

bits are the inputs to decoder A and B. Outputs of

decoder A and B are Bit[3:0] , FIS[255:0] which

together indicate the bit position of the target register

for bit-flip fault injection. The FIS[255:0] without

Bit[3:0] are used for supporting permanent and

transient fault models.

 Figure 3 . Fault list format

Modified source code contains fault

injection manager with modified circuit. So, the target

system is suitable for fault injection experiments.

Decoder A and B are the main parts of the fault

injection manager.

After this step, the modified source code must

synthesize with some synthesis tool and the gate level

source code which is suitable for programming the

FPGA will be produced. By using the gate level

source code the FPGA will be programmed.

III.2. The Emulation Phase
In the emulation phase, modified codes

created by the previous phase are emulated. After

emulating each experiment, the information of the

observation points will be sent through the serial

port. So, each experiment will have one trace file.

Each trace file is created with the observation data

points of each experiment. Results of this phase are

providing 1) one fault free trace file and 2) faulty

trace files which are generated by performing faulty

experiments. During this phase, the Result analyzer
part of FITO must be run from the user. This part sends

each fault list and time list of the fault injection

experiment to the fault injection manager. Then, the

fault injection manager sends the contents of the

observation points to the result analyzer. At the start

of the fault injection experiments, the fault injection

manager reset the first bit of fault list for creating the

golden trace file. Then, each fault list and time list is

sent to the FPGA board. After the fault injection the

contents of the observation points are sent to the host

computer for analyzing the system behavior.

III.3. The Evaluation Phase

The main objective of this phase is the fault
tolerance parameter estimation. It is done by result

analyzer software part of FITO that is located on the

host computer. Result analyzer estimates the

dependability parameters by tracing differences

between golden run and faulty trace files. Some

facilities were developed for user interactions and for

required fault tolerant parameter determination.

IV. EXPERIMENTAL RESULTS
We developed the fault injection using the

Altera DSP development board, equipped with Strati

EP1S25F780C FPGA. An OpenRISC 1200 has been

used as benchmark for FITO evaluation. The main

reason for using OpenRISC 1200 is that it has

synthesizable Verilog Description and intended for

embedded systems, automotive, portable computer

environments. In the experiments, two common

workload programs are considered [10]. The matrix

multiplication and the bubble sort. The workloads are

coded in C and are compiled with GNU gcc compiler.

So, after this step, the suitable code for the
OpenRISC 1200 microprocessor will be generated.

After this step we connected instruction and

data memory to the processor with the workload

which is loaded into the instruction memory.

.Table 1: Available and consumed FPGA resources

(EP1S25F780C5)

 # %

Total Available LEs in the FPGA 25660 100

LEs used by the OpenRISC 1200 4769 18.58

LEs used by the OpenRISC 1200 + FI 5401 21.04

The faults are injected in different parts of

the CPU modules of the OpenRISC 1200 core

consisting of control unit, the genPC unit, the

Instruction Fetch unit and the ALU unit. The total

runtime of the matrix multiplication and bubble sort

were 990 and 5890 clocks. In this experiment total

4000 permanent and transient faults injected at 100

random locations. For each location of the every

fault, experiments were carried out 20 times with
uniform distribution during the running of the each

workload. The fault duration for transient faults

were one clock period. The OpenRISC 1200

microprocessor emulated using 80 MHZ clock. The

observation points are the address bus, data bus and

the register file.

Table 2 shows the speed-ups. As shown in

table 2, the resulted speed-up is workload dependent.

This is because bubble sort workload generates

G. Gopinath Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.96-99

www.ijera.com 99 | P a g e

more signal event than matrix multiplication.

Table 2: The Resulted Speed-ups

Workload Simulation

Time (sec)

Emulation

Time (sec)

Speed-up

Matrix

Multiplication

4605 51 90

Bubble Sort 13770 199 69

The fault propagation results, fault models for

each module and the number of fault injection points
have been shown in table 2.

As shown in table 2, different fault models

are considered for each module of the Open RISC

1200 microprocessor. The Control Unit plays the key

role in controlling the pipeline registers of the

microprocessor. So, the transient fault model for the

internal wires of this module was considered. The pc

register which is the most important register of the

system for controlling the flow of the workload is

considered for bit-flip fault injection. So, the bit- flip

fault model was considered for the Genpc unit that

involves pc register.

V. C0MPARISON WITH FPGA-BASED

FAULT INJECTION TOOLS
For estimating the main properties of FITO

that were mentioned in section 1, a comparison

between FITO and other fault injection tools is
needed. FITO provides controllability over 255 wires

and registers of the target microprocessor which is

sufficient for having the control over the important

wires and registers of the target microprocessor.

Because of using the combinational logics (two

decoders) and compacted fault and time lists the area

overhead of FITO is very lower than the FIDYCO

and FIFA and it uses one flip-flop for every fault

injection location. The minimum 22% area overhead

has been reported for FIFA tool.

VI. CONCLUSION
This paper described the FPGA-based

fault injection tool, called, FITO for evaluating the

digital systems modeled by Verilog HDL. Fault

injection with FITO is done by applying some extra

gates and wires to the original design description and

modifying the target Verilog model of the target

system. FITO support some properties such as high

speed, good controllability, good observability

and low area overhead. As a case study, an
OpenRISC 1200 have been evaluated on the

EP1S25F780C FPGA and 4000 faults have been

injected into this microprocessor. The effects of

faults have been classified into control flow errors,

data errors and failures activated. Results show that

the FITO is more than 79 times faster than simulation-

based fault injections with only 2.5% FPGA overhead.

REFERENCES
[1] V. Sieh, O. Tschache, and F. Balbach,

"VERIFY: evaluation of reliability using

VHDL-models with embedded fault

description," Proc. of the International

Symposium on Fault-Tolerant Computing,

Jun. 1997, pp. 32-36.

[2] P. Folkesson, S. Sevensson, and J.

Karlsson, "A Comparsion of Simulation

Based and Scan Chain Implemented Fault

Injection," Proc. of the Annual International

Symposium on Fault-Tolerant Computing,
Jun. 1998, pp. 284-293.

[3] H. Madeira, P. Joao, and G. Silva, "RIFLE: A

General Purpose Pin-level Fault Injector,"

Proc. of the European Dependable Computing

Conference, 1994, pp. 199-216.

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.

C. Fabre, J. C. Laprie, E. Martines, and D.

Powell, "Fault Injection for Dependability

Validation - A Methodology and Some

Applications," Trans, on the IEEE Software

Engineering,^. 1990, pp. 166-182.
[5] J. Carreira, H. Madeira, and J. G. Silva,

"Xception: A Technique for the

Experimental Evaluation of Dependability

in Modern Computers," Trans, on the IEEE

Software Engineering, Feb. 1998, pp. 125-

136.

[6] Z. Segall, and T. Lin, "FIAT: Fault Injection

Based Automated Testing Environment,"

Proc. of the International Symposium on

Fault-Tolerant Computing, Jun. 1988, pp.

102-107.

[7] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and
J. Karlsson, "Fault Injection into VHDL

Models: The MEFISTO Tool," Proc. of the

International Symposium on Fault-Tolerant

Computing, pp. 336-344, Jun. 1994.

[8] T. A. Delong, B. W. Johnson, and J. A.

Profeta, Iii, "A fault injection technique for

VHDL behavioral-level models," Proc. of

the IEEE Design & Test of Computers,

1996, pp. 24-33.

[9] J. Bou, P. Petition, and Y. Crouzet,

"MEFISTO-L: A VHDL-based fault
injection tool for the experimental

assessment of fault tolerant," Proc. of the

International Symposium on Fault-Tolerant

Computing, Jun. 1998, pp. 168-173.

[10] H. R. Zarandi, G. Miremadi, and A. R.

Ejlali, "Fault Injection into Verilog Models

for Dependability Evaluation of Digital

Systems," Proc. of the International

Symposium on Parallel and Distributed

Computing, Oct. 2003, pp. 281-287.

