
S. Sarika et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2017-2020

www.ijera.com 2017 | P a g e

Improved Run Length Encoding Scheme For Efficient

Compression Data Rate

S. Sarika*, S. Srilali**
(Department of Electronics and Communication Engineering)

(Swarnandhra College of Engineering and Technology)

ABSTRACT
Recent technological breakthrough in high speed processing units and communication devices have enabled the

development of high data compression schemes. This paper presents a modified scheme for Run length encoding

(RLE). Run length encoding algorithm performs compression of input data based on sequences of identical

values. RLE is having some limitations and they have been highlighted and discussed in detail in this paper. In

RLE largest number of sequences may increase the number of bits to represents the length of each run, which

may increase the size of memory stack which may results in performance degradation. For n-bit run it requires

2n memory stack. If run is greater than n bits we require 2n+1 memory stack to store the run value. An efficient

coding technique, Bit stuffing has been suggested in this paper. A new bit different from the original sequence is

added in between reduces the repeat length, thereby with the same stack we can represent length as well. This

technique is described using VHDL and is implemented on Saprtan3 FPGA

Keywords - bit stuffing, compression, memory stack, run, Run length encoding (RLE)

I. INTRODUCTION
Data Compression Is A Process To Reduce

The Number Of Bits Used To Store Or Transmit

Information And Decreases Space Because Size Of

Data Is Reduced, Time To Transmit, And Cost. Data

Compression Is Commonly Used In Modern Data

Base Systems. Data Compression Is Used For

Different Reasons. 1) To Decrease Data Bulk And To

Decrease Data Transportation.2) Make Optimal Use

Of Limited Storage Spacedata Compression Involves

Transferring Of A String Of Data In Some

Representation (Such As BINARY, ASCII) Into New

String Which Contain The Same Information But In

Reduced Length. The Compression Technique Is To

Identify Redundancy And To Eliminate It. Data

Compression Removes The Useless And Reforms The

Data. There Are Two Categories Of Compression

Techniques. They Are: 1) Lossy Compression

Technique. 2) Lossless Compression Technique.

Lossy Compression Methods Include DCT (Discreet

Cosine Transform), Vector Quantization And

Huffman Coding And Lossless Compression Methods

Include RLE (Run Length Encoding), String-Table

Compression, LZW (Lempel Ziff Welch).

This paper is organized as follows: Section II presents

original run length encoding scheme, Section III

represents improved run length encoding scheme with

bit stuffing, Section IV presents the VHDL

implementation of RLE, Section V verifies the result

of proposed encoding scheme, Section VI represents

conclusion.

II. RUN LENGTH ENCODING
Run Length Encoding (RLE) is a simple and

popular data compression algorithm. It is based on the

idea to replace a long sequence of the same symbol by

a shorter sequence and is a good introduction into the

data compression field for newcomers.

The RLE algorithm performs a lossless

compression of input data based on sequence of

identical values (runs).In this algorithm is represents

explicitly by a pair (v, l) where v is the value and l is

the length of the value.

For instance, Run-length encoding when

applied on the data with information bits

―11111111111111110000000000011111‖. The above

input sequence in the run length encoding scheme is

represented as (1,16)(0,11)(1,5).in binary forms

expressed as 16=10000, 11=01011, 5=00101.Final

output comes out to be 11000000101110010.

The length of largest run will decides the

number of bits to represent the count or length of each

run in the run length encoding scheme. Consider the

bit pattern 110111111111111.The largest run in the

data is 12 number of 1‘s appearing consecutively.

Therefore this run decides the number of bits needed

to represent the length of each run in the data. The

number of bits needed to represent the length of the

run is 4 or the given scenario. The above sequence is

written in run length encoding as:

Table I: RLE encoding example

BIT RUN LENGTH ENCODING

11 1,0010

0 0,0001

111111111111 1,1100

RESEARCH ARTICLE OPEN ACCESS

S. Sarika et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2017-2020

www.ijera.com 2018 | P a g e

The basic problem that degrades the

performance of run length encoding technique is

sometimes a data may contain a very large sequence

of consecutive ones or zeros. In such sequences as the

largest sequence of consecutive ones/zeros decides the

number of bits to represent the length of the run. As a

result the length of the run in all other sequences is

also represented by the same number of bits. This in

turn increases the size of memory stack and decreases

the transmission speed of data. The main objective of

this paper is to improve this encoding technique.

III. IMPROVED RUN LENGTH ENCODING

SCHEME
To increase the performance and

transmission speed of run length encoding scheme we

have proposed some modifications. The modified run

length encoding scheme gives improvement in

compression ratio.

Bit stuffing is the process of inserting non

information bits into data to break up bit patterns to

affect the synchronous transmission of information. It

is widely used in network and communication

protocols, in which bit stuffing is a required part of the

transmission process. The location of the stuffed bit is

communicated to the receiving end and extra bits are

removed from the original data at the receiving end.

The Receiver end requires the information of

maximum allowable consecutive bits

Bit stuffing works to limit the number of

consecutive bits of the same value included in the

transmitted data for run-length limited coding. This

procedure includes a bit of the opposite value after the

maximum allowed number of consecutive bits of the

same value. Stuffed bit should not confuse with

overhead bits. In modified RLE, 15 consecutive ones

are represented by 4 bits and 17 consecutive ones are

represented by 5 bits. In this paper the length of the

sequence after which the bit will be stuff is 15

consecutive ones/zeros.

20 consecutive ones are represented by 5 bits of run.

 11111111111111111111

10100, 1

By Bit Stuffing is used 4 bits are sufficient to

represent run

 111111111111111011111

 1111, 1

Therefore by bit stuffing it limits the more

number of consecutive ones/zeros which decreases the

number of bits to represent the run value and

decreases the memory stack and increase in turn

increases the transmission speed.

IV. HDL IMPLEMENTATION OF RLE
This paper discusses the RLE implementation

in VHDL, in which the total module is divided into

two different sub modules they are i)compression

module and ii) decompression module.

In compression module, it has input FIFO

(First In First Out) which takes the data and gives it to

the Compressor which compress the input data and

gives it to output FIFO. There is a controller which

controls the input FIFO, compressor and Output FIFO.

At Decompression module, it has input FIFO which

takes the data and gives it to the DeCompressor which

retrieves the original data and gives it to the output

FIFO.

Fig 1: Flow chart for compression

Compression Algorithm:

Step-1: Start on the first element of input.

Step -2: Initialize the values with count=1, k=0.

Step-3: Read the first element of input data1.

Step-4: As the value of K is ‗0‘ it will print the input

data1 and then it increments the K value to ‗1‘.

Step-5: Again it goes to step-3 takes the second data2

and next the checks the value of k

Step-6:As the value of k is 1 it now it will checks for

whether data1=data2,if the data1=data2 it will

increment the count value if not equal it prints the

count value after the data1 value and again goes to

step 2.

Decompression Algorithm:

Step-1: Start on the first element of the data input

Step-2: Read the data and store it in a register A and

initialize C with ‗1‘

Step -3: Print the data which is in register A

Step-4: Take the second data from input and store it

on register B.

Step-5: If C=B then go to step 2 else print A and

increment C and repeat.

S. Sarika et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2017-2020

www.ijera.com 2019 | P a g e

Fig: 2 Flow chart for decompression

V. SIMULATION RESULTS
Raw data that is to be supplied to the

compressor can be collected from any analog sensor

or transmitter. That analog information should have

redundant data. Then only this compression technique

works well. The analog information that is collected

must be converted to digital form using Analog to

Digital Converter. That digital information first stored

in a FIFO. First In First Out Queue is used because the

transmitter and the compressor may not operate with

the same frequency. In order to make them work

properly a queue is used in between. Working of

compressor and the queues that are placed on input

side and output side are explained with the simulation

results.

Fig 3: Compressor simulation results

Figure 3 shows the compressor simulation

results. When serial data that is coming from Digital

to Analog Converter is supplied to the compressor,

first of all it was stored in a FIFO. After that when the

compressor is enabled the compressor starts working.

Compresed data is stored in out FIFOs. How the

compressor works and where the raw data and the

compressed data is stored can be viewed in the

simulation waveforms.

Fig 4: Decompressor simulation results

Fig 4 shows the simulation results for

decompressor. For this decompressor input data

coming from the compressor. First of all Data coming

from the compressor is stored in a FIFO. When

decompressor is enabled Decompressor retrieves

information from input FIFO and then decompress the

input information. The decompressed information

exactly equal to the input information that is supplied

to the compressor. Decompressed information is

stored in output FIFO.

Fig 5: Bit Stuffing Decompressor simulation results.

Fig 5 shows the simulation results for

Bitstuffed decompressor. For this decompressor input

data coming from the compressor. First of all Data

coming from the compressor is stored in a FIFO.

When decompressor is enabled Decompressor

retrieves information from input FIFO and then

decompress the input information. The decompressor

here removes stuffed bits. Decompressed information

is stored in output FIFO.

VI. CONCLUSION
This paper provides a new and more reliable

technique for data compression. To make RLE work

we use bit stuffing to break larger sequences and

which decreases the number of bits to represent the

run value and decreases the memory stack and in turn

increases the transmission speed. With a slight change

in the compressor architecture, the compression ratio

greatly affected.

REFERENCES

[1] Eug`ene Pamba Capo-Chichi, Herv´e

Guyennet, Jean-Michel Friedt, ―A new Data

Compression Algorithm for Wireless Sensor

Network,‖ in Proc Third International

Conference on Sensor Technologies and

Applications, 2009

S. Sarika et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2017-2020

www.ijera.com 2020 | P a g e

[2] James A. Storer, ―Data Compression methods

and theory‖ Computer Science Press, 1988

[3] C. E. Shannon, ―A mathematical theory of

communication,‖ Bell Syst. Tech. J., vol. 27,

no. 3 and 4, pp. 379–423, July and Oct. 1948.

[4] S. Tate. Complexity Measures. In K. Sayood,

editor, Lossless Compression Handbook,

pages 35–54. Academic Press, 2003.

[5] N. Faller. An Adaptive System for Data

Compression. In Record of the 7th Asilomar

Conference on Circuits, Systems, and

Computers, pages 593–597. IEEE, 1973.

[6] StratosIdreos, Raghav Kaushik, vivek

Narasayya, Ravi shankar Ramamurthy,

―Estimating the Compression Fraction of an

Index using Sampling,‖ in Proc.

International Conference on Data

Engineering (ICDE), 2010

[7] X. Wu and N.D. Memon. CALIC—A context

based adaptive lossless image coding

scheme. IEEE Transactions on

Communications, May 1996.

[8] ―Efficient coding schemes for the hard-

square model,‖ IEEE Trans. Inform. Theory,

vol. 47, pp. 1166–1176, Mar. 2001.

[9] B. Ramamurthi and A. Gersho. Classified

Vector Quantization of Images. IEEE

Transactions on Communications, COM-

34:1105–1115, November 1986.

[10] M. Hans and R.W. Schafer. AudioPak—An

Integer Arithmetic Lossless Audio Code. In

Proceedings of the Data Compression

Conference, DCC ‘98. IEEE, 1998.

[11] G. Langdon and J.J. Rissanen. Compression

of black-white images with arithmetic

coding. IEEE Transactions on

Communications, 29(6):858–867, 1981.

[12] J. Ziv and A. Lempel. A universal algorithm

for data compression. IEEE Transactions on

Information Theory, IT-23(3):337–343, May

1977.

[13] M. Nelson and J.-L. Gailly. The Data

Compression Book. M&T Books, CA, 1996.

