
B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2000 | P a g e

Software Structural Design Visualization Using Archview

Framework

B. Srinivasulu
1
, M. Ravi Kumar

2
, N. Sirisha

3
, P.Srinivas

4

1
Department of Computer Science and Engineering, St. Martin’s Engineering College, Secundedrabad.

2
Department of Computer Science and Engineering, Abhinav Hi-tech college of Engineering, RR Dist

3
Department of Computer Science and Engineering, St.Martin’s Engineering College, Secundedrabad.

4
Department of Information Technology , Nalla Malla Reddy Engineering College

 ,
 RR Dist.

Abstract
In order to characterize and improve software architecture visualization practice, the paper derives and

constructs a qualitative framework, for the assessment of software architecture. The evaluation is used to

visualize the relationships between different components. Software Architecture Visualization is used to help all

stakeholders to understand the system at all points of the software life cycle. The framework is derived by the

application of the Goal Question Metric paradigm to information obtained from literature survey and addresses a

number of architectural issues. Solution exists of software architecture visualization is architecture description

language, most of the software architecture visualization tools exists are limiting to work in terms of few

metrics that are being taken from the software architecture context only.

Keywords: Software architecture, visualization, visualization assessment, methodologies.

I. INTRODUCTION
VISUALIZATION is used to enhance

information under-standing by reducing cognitive

overload. Using visua-lization tools, people are often

able to understand the information presented in a

shorter period of time or to a greater depth. The term

“visualization” has two connotations. Visualization

can refer to the activity that people undertake when

building an internal picture about real-world or

abstract entities. Visualization can also refer to the

process of determining the mappings between abstract

or real-world objects and their graphical

representation; this process includes decisions on

metaphors, environment, and interactivity. This work

uses the term “visualization” in the latter sense: the

process of mapping entities to graphical

representations.

Evaluating a particular visualization

technique or tool is problematic. Common practice is

that some set of guide-lines is followed and a

qualitative summary is produced. As the guidelines

may have been used to produce the visualization,

there is some bias in such an evaluation. Moreover,

these summaries do not usually allow a comparison of

competing techniques or tools. A comparison is

important because it identifies possible “holes” in the

research area or development market. Therefore, for

example, a software organization may have the

requirement that it needs to visualize their current

system with an emphasis on being able to obtain

multiple views for multiple users and should also

allow querying. Other aspects of the visualization may

be less important at this point in time. Thus, a

framework for describing the attributes of tools is

needed. Once the tools have been assessed in this

common framework, a comparison is possible. Such a

framework will not be complete and indeed may never

be. However, a framework can be used for

comparison, discussion, and formative evaluation. In

this milieu, we present a frame-work for software

architecture visualization evaluation

II. SYSTEM OVERVIEW
The major contribution of this paper is the

evaluation framework presented in Section 3.

Software architecture visualization evaluation falls

into seven key areas: Static Representation, Dynamic

Representation, Views, Naviga-tion and Interaction,

Task Support, Implementation, and Representation

Quality. Simply put, Software Visualization (SV) is

the use of visual representations to enhance the

understanding and comprehension of the different

aspects of a software system. Price et al. gives a more

precise definition of software visualization as the

combination of utilizing graphic design and animation

combined with technologies in human-computer

interaction to reach the ultimate goal of enhancing

both the understanding of software systems as well as

the effective use of these systems. The need to

visualize software systems evolved from the fact that

such systems are not as tangible and visible as

physical objects in the real world. This need becomes

particularly evident when the software system grows

to entail a huge number of complexly related modules

and procedures. This growth results in a boost in the

time and effort needed to understand the system,

maintain its components, extend its functionality,

debug it and write tests for it. The framework is used

RESEARCH ARTICLE OPEN ACCESS

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2001 | P a g e

to evaluate six existing software architecture

visualization tools. It is also used to assess tool

appropriateness from a variety of stakeholder

perspectives. The stakeholder list is extended from

that presented in the IEEE 1471 standard. The

framework can also be used as design guidelines for

an “ideal” tool.

RELATED WORK

This background section briefly surveys the

three main areas of the contribution: architecture,

visualization, and evaluation.

2.1 Architecture

Architecture can take two roles: one

describes how the software systems architecture

should be and the other describing how software

systems architecture is. Part of the usefulness of

architecture analysis is to measure the discrepancy

between the prescribed architecture and the

architecture that describes the software produced.

There are many definitions of architecture. For this

work, the IEEE 1471 standard is adopted, where

architecture is defined as “the fundamental

organization of a system embodied in its components,

their relationships to each other and to the

environment, and the principles guiding its design and

evolution.” This is used as the starting definition in

this work as it has been agreed upon through a

community vetting process. As the frame-work

evolved, other aspects, for example, the dynamic

aspects of architecture, needed to be incorporated into

the framework. For any software system, there are a

number of individuals who have some interest in the

architecture. These stakeholders have differing

requirements of the software architecture depending

on the role that they take. The left column in Table 1,

from the IEEE 1471 standard , identifies a minimal

collection of stakeholders that an architectural

description must address communication and

understanding of the architecture is essential in

ensuring that each stakeholder can play their role

during the design, development, and deployment of

that software system. Software engineering research

has examined the use of specific languages to describe

software architecture (see Medvidovic and Taylor’s

taxonomy. These languages are referred to as

Architecture Description Languages (ADLs). Rather

than focusing on ADLs for capturing and representing

architectural information, the framework presented in

this paper is more concerned with the visualization of

architectures in the large, whether they have been

encoded with an ADL or not. Visualizations may

indeed use the paradigm of components and

connectors, but this is at a lower level.

2.2 Software Visualization

The most prominent types of visualization

defined in the literature are Scientific Visualization,

Information Visualization, and Software

Visualization. Scientific Visualization is concerned

with creating visualizations for physically-based

systems, whereas Information Visualization is

concerned

III. THE WORKING PRINCIPLE
Before describing the framework itself, the

motivation for its development is given. Next, the

framework itself is described while indicating the

process by which it was derived.

3.1 Motivation for an Architecture Framework

A number of frameworks and taxonomies

exist for the evaluation of software visualizations. As

software visualization has tended to appeal to its roots

in program comprehension, these visualizations are

typically concerned with the representation of

software at code level, supporting programmers and

maintainers. Existing frame-works and taxonomies

reflect this focus by looking at low-level areas such as

source code, algorithms, and data structures.

The proposed framework will provide a

mechanism to discuss key areas and related features of

tools and will indicate the trade-offs made by the

stakeholders. This is similar to the trade-off technique

applied in the cognitive dimensions discussed by

Green and Petre in their work on visual programming

environments. In supporting developers and

maintainers, software visualization has been largely

concerned with represent-ing static and dynamic

aspects of software at the code level. Architecture

visualizations require a larger set of stakeholders.

Stakeholders prescribed by IEEE 1471 are general

classes of users. For the purpose of software

architecture visualization, the list of stakeholders from

the left column in Table 1 can be expanded to the list

in the right column in Table 1. The extended list on

the right in Table 1 illustrates the point that

architecture visualization must support a larger

number of stakeholders than that supported by

traditional software visualization. The right column in

Table 1 could also be extended to include other

intended stakeholders, such as suppliers, configuration

management staff, chief information officers, and

auditors.

3.2 Framework Overview

The proposed framework has seven key areas

for describing software architecture visualization:

Static Representation, Dynamic Representation,

Views, Navigation and Interaction, Task Support,

Implementation, and Representation Quality. The

dimensions identified in the framework are not

proposed as a formal representation of the

characteristics of software architecture visualizations,

but are necessary for discussion about, and evaluation

of, such visualizations. Whether they are sufficient is

an open question and the subject of future research.

Each of the seven key areas of the proposed

framework is discussed in detail below. The

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2002 | P a g e

Goal/Metric/Question (GQM) paradigm [1] was used

to identify the questions and to then enable the

formation of the framework features. GQM was

chosen because it defines a measurement model on

three levels:

3.3 Relationship to Other Frameworks

The proposed framework has a strong basis

in software visualization evaluation. Frameworks and

taxonomies such as those by Price et al. Storey et al.

and Roman and Cox have been used to categorize and

evaluate software visualizations. These works have

influenced the creation of the framework. Our

approach here is similar to that by Storey et al. “[A

framework] can serve several purposes: 1) as a

formative evaluation tool... 2) for potential tool

users...; and 3) as a comparison tool...”. The principal

difference is that this work is about architecture,

whereas theirs is about development.

Price et al. use a phenomenological approach

to derive properties from existing tools, then

generalize to a framework. The framework engenders

a set of open-ended questions. Our proposed

framework attempts to “qualitatively quantify” using

an enumeration of possible responses, similar to a

Likert scale; such an approach leaves room for

judgment on the part of the responder and removes the

judgment from the questioner. It is also easier to

measure. The measures are qualitative, following

Bassil and Keller .

The proposed framework has some degree of

overlap with the taxonomy proposed by Price et al.

The distinction between Static and Dynamic

Representation in this framework has some grounding

in the “Data Gathering Time” questions posed by

Price et al. Static Representation is concerned with the

collection of static elements of the software system

(gathered at compile time) and Dynamic

Representation is concerned with runtime information.

Dynamic Representation also has relationships with

Price et al.’s taxonomy in its discussion of

“Invasiveness.” Ideally, a visualization system should

be able to collect data from the target system in such a

way that the collection of that data does not change

the behavior of that system.

A common theme running throughout both

Software Architecture and Software Visualization

research is the concept of Multiple Views. Price et al.

identify the need for “multiple synchronized views”

within visualization, but the proposed framework also

considers the view definition, in line with the

recommendations of the IEEE 1471 standard.

Questions & Problems

In this section, we touch on the main

problems and questions recent research has been

trying to tackle. Research in the area of software

architecture visualization is centered on finding a

meaningful and effective mapping scheme between

the software architecture elements and visual

metaphors. Recent research has been trying to answer

different questions such as: “why is the visualization

needed?”, “who will use [it]?”, and “how to represent

it?”.

Others like questioned the effectiveness and

expressiveness of the visuals to use. In general the

various questions asked in this discipline can be

grouped into three broad categories:

 • Who are the different groups of audience for

architecture visualization?

• What questions do they wish to answer through this

visualization?

• How can visual metaphors and interaction

techniques are used to answer their questions

 As will be discussed later in this paper, these

three questions can be thought of as determinants of

what is to be visualized and how.

3.4 Framework Derivation

The primary goal of the proposed framework is to

assess system architectures. The framework was

derived from an extensive analysis of the literature in

the area of software visualization with special

emphasis on software architecture. Each of the seven

key areas is a conceptual goal which the framework

must satisfy. It is this that makes the application of the

Goal Question Metric paradigm straightforward.

Rather than describing the complete GQM

derivation for each sub goal of the framework, its

application in the Static Representation sub goal/key

area is demonstrated only. A goal needs a purpose,

issue, object, and viewpoint. Thus, here, the need is to

assess (the purpose) the adequacy (the issue) of static

representation(the object) from the researcher’s

perspective

(viewpoint). Then, the question “Does the

visualization support a multitude of software

architectures?” is posed. This process yields the first

question in Table 2 and feature SR 1 in Table 3.

Continuing in a like manner yields the other three

questions in Table 2 and items SR 2-4 in the Static

Representation portion in Table 3. Following this

process in all key areas provides a straightforward

way to generate questions for use in GQM. The metric

for the GQM used is the Likert scale with four ordered

values plus two nonvalues as this does not

overcomplicate the application of the frame-work, and

the responses have intrinsic meaning.

These values are summarized in Table 4. The

response “Not applicable” (NA) is used where the

question is not relevant because the feature is not in

the scope of the tool and is different from “No

support” (N) in which the scope of the tool would

suggest that it should support the feature but it does

not. The “Unable to determine” (?) response is used

where the question is relevant, but the presence or

absence of the feature was not determined.

3.5 Framework Detail

There are some aspects of software

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2003 | P a g e

architecture visualization that are not addressed at all

in existing software visualization evaluation

frameworks. This presents an opportunity to develop a

framework for the comparison of such architecture

visualizations. The proposed framework is divided

into seven key areas. Static representation

characterizes the size and accessibility of the

architectural information. Dynamic Representation

characterizes the support for runtime collection and

observation of architectural information. Views

characterize the perspective of the observer.

Navigation Interaction characterizes the ease of use of

the tool. Task Support characterizes the operational

use of the visualization. Implementation assesses the

suitability of the information for the particular

computational environment. Representation Quality

characterizes the quality of the information presented

to the observer. In the following sections,

parenthetical references refer to the leftmost column

in Table 3. The intent is to point the discussion of a

key area to the embodiment of the feature in the

framework by including the GQM questions.

3.5.1 Static Representation (SR)

Static Representation is the architectural

information which can be extracted before runtime,

for example, source code, test plans, data dictionaries,

and other documentation. It is possible that a

visualization system will be restricted to a small

number of possible architectures. Visualization need

not support a multitude of software architectures if

that is not the intention of the visualization. In some

cases, the software architecture is clearly defined and

a single data source exists from which the

visualization can take its input. Often, architectural

data does not reside in a single location and must be

extracted from a multitude of sources. Architecture

visualization certainly benefits from the ability to

support the recovery of data from a number of

disparate sources. Moreover, with multiple data

sources, there should be a mechanism for ensuring

that the data can be consolidated into a meaningful

model for the visualization. Architectural information

may not be available directly but is recovered from

sources that are non-architectural. For example, file

systems may not be directly architecturally related,

but they can contain important information that relates

to architecture. Even more so, namespaces, modules,

classes, methods, and variables can all contribute to a

view of the software architecture and, so, a

visualization system should support language-specific

constructs.

If architectural data is to be retrieved from

non architectural data, there is a potential for the data

repository to contain large amounts of data from lower

levels of abstraction. If this is the strategy employed

by the visualization, then the visualization should be

able to deal with large volumes of information, that is,

the system should be scalable.

3.5.2 Dynamic Representation (DR)

Dynamic Representation is the architectural

information that can be extracted during runtime.

Some relationships between components of a system

will be formed only during execution due the nature

of late-binding mechanisms such as inheritance and

polymorphism.

Runtime information can indicate a number

of aspects of the software architecture. Visualizations

should support the collection of runtime information

from dynamic data sources in order to relay runtime

information. Typically, for smaller software systems,

this runtime information will only be available from

one source, but, for larger distributed software

systems, the visualization may need the capability of

recovering data from a number of different sources.

These data sources may not reside on the same

machine as the visualization system, so the ability to

use remote dynamic data sources is useful. Some

sources may produce data of one type, where another

source produces different data. In this case, the

visualization should provide a mechanism by which

this data is made coherent. When dynamic events

occur, the visualization should be able to display these

events appropriately and within the context of the

architecture. The visualization must therefore be able

to associate incoming events with architectural

entities.

3.5.3 Views (V)

Kruchten identifies four specific views of

software architecture, whereas the IEEE 1471

standard allows for the definition of an arbitrary

number of views. Visualization may support the

creation of a number of views of the software

architecture and may wish to allow simultaneous

access to these views. In the IEEE 1471 standard,

architectural views have viewpoints associated with

them. A viewpoint defines a number of important

aspects about that view, including the stakeholders

and concerns that are addressed by that viewpoint,

along with the language, modeling techniques, and

analytical methods used in constructing the view

based on that viewpoint. Visualization may make this

information available to the user in order to assist in

their understanding of the view they are using.

3.5.4 Navigation and Interaction (NI)

Interactive visualizations systems provide a

means by which users will move within, and interact

with, the graphical environment. Common user

navigation techniques such as panning, zooming,

bookmarking, and rotating are usually offered in both

2D and 3D environ-ments. Interaction with the

environment can involve selection, deletion, creation,

modification, and so on.

An important part of the comprehension

process is the formulation of relationships between

concepts. Having the ability to follow these

relationships is fundamental. Storey et al. indicate that

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2004 | P a g e

a software visualization system should provide

directional navigation. The visualization should

support the user being able to follow concepts in order

to gain an understanding of the software architecture.

Searching is the data-space navigation process that

allows the user to locate information with respect to a

set of criteria. Storey et al. label this as arbitrary

navigation—being able to move to a location that is

not necessarily reachable by direct links. Sim et al.

identify the need for searching architectures for

information; so, the visualization should support this

searching for arbitrary information.

3.5.5 Task Support (TS)

Task Support is crucial for any usable

software visualization system. This area of the

framework explores the ability of the visualization to

support stakeholders while they are developing and

understanding the software architecture. The

visualization should support architectural analysis

tasks. As comprehension strategies are task

dependent, architecture visualizations should support

either of top-down or bottom-up strategies, or a

combination of the two. An important comprehension

task is the identification of anomalies. Architectures

may be broken or misused and exhibit unwarranted

behavior. The ability to tag graphical elements in

visualization is important for various activities.

Annotation can allow users to tag entities with

information during the formulation of a hypothesis.

Visualizations should support any number of

stakeholders. In order to facilitate the communication

of the architecture to a stakeholder, the visualization

must represent the architecture in a suitable manner.

Stakeholders may require very different views from

other stakeholders. Software architecture can evolve

over time. Subsystems may be redesigned;

components replaced, new components added, new

connectors added, and so on. Architecture

visualization should provide a facility to show the

evolution. This support may be basic, showing

architectural snapshots, or the support may be more

advanced by using animation. Visualizations may

offer the capability for the users to create, edit, and

delete objects in the visualization. In order to be able

to fully support the construction of software

architecture, the visualization must be able to allow

the user to create objects in the domain of the

supported viewpoint. Of course, the visualization

should also then support the editing and deleting of

those objects. Architectural descriptions can be used

for the planning, managing, and execution of software

development . In order for the visualization to support

this task, it should provide rudimentary functionality

of a project management tool—or have the ability to

communicate with an existing project

3.5.6 Implementation (I)

Visualizations should be able to be generated

automatically. If platform choice prohibits remote

capture of system data, the visualization should be

able to execute on the same platform as the software it

is intended to visualize.

3.5.7 Representation Quality (RQ)

Representation Quality is an area of the

framework that deals with the capability of the

visualization to adequately represent the software

architecture. For software architecture visualization,

the visualization must present the architecture

accurately and represent all of that architecture if the

visualization purports to do so. During its execution,

software may change its configuration in such a way

that its architecture has changed. Software that

changes its architecture in such a way is labeled

software that has a dynamic architecture. If the

visualization is able to support architectural views of

the software at runtime, then it may be capable of

showing the dynamic aspects of the architecture. In

order to do so, the visualization may either support

snapshot views of the progression or animate the

changes.

3.6 Framework Summary

The two left-hand columns in Table 3 show

the outcomes of the application of the GQM paradigm

for each key area. The abbreviated key area names in

the leftmost column are used in Figs. 1 and 2. The

values in the right-hand columns are discussed and

developed in Section4.

3.7 Multiplicity of view

With regards to the multiplicity of view, two

schools of thoughts can be identified. On the one

hand, the first school asserts that any visualization

should support multiple views of the architecture at

different levels of detail in order to satisfy the

audience’s different interests. That is, for the

visualization to be deemed useful, it has to provide a

means of looking at the different aspects of software

architecture through different views, and possibly via

multiple windows. For instance, if one view provides

an insight into the internal structure of software

entities composing the architecture, another view

should, on a higher level, focus on the relationships

and communication between these entities. The other

school of thought; on the other hand, believes that a

carefully designed single view of the visualization

might be more effective and meaningful in conveying

the multiple aspects of the architecture than the

multiple view approach [10, 14]. For example, the

tool can provide different levels of detail in a single

view (e.g. internal structures of entities along with the

relationships between them) and leave it up to the

viewers to draw their own mental maps at the level of

interest to them.

3.7.1 Multiple-view visualization

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2005 | P a g e

Lanza et al. [23, 24] introduced a software

visualization tool called CodeCrawler (CC). Through

a 2D visualization of reverse-engineered object

oriented software systems, CC offers the advantage of

having multiple views of the same architecture. The

multiplicity of views aims to uncover the different

aspects of the architectural design and emphasize

specific metrics in the software system. In general, CC

represents the architecture in a polymeric view in

which entities (classes, methods … etc) are

represented as nodes and relationships as edges

connecting these nodes. The node’s size, position and

color are used to represent the metrics of interest in

the software system. There are four different views

that CC has to offer:

1) Coarse-grained view by which the system

complexity is emphasized.

2) Fine grained view which hierarchically represents

the class blueprint in the architecture.

3) Coupling view which, as the name suggests,

underscores coupling amongst modules in the

architecture, and

3.7.2 Single-view visualization

Single-view visualization was one of the

early attempts to visualize multiple aspects of the

architecture through a single view. Storey et al.

suggested the use of a unified single view

visualization that presents information at different

levels of the software system, especially the

architectural level. However, according to Panas et al.

SHriMP did not consider stakeholder communication.

Therefore, proposed an enhanced single-view

model that addresses three main issues. For one, it

enhances communication between the different

stakeholders by allowing them to reach a common

understanding of the architecture. Secondly, it reduces

the “significant cognitive burden” resulting from

trying to comprehend multiple views. And thirdly, it

rapidly summarizes systems especially large-scale

ones. The proposed model uses common (rather than

varying) interests amongst stakeholders to come up

with a collective comprehension of the architecture.

Figure 4 shows an example of this visualization.

Figure 2.4 A unified view of software architecture by

Panas et al.

In the figure above, the green landscapes

represent directories (high level groups); whereas the

blue plates indicate source files. And methods are

represented by buildings.

3.7.3 Virtual Environments visualization

The ultimate goal of using Virtual

Environments to visualize software architecture is to

make it possible and easy for the viewer to compare

metrics of the different components in the architecture

and realize the relationships amongst them. Also,

amplifying cognition is another advantage of VEs, for

they allow for navigation in an open 3D space that has

commonalities with physical environments in our

everyday life. EvoSpaces is a reverse engineering tool

that provides an architectural level visualization of

software systems as a virtual environment. It takes

advantage of the fact that software systems are often

structured hierarchically to suggest the use of a virtual

city metaphor. Entities along with their relationships

are represented as residential glyphs (e.g. house,

apartment, office, hall … etc); whereas metrics of

these entities are represented as positions and visual

scales in the 3D layout . The tool provides different

interaction modes with zooming and navigation

capabilities. Figure 10 shows an instance of

visualizing a software architecture using EvoSpaces.

Figure 2.5 - EvoSpaces virtual city by Alam et al.

Users can navigate through this virtual city

with a road map that would be available in one of the

corners of the screen. They can zoom inside buildings

to see stickmen who represent methods and functions.

Each stickman may be surrounded by his resources

(yellow-colored boxes) which represent local

variables. In addition, Panas et al. [10], as we showed

earlier in Figure 4, also used the city metaphor as a

theme for a virtual environment. This work aimed for

a reduction of the visual complexity of the single-view

visualization Panas proposed.

IV. IMPLEMENTATION OF SYSTEM
4.1 ArchView (AV)

The ArchView tool uses the architecture

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2006 | P a g e

analysis activities of extraction, visualization, and

calculation. It produces an architecture visualization

that presents the use relations in software systems.

The relations are stored in a set of files that are read

by a browser. The browser reads layout information

files and allows the selection of shapes and the

manual configuration of layout. A collection of tools

is used to manipulate the set of relations to perform

selected operations. A VRML generator creates a 3D

representation using the 2D layouts and layer position.

4.2 SoftArch (SA)

SoftArch is both a modeling and

visualization system for software, allowing

information from software systems to be visualized in

architectural views. SoftArch supports both static and

dynamic visualization of software architecture

components and does so at various levels of

abstraction. SoftArch’s implementation of dynamic

visualization is that of annotating and animating static

visual forms. SoftArch defines a metamodel of

available architecture component types from which

software systems can be modeled. In this way, a

system’s behavior can be visualized using copies of

static visualization views at varying levels of

abstraction to show both the highly detailed or highly

abstracted running.

.

4.4 Ideal Tool

Representing architecture visualization tools

through star-plots gives an immediate impression as to

the tool’s capability. Each tool has its own relative

merit and none supports all of the framework’s

elements and thus represents the trade-offs made by

the tool developers. This highlights a potential

problem, where an organization may want a single

tool to give all stakeholders a central repository for

architectural information that can be represented in

different ways to each stakeholder. Fig. 2 illustrates a

hypothetical tool that combines the features of all

tools analyzed under the framework. A salient feature

is that this would still not provide full support of all

elements of the framework. It is not the direction of

this paper to suggest whether or not such a “perfect”

tool may be possible to construct. Further, it is

undecided whether such a tool is desirable.

V. EXPERIMENTAL RESULTS
The concept of this paper is implemented and

different results are shown below.

Fig 5.1 Input of the Software Architecture

visualization

Fig 5.2 Software Architecture Visualization tool home

window

Fig 5.3 ArchViz Connect to JVM

Fig 5.4 Connection between input application and

visualization tool

Fig 5.5 Static Call graph of given input application

Fig 5.6 Static Call tree of given input application

Fig 5.7 Static Memory information of given input

application

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2007 | P a g e

Fig 5.8 Static Class list of given input application

Fig 5.9 Static Threads information of given input

application

Fig 5.10 Downloading the file using gdownloader

Fig 5.11 Taking the URL link from the net

Fig 5.12 Start the downloading file

Fig 5.13 Completion of downloading file

Fig 5.14Dynamic Call graph of given input

application

Fig 7.15 Dynamic Call tree of given input

application

Fig 7.16 Dynamic Memory information of given input

application

Fig-7.17 Dynamic Class list of given input

application

Fig-7.18 Static and dynamic flow between the given

input application’s methods

VI. CONCLUSION
Software architecture is the gross structure of

a system; as such, it presents a different set of

problems for visualization than those of visualizing

the software at a lower level of abstraction. We have

developed and presented a framework for the

assessment of the capabilities of software architecture

visualization tools and evaluated six tools in this

framework. It turns out that no one tool meets all of

the criteria of our framework. This is not a bad thing.

Moreover, it may be that a one-size-fits-all approach

may increase information overload and that a

collection of small tools appropriate to each

stakeholder’s task may be preferable. A side effect of

the application of the framework is that it has

highlighted features not present in existing tools, for

example, Planning and execution and Dynamically

changing architecture. These are shown clearly in Fig.

2 and open up the possibility of future research and

development.

The issue of the completeness and sufficiency of

the framework is an open one and needs to be

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.2000-2008

www.ijera.com 2008 | P a g e

addressed by further research. One approach to

increase confidence in the framework is by applying it

to a larger population of tools. Software engineering

theory and practice are evolving, and the notion of

software architecture is changing; thus, the definition

of software architecture itself will necessarily change.

These new developments may give insights into the

questions of completeness and sufficiency.

REFERENCES
[1] V. Basili, G. Caldiera, and H.D. Rombach,

“The Goal Question Metric Paradigm,”

Encyclopedia of Software Eng., vol. 2, pp.

528-532, John Wiley & Sons, 1994.

[2] S. Bassil and R. Keller, “A Qualitative and

Quantitative Evaluation of Software

Visualization Tools,” Proc. 23rd IEEE Int’l

Conf. Software Eng. Workshop Software

Visualization, pp. 33-37, 2001.

[3] S. Card, J. Mackinlay, and B. Shneiderman,

Reading in Information Visualization: Using

Vision to Think. Morgan Kaufmann, 1999.

[4] A. Eden, “Formal Specification of Object-

Oriented Design,” Proc. Conf.

Multidisciplinary Design in Eng., 2001.

[5] A. Eden, “Visualization of Object-Oriented

Architectures,” Proc. IEEE 23rd Int’l Conf.

Software Eng. Workshop Software

Visualization, pp. 5-10, 2001.

[6] A. Eden, “Le PUS: A Visual Formalism for

Object-OrientedArchitectures,” Proc. Sixth

World Conf. Integrated Design and Process

Technology, June 2002.

[7] M. Eisenstadt and M. Brayshaw, “A

Knowledge EngineeringToolkit: Part I,”

BYTE: The Small Systems J., pp. 268-282,

1990.

[8] L. Feijs and R. de Yong, “3D Visualization

of Software Architectures,” Comm. ACM,

vol. 41, no. 12, pp. 73-78, Dec. 1998.

[9] K. Gallagher, A. Hatch, and M. Munro, “A

Framework for Software Architecture

Visualization Assessment,” Proc. IEEE

Workshop Visualizing Software, pp. 76-82,

Sept. 2005.

[10] T. Green, “Instructions and Descriptions:

Some Cognitive Aspectsof Programming and

Similar Activities,” Advanced Visual

Interfaces, pp. 21-28, ACM Press, 2000.

[11] T.R.G. Green and M. Petre, “Usability

Analysis of Visual Programming

Environments: A “Cognitive Dimensions”

Framework,” J. Visual Languages and

Computing, vol. 7, no. 2, pp. 131-174, 1996.

[12] J. Grundy and J. Hosking, “High-Level

Static and Dynamic Visualisation of

Software Architectures,” Proc. IEEE Symp.

Visual Languages, pp. 5-12, Sept. 2000.

Author’s Profile

Mr. B.Srinivasulu, Post Graduated in

Computer Science Engineering

(M.Tech) From JNTU, Hyderabad in

2010 and Graduated in Computer
Science Engineering (B.Tech) from

JNTUH, in 2008. He is working as Assistant Professor

in Department of Computer Science & Engineering in

St.Martin’s Engineering College, R.R Dist, AP,

India. He has 3+ years of Teaching Experience. His

Research Interests Include Network Security, Cloud

Computing & Data Warehousing and Data Mining.

 Mr Mutyala Ravi kumar, Post

Graduated in Computer Science &

Engineering (M.Tech) , S R M Deemed

University,Chennai , 2006, and

graduated in Computer Science &

Engineering (B.E) From Velagapudi Ramakrishna

Siddhartha Engineering college, Vijayawada

(Nagarjuna University,Guntur,AP),2001. He is

working presently as Senior.Assistant Professor in

Department of Computer Science & Engineering in

Abhinav Hi-tech college of Engineering, RR Dist,

A.P, INDIA. He has 7+ years Experience.

Mrs N.Sirisha, Post Graduated in

Software Engineering (M.Tech),

JNTUH, 2012, and Graduated in

Computer Science & Engineering

(B.Tech) From JNTU Hyderabad, 2009.

She is working presently as an Assitant Professor in

Department of Computer Science & Engineering in

St. Martin’s Engineering College, RR Dist, A.P,

INDIA. She has 4+ years Experience. Her Research

Interests Include Software Engineering, Cloud

Computing, Operating Systems and Information

Security.

Mr. P.Srinivas, Post Graduated in

Computer Science &Engineering

(M.Tech) From Lords Institute of

Engineering & Technology,

Hyderabad in 2013 and Graduated in

Information Technology (B.Tech) form

Nirmala Engineering College, Manchiriala, 2006.

He is working as an Assistant Professor in Department

of Information Technology in Nalla Malla Reddy

Engineering College, Divya Nagar, Near Narapally,

Ghatkesar, R.R Dist, AP, and India. He has 6 years of

Teaching Experience. His Research Interests Include

Software Engineering Data Warehousing and Data

Mining, Network Security & Cloud Computing.

