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ABSTRACT 
The iterative learning control and the robust control are presented in this paper for the trajectory tracking 

control. An H infinity norm is used to find the initial robust control law applied to the plant then an iterative 

learning control is deduced which guaranteed the monotonic convergence of the system. A LMI (Linear Matrix 

Inequalities) technique is also used to analyses and synthesizes this control system. 
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I. INTRODUCTION 
The iterative learning control “ILC” is a 

concept that has been introduced in the literature by 

several research works. It is an important approach 

which is categorized in the methodology of intelligent 

control. This approach is a simple and effective 

method for controlling systems that execute the same 

task repetitively, such as a motion stage for wire 

bonding [1], a robotic manipulator in a manufacturing 

environment [2], a chemical reactor in a batch 

processing application [3] and nanopositioning 

systems [4]. Then ILC concept means the capability 

to improving the control input using the data of 

previous iteration [5]. The goal of this approach is to 

generate a simple algorithm repetitively for an 

unknown process, until perfect tracking is realized 

[6].  

To achieve this objective, different approach 

used ILC algorithms have been derived from the 

classical Arimoto-type ILC algorithm [7], such as the 

PID-type [8], the D-type [5] [6] [8] [9], the P-type [3], 

the PD-type and the PI-type [10] and the Newton-type 

[11]. These algorithms have been used to decreasing 

the system error from iteration to another until the 

convergence be realized but they cannot eliminate the 

uncertainty from the system. On the other hand, we 

need a robust control to guarantee the monotonic 

convergence. 

To design a robust iterative learning control 

for uncertain system, several approaches have been 

used in discrete time and continuous time, such as the 

µ synthesis [2][12], the youla parameterization [2], 

the min-max method using the quadratic performance 

criterion [13] and the  approach [14][15]. This next 

one is an important approach used to improving the 

monotonic convergence of uncertain system with 

feed-back state. 

A robust iterative learning control and a 

robust monotonic convergence are studied in this  

 

paper. We use the LMI technique to solve the robust 

monotonic convergence problem of uncertain linear 

continuous time system. The  norm is also used to 

ensure the system convergence. 

We show in section 2 of this paper the 

problem formulation and the preliminary results. We 

present in this first, the system description and the 

control design objective. In section 3, the control 

design is studied, we divided this section into two 

parts, the first one represent the H infinity state 

feedback design and the next part illustrate the D type 

robust ILC design. A simulation example is showed 

in section 4 and we finished by a conclusion in 

section 5.   

  

II. PROBLEM FORMULATION AND 

PRELIMINARY RESULT 
First, our objective is to determine an initial 

robust control applied during the first iteration to 

eliminate the external uncertainty in the system. We 

use the H  approach to calculate the control input 

with state feedback. Secondly, we want to determine 

the control input that cancels the error after a number 

of iterations. 

We considered the following uncertain linear system: 

k k k k

k k

x Ax Bu Hw

y Cx

  





 (1) 

The reference model is described as follows: 

d d d

d d

x Ax Bu

y Cx

 





 (2) 

With xk, wk, uk, yk,  xd, ud, and n represent respectively 

the system state, the disturbance input, the control 

input, the output, the desired state, the desired control 

and the system order, at iteration number k, with 

appropriate dimension. 
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We need in this work, an iterative learning 

control capable to controlling the system (1) to follow 

the model (2). 

We defined the error model as follows: 

k d k

k d k

e x x

ey y y

 


 

  
 (3) 

From (1) and (2), the error model becomes: 

 k k d k k

k k

e Ae B u u Hw

ey Ce

    





 (4) 

Our work is based on a set of lemmas: 

Lemma. 1. 

For a given 0  , there exists a control law 

*p nKR such that: 

 The closed loop system is asymptotically 

stable. 

 The H norm of the transfer function in a 

closed loop between the input w and the 

output y is less than . 

Lemma. 2. (bounded real lemma) 

Let considers a stationary linear 

multivariable stable system written by the following 

minimal state representation: 

x Ax Bw

Cx Dwy

 


 


 (5) 

Where x is the system state, w is the input and y is the 

output. Then H γ

  if and only if there exists a 

symmetric matrix P such that: 

2

0

0
T T T

T T T

P

A P PA C C PB C D

B P D C D D I



   

    

 (6) 

Lemma. 3. (Schur lemma) 

Consider a block symmetric matrix [16]: 
TA B

B C

 
 
 

 (7) 

Where A and C are square matrices, with C being 

negative definite. This matrix is negative definite if 

and only if: 
1TA B C B  (8) 

is negative semi-definite. 

Property 1: 

Let considers an invertible matrix T: 
( * ) , 0 0n n TT R S T ST     (9) 

 

III. CONTROL DESIGN 
We would applying to the  system a robust and 

iterative learning control at the same time to reduce 

the repetitive error in the plant that execute the same 

task repetitively. Then, our control is composed from 

two parts, the first is a robust control and the second 

is an iterative learning control witch guaranteed a 

robust monotonic convergence.  

Let consider the following control expression: 

1, 2,

1,

2, 1 2,

k k k

k d k

k k k

u v v

v u Ke

v v ey

  


 
    

 (10) 

Where 2,0 0v   and K and Γ are the learning gains 

matrix. 

The controls 1,kv and 2,kv  represent respectively the 

robust control and the iterative learning control.  

By integrating this control law in the error model, we 

obtain the following system: 

2,( )k k k k

k k

e A BK e Bv Hw

ey Ce

   





 (11) 

 

III. 1.  H INFINITY STATE FEEDBACK DESIGN 

We are looking for a control law with state 

feedback which stabilizes the system and minimizes 

the H norm. To achieve this objective, the learning 

gains matrix K and Γ must be determined. 

To solve this problem, such an approach is based on 

solving a convex optimization problem under 

constraints of linear matrix inequalities (LMIs) is 

proposed. 

At the first iteration the iterative learning control is 

zero, then: 

0 1,0u v  

The error model becomes: 

( )k k k

k k

e A BK e Hw

ey Ce

  





 (12) 

 

III. 2.  D TYPE ROBUST ILC DESIGN 

The objective of the ILC is to refine the 

input signal from iteration to another until we obtain 

an output signal which approximates the desired 

signal. 

Consider an input signal is applied to a 

system in an initial state. After applying the complete 

input the system returns to its initial state. The system 

output will be compared to a desired signal. The error 

is used to construct a new input signal (the same 

length) to be applied in the next iteration. 

In the classical ILC the following standard 

assumptions are required [3]: 

 Each test period ends in a fixed time. 

 Repeat initial setting is satisfied. Then, the initial 

system state xk(0) can be set at the same point at 

the beginning of each iteration. 

 The system dynamics invariance is ensured 

throughout the repetition (dynamic stability). 
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 The output is measured in a deterministic 

manner. 

 The system dynamics are deterministic. 

To give an idea of the results of the ILC, we consider 

the proposed ILC in 1984 by Arimoto [3]: 

2, 1 2,k k kv v ey     (13) 

Now we derive the learning rule. Consider: 

1 1

0 0

t t

k k kx dt x dt      (14) 

Then: 

1 1k k kx x     

1 1 1

0 0

( ) ( )

t t

k k k k k kAx Bu Hw dt Ax Bu Hw dt        

1 1

0 0

[( )( ) ]

t t

k k k kA BK x x H w dt B ey dt        

1 1( ) k k kA BK H B eyw          

1 1 1( )k k k kK e HwA B y          

1 1 1k k kA Bu Hw        

Where: 

1 1

0

( )k

t

k kw w tw d    (15) 

1 1k k ku K ey     (16) 

We will determine the deference between the error at 

iterations number k and k+1:
 

1 1k k k key ey Ce Ce      

1kC     (17) 

Then, the error at the last iteration becomes: 

1 1k k key ey C      

1 11 kkk kCBuCA ey CHw        (18) 

 

Then, we consider the following system: 

1 1 1 1

1 1 1 1

k k k k

k k k kk

A Bu H

ey CA

w

ey CB HwC u

 



   

  

 


  



 

 


 (19) 

We can set the system (19) in the following form 

[17]: 

1 1 1 1

1 1 1

0 11

1 0 12

A  B B  B

C +D D +B

k k k k k

k kk k k

u ey

ey ey

w

u w

 



  





  

 




 








 (20) 

With: 

A ,A B ,B 0B 0, 11B ,H C ,CA 

D ,CB  0D I 12and B CH   

We define the following lyapunov function:
 

1 2V V V   (21) 

Where: 

1 1 1 1

2 1 2 1

T

k k

T

k k

V P

V ey P ey

  

 

 



 (22) 

We denote the following expression:
 

1 2V V V     (23) 

We will determine:
 

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 11 11 1 1

(A A B B ) + B

B B B

T T T T T

T T T T T T

k k k k

k k k k k k

V P P K P P K P

P P w

ey

e w Py

  

  

  

    

    

   



 
    (24) 

Now with the help of equality (20), we determine the 

following expression:  

2 1 2 1 2

T T

k k k kV ey P ey ey P ey     (25) 

12

0 1

1 1

0

1

2 1 11 22

C D D B

D ) (C +D D + )

(

B

k k k k

T

T T T T T T T T

T

k k k k k

T T

T

k k

K wey

ey P ey w ey P eyu

 



  

 

   

 








 

   

 

2

2

2

2

2

2 0

2

0 2

0 2

0 2 0

0 2
2

12 212 2

2

2

1

1 2

1

C C

C DK

D C

+ D DK

D D
D C

D D
D DK

D D
D C

D D
D DK

B DB C

B DK

T

T

T T

T T

T T T

k T T

T

k T

T
k

T

T

T T

T T

TT

P

P

P

P

P
P

P
P

ey P
P

P
P

P

P

K

P

K

w

P

 



 

  
   

    
    

      
          

 
 
 
 

 
 
 









 
   

   
 



 

1

1

12 2 12

12 2 0

B B
B D

k

k

k

T

T

ey

P
P

w

 



 
 
 
 
 
 
 
 
 
   
   
   
    
 
 
 
 
 

 


 
  


 
 
 

 



 (26) 

The Hamilton Jacobi Bellman equality is described as 

follows: 
2

1 1

T T

k k k kV ey ey w w       H  (27) 

We can set the equality (27) in the following form: 

11

21 22

31 32 33

(*) (*)

(*)

 
 

  
 
    

H
 (28) 

The system is stable if and only if the Jacobi 

Bellman equality is definite negative. 

To determine this matrix we will determine the 

components of the correspondent matrix. 

1 111

2

1 1

2 2

2

A A B B

C C C DK D C

+ D DK

T T T

T T

T

T T

T

P

P P K P P K

K

P P

P

K

  





 



 (29) 
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1 2 2

0 2 0 2

21 B D C D DK

D C D DK

T T T

T

T TT

T

P P P

P P

  

 

   
 (30) 

2 2 0

0 2 0 2 2

22

0

D D D D

D D D D

T T T T

T T

P P

P P P I 

     

  
 (31) 

11 1 12 23 2 21 1B B C B DKTT TP P P   (32) 

12 2 132 2 2 0B D B DT TP P     (33) 

2

123 123 2B BT P I   (34) 

Now we will set the equality (28) in the following 

form: 

   

11

21 22

31 32 33

(*) (*)

(*)

    
 


 
  

  

 
 




 (35) 

Next, we will identify each part of the (35): 

32

1 12

3

2

3

2

0 0 0

B 0 B

T
P

I
P


     

       
     

  

2

1 1
ˆ ˆTI D SD    (36) 

  11

3

1

3

012 2

1 32

B 0

0 0 0

0 00 0

C DK D +DB 0

T

T

P

P

P

   
    
   

    
     

    







 

1 1 2
ˆˆ ˆT TB P D SA   (37) 

 

0 1

1 0

3

0 02

2

11

21 22

(*) A BK B B 0

0 0 0 0

0 A BK B B

0 0 0 0

0 0 0 00

C DK D +D C DK D +D0

0 00 0

00

T

T

P

P

P

P

PI

      
     
    

    
    
   

    
     

     

  
 

 

 



 

  
   

  

1 1 2 2
ˆ ˆ ˆ ˆT T TA P PA A SA L L R      (38) 

With: 
3

2

0

0

P
S

P

 
  
 

, 1

12

0
ˆ

B
D

 
  
 

, 
11

1

B
ˆ

0
B

 
  
 

, 

1 0

0 0

P
P

 
  
 

, 2

0

0 0
ˆ

C DK D +D
A







 

 
 , 

0

1

A BK B B
ˆ

0 0
A

   
  
 

, 

2

0 0

0
R

P

 
  
 

 and 

0 0

0

TL L
I

 
  
    

Then, the Hamilton equality becomes:

 

1 1

1

2 2

2 1

1 1 1

2

1 2

ˆ ˆ
ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ

ˆˆ

T

T

T

T

T T

T

A P PA
PB

A SA
A SD

L L R

B P D SD

ID SA 

  
    
    

           
 
    
           

 (39) 

1 1 1

2

1

2 2 2 1

1 2 1 1

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ

T T

T

T T

T T

A P PA L L R PB

B P I

A SA A SD

D SA D SD



   
  

  

 
  
  

 

1 1 1

2

1

2 1

2 1

1

ˆ ˆ ˆ

ˆ

ˆ
ˆ ˆ( )

ˆ

T T

T

T

A P PA L L R PB

B P I

SA
S SA SD

SD





   
  

  

 
     

  

  (40) 

Appling the bounded real lemma, the equality (40) 

becomes as follow: 

2 1

2 1 1 1

2

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

T T T

T T

S SA SD

SA A P PA L L R PB

SD B P I

 
 

     
 

  

 

2 1

2 1 1 1

2

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

0 0 0

0 0

0 0 0

T T

T T

T

S SA SD

SA A P PA R PB

SD B P I

L L



 
 

   
 

  

 
 


 
  
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2 1

2 1 1 1

2

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

0

0 0

0

T T

T T

T

S SA SD

A S A P PA R PB

D S B P I

L I L



 
 

   
 

  

 
      
  

 

With the help of the lemma (2), we obtain:  

2 1

1

2 1

1

2

1 1

ˆ ˆ 0

ˆ
ˆ ˆ

ˆ

ˆ ˆ 0

0 0

T

T T

T T

S SA SD

A P
A S PB L

PA R

D S B P I

L I



 
 

  
        

 
 

  

 (41) 

Replace the variable with theirs appropriates 

expressions in the equality (41), it becomes as follow: 

3

2

1

2 1

2 1

1

0 2 0 1

2

2 1

2

12 2 11 1

(*) (*) (*) (*) (*)

0 (*) (*) (*) (*)

A

C A
0 (*) (*) (*)

D B

B

D B
0 (*) (*)

D B

0 B B 0 0

0 0 0 0

T

T

T T T

T

T T

T

T

T T

T T

P

P

P

P P

K K P

P K

P
P

P

P

P

P

P

P I

I I



 
 


 
  
  

    
             


   

            
 

  













 (42) 

We define the following expression: 
1

3

1

2

1

1

1

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

P

P

P
T

P

I

I









 
 
 
 

  
 
 
 
  

 (43) 

With the help of property 1, we will determine: 
1

3

1

2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

2 0 2 2 0 2 2

2

12 11

1

2

(*) (*) (*) (*) (*)

0 (*) (*) (*) (*)

0 C D A A B B (*) (*) (*)

0 D D B B (*) (*)

0 B B 0 0

0 0 0 0

T

T T T T T T

T

T T T

T T

T T

P

P

P P K P P P K KP
T T

P P P P P

I

P I







     

    



 
 

 
    

   
    

 
 





  

Where
1

1 1w P ,
1

2 2w P  , 
1

3 3w P  , 
1

1 1N KP and 
1

2 2N P     

After applying the modification, we can set that: 

3

2

1 1 1 1 1 1

2 0 2 2 0 2 2

2

12 11

2

(*) (*) (*) (*) (*)

0 (*) (*) (*) (*)

0 C D A A B B (*) (*) (*)

0 D D B B (*) (*)

0 B B 0 0

0 0 0 0

T T T T T T

T

T T TT

T T

T T

w

w

w N w w N N
T T

w N w N w

I

w I



 
 


 
    

   
   

 
 

  

 (44) 

The matrix (44) doesn’t depend from w3 then we can eliminate the first row and the first column from this 

matrix, we obtain the following expression: 
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2

1 1 1 1 1 1

2 0 2 2 0 2 2

2

12 11

2

(*) (*) (*) (*)

C D A A B B (*) (*) (*)

D D B B (*) (*)

B B 0 0

0 0 0

T T T T T T

T T T T

T

T T

T

w

w N w w N N

w N w N w

I

w I



 
 

   
 
     
 

 
  

 (45) 

Now, we replace the variables with theirs appropriate expression, we obtain: 

 

2

1 1 1 1 1 1

2 2 2 2

2

2

(*) (*) (*) (*)

(*) (*) (*)

(*) (*)

0 0

0 0 0

T T T T T T T T

T T T T

T T T

T

w

w A C N B C w A Aw N B BN

w N B C N B w

H C H I

w I



 
 
    
 
    
 

  
  

 (46) 

By the LMIs techniques, to determine the unknown 

variables P1, P2, K and Γ, we assume the sufficient 

conditions: 

1 0w  , 2 0w  , 0K  , 0   and 0   (47) 

 

IV. SIMULATION EXAMPLE 
To illustrate the efficiency of the robust 

iterative learning control law presented in this paper, 

considers the system (1): 

 

0 8 0 22 0 5 1

1 0 1 1

1 0 5

k k k k

k k

x x u w

y x

          
        

      
  



 (48)  

Our objective is to track the reference model given 

by: 

 

0 8 0 22 0 5

1 0 1

1 0 5

d d d

d d

x x u

y x

        
     

    
  


 (49) 

The disturbance applied to the system is assumed as: 

( ) sin(2* * )kw t t  (50) 

The desired control is a sinusoidal signal of 

frequency 1 Hz: 

( ) 2*sin(2* * )du t t  (60) 

We assume zero initial conditions. 

We present in the next section the 

simulation results during the iterations number 1, 10, 

20 and 50.  The fig.1, fig.2, fig.3 and fig.4 show the 

simulation result, for our proposed scheme, of the 

output and the desired trajectory. The fig.5, fig.6, 

fig.7 and fig.8 illustrate the error trajectory. The next 

figure shows the H infinity and gamma trajectory. 
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Fig.  1.  The Output and the desired trajectory in the 

first iteration. 
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Fig. 2. The Output and the desired trajectory in the 

iteration number 10. 
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Fig. 3. The Output and the desired trajectory in the 

iteration number 20. 
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Fig. 4. The Output and the desired trajectory in the 

iteration number 50. 
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Fig. 5. The error trajectory in the first iteration. 
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Fig. 6. The error trajectory in the iteration 

number 10. 
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Fig 7. The error trajectory in the iteration number 20. 
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Fig. 8. The error trajectory in the iteration number 50. 
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Fig.  9. H infinity and gamma trajectory. 

 

We can conclude that our system is 

monotonically convergent. The error trajectory tends 

to zero. We respected the H infinity norm which is 

les then gamma during the iteration of the system. 

 

V. CONCLUSION 
A robust monotonic convergence for linear 

uncertain continuous time system is presented in this 

paper. A robust and an iterative learning control are 

studied to achieve this convergence. The updating 

law is physically based in an H infinity setting where 

the required conditions are LMI based witch can 

directly determine the learning gains.  

 

REFERENCES 
[1]  J.H. Wu and H. Ding, Iterative learning 

variable structure controller for high-speed 

and high-precision point-to-point motion, 

Robotics and Computer-Integrated 

Manufacturing, 24(3), 2008, 384-391. 

[2]  A. Tayebi, S. Abdul, M.B. Zaremba and Y. 

Ye, Robust Iterative Learning Control 

Design: Application to a Robot Manipulator, 

IEEE/ASME TRANSACTIONS ON 

MECHATRONICS, 13(5),  2008. 

[3]  H.S. Ahn, Y.Q. Chen and K.L. Moore, 

Iterative Learning Control: Brief Survey and 

Categorization, IEEE Transactions On 

Systems, Man, And Cybernetics-Part C: 

Applications And Reviwes, 37 (6), 2007. 

[4]  B.E. Helfrich, C. Lee, D.A. Bristow, et al. 

Combined H∞-feedback control and 

iterative learning control design with 

application to nanopositioning systems, 

IEEE Trans. Control Systems 

technology,18(2) , 2010, 336-351. 

[5]  S. Arimoto, S. Kawamura and F. Miyazaki, 

Bettering operation of robots by learning, J. 

Robot.Syst.,1(2), 1984, 123–140,. 

[6]  Z. Bien, K.M. Huh, D: Higher-order 

iterative learning control algorithm, 

Department of Electrical Engineering, 

Korea Advanced Institute of Science and 

Technology, PO Box 150, Cheongryang, 

Seoul Korea, 1989, 130-650. 

[7]  S. Arimoto, S. Kawamura, and F. Miyazaki, 

Convergence, stability and robustness of 

learning control schemes for robot 

manipulators,  in Recent Trends in Robotics: 

Modelling, Control, and Education, M. J. 

Jamishidi, L. Y. Luh, and M. Shahinpoor, 

Eds. Amsterdam, The Netherlands: Elsevier, 

1986,307–316. 

[8]  K.L. Moore, Y.Q. Chen and H.S. Ahn, 

Iterative Learning Control: A Tutorial and 

Big Picture View, 45th IEEE Conference on 

Decision and Control, 2006. 

[9]  F. Bouakrif. Derivative: Reference Model 

Iterative Learning control for Linear 

Systems, 18th Mediterranean Conference on 

Control & Automation Congress Palace 

Hotel, Marrakech, Morocco, 2010. 

[10]  H. Gao, Y. Lu, Q. Mai, and Y. Hu. PD, PI, 

PID; Inverted Pendulum System Control by 

Using Modified Iterative Learning Control, 

Springer-Verlag Berlin Heidelberg, 2009, 

1230–1236. 

[11]  J.X. Xu, Y. Tan. Brief Paper On the P-type 

and Newton-type ILC schemes for dynamic 

systems with non-affine-in-input factors, 

Automatica 38,  2002, 1237 – 1242. 

 [12]  A. Tayebi, S. Abdul and M.B. Zaremba. 

Robust iterative learning control design via 

μ-synthesis, in Proceedings of the 2005 

conference on control applications, 2005, 

416-421. 

[13]  D. H. Nguyen and D. Banjerdpongchai. 

Robust Iterative Learning Control for Linear 

Systems with Time-Varying Parametric 

Uncertainties,  Joint 48th IEEE Conference 

on Decision and Control and 28th Chinese 

Control Conference Shanghai, P.R. China, 

December, 2009 16-18. 

[14]  D. De Roover, Synthesis of a robust iterative 

learning controller using an H approach, in 

Proceedings of the 35th conference on 

Decision & control, 1996, 3044-3049. 

 [15]  L.I. Zhifu, P. YUAN, H.U. Yueming, Q. 

GUO, G. MA. LMI Approach to Robust 

Monotonically Convergent Iterative 

Learning Control for Uncertain Linear 

Discrete-time Systems, Proceedings of the 

31st chinese control conference, july 2012 

china  

[16]  S. Boyd, L.E. Ghaoui, E. Feron, et al, Linear 

matrix inequalities in system and control 

theory, Philadelphia: SIAM, 1994. 

[17]  W. Paszke, K. Galkowski, E. Rogers and 

D.H.Owens, H∞ control of differential 

linear repetitive processes, IEEE 

Transactions on Circuits and Systems II, 

53(1), 39–44, 2006.
 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4176994&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A4176993%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4176994&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A4176993%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4176994&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A4176993%29

