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ABSTRACT 
In this paper, boundary layer heat flow over a flat plate is discussed. Similarity transformation is employed to 

transform the governing partial differential equations into ordinary ones, which are then solved numerically 

using implicit finite difference scheme namely Keller box method. The obtained Keller box solutions, in 

comparison with the previously published work are performed and are found to be in a good agreement.  

Numerical results for the temperature distribution have been shown graphically for different values of the Prandtl 

number. 
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I. INTRODUCTION 
The mathematical complexity of convection 

heat transfer is found to the non-linearity of the 

Navier-Stokes equations of motion and the coupling 

of flow and thermal fields. The boundary layer 

concept, first introduced by Prandtl in 1904, provides 

major simplifications. This concept is based on the 

belief that under special conditions certain terms in 

the governing equations are much smaller than others 

and therefore can be neglected without significantly 

affecting the accuracy of the solution.  

Most boundary-layer models can be reduced to 

systems of nonlinear ordinary differential equations 

which are usually solved by numerical methods. In 

this paper, solution of boundary layer heat flow over 

a flat plate is study with the help of implicit finite 

difference Keller box method. The same problem is 

solved by M. Esameilpour et al. [1] with the help of 

He’s Homotopy perturbation method. H. 

Mirgolbabaei [2] solved using Adomian 

Decomposition Method (ADM).  

 

II. GOVERNING EQUATIONS 
The boundary layer equations assume the 

following: (i) steady, incompressible flow, (ii) 

laminar flow, (iii) no significant gradients of pressure 

in the x-direction, and (iv) velocity gradients in the x-

direction are small compared to velocity gradients in 

the y-direction. The reduced Navier–Stokes equations 

for boundary layer over flat plate [3] 
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Under a boundary layer assumption, the 

energy transport equation is also simplified. 
2
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Subject to the boundary conditions 

i) No slip  0u   

ii) Impermeability  0v   

iii) Wall Temperature  
wT T

                 (4)
 

iv) Uniform flow  u U  

v) Uniform flow  0v   

vi) Uniform Temperature  T T  

The solution to the momentum equation is 

independent of the energy solution. However, the 

solution of the energy equation is still depends on the 

momentum solution.  

The following dimensionless variables are introduced 

in the transformation [1] 
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where    is non -dimensional form of the 

temperature and the Reynolds number is defined as 

                             

Re
u x

v
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 the governing equations (1)-(3) can be reduced to 

two equations, where f  is a function of the 

similarity variable 
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where 
1

Pr
   and f  is  related to the u   velocity 

by 
' u

f
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  . 

The corresponding boundary conditions are  
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III. KELLER BOX METHOD 
 

Equation (5) and (6) subject to the boundary 

conditions (7) is solved numerically using implicit 

finite difference method that is known as Keller-box 

in combination with the Newton’s linearization 

techniques as described by Cebeci and Bradshaw [4]. 

This method is completely stable and has second-

order accuracy. 

In this method the transformed differential equations 

(5)-(6) are writes in terms of first order system, for 

that introduce new dependent variable , ,u v w such 

that  

(8)
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 where prime denotes the differentiation w.r.to  . 

Equation (5) and (6) become 
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with new independent boundary conditions are   
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Now write the finite difference approximations of the 

ordinary differential equations (8) for the midpoint 
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Ordinary differential equations (9) and (10) are 

approximated by the centering about the mid-point 
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Now linearize the nonlinear system of equations (12)-

(16) using the Newton’s quasi-linearization method 

[5] 
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The linearized difference equation of the system (17) 

has a block tridiagonal structure. In a vector matrix 

form, it can be written as 
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This block tridiagonal structure can be solved using 

LU method explained by Na [5]. 

 

IV. RESULTS AND DISCUSSION 
The numerical results of boundary layer heat 

flow over a flat plate are shown in Table 1. Table 2 

gives a comparison of the obtained numerical 

solution with HPM solution which is found to be in 

good agreement. 

 

Fig.1, 2, 3 gives graphical comparison of 

Keller box and HPM solution for , 'f f  and    .In 

Fig. 4 numerical results for the temperature 

distribution have been shown graphically for 

different values of the Prandtl number 

 

Table 1 Keller Box solution of boundary layer heat flow over a flat plate when Pr=1 

  f  'f  ''f    '  

0 0 0 0.332092 1 -0.33209 

0.2 0.006642 0.066414 0.332016 0.933586 -0.33202 

0.4 0.026562 0.132776 0.3315 0.867224 -0.3315 

0.6 0.05974 0.198954 0.330107 0.801046 -0.33011 

0.8 0.106116 0.26473 0.327414 0.73527 -0.32741 

1 0.165583 0.329803 0.323029 0.670197 -0.32303 

1.2 0.237964 0.393801 0.316608 0.606199 -0.31661 

1.4 0.323 0.456288 0.307881 0.543712 -0.30788 

1.6 0.420342 0.516783 0.296676 0.483217 -0.29668 

1.8 0.529542 0.574784 0.282941 0.425216 -0.28294 

2 0.65005 0.629791 0.266758 0.370209 -0.26676 

2.2 0.78122 0.681335 0.248355 0.318665 -0.24835 

2.4 0.922317 0.729005 0.228093 0.270995 -0.22809 

2.6 1.072533 0.772477 0.206453 0.227523 -0.20645 

2.8 1.231004 0.81153 0.184002 0.18847 -0.184 

3 1.396834 0.846064 0.161354 0.153936 -0.16135 

3.2 1.56912 0.8761 0.139119 0.1239 -0.13912 

3.4 1.746975 0.90178 0.117865 0.09822 -0.11787 

3.6 1.929549 0.923347 0.098074 0.076653 -0.09807 

3.8 2.116054 0.941135 0.080112 0.058865 -0.08011 

4 2.30577 0.955535 0.064219 0.044465 -0.06422 

4.2 2.498064 0.966973 0.050504 0.033027 -0.0505 

4.4 2.692386 0.975885 0.038957 0.024115 -0.03896 

4.6 2.888274 0.982697 0.029468 0.017303 -0.02947 

4.8 3.085347 0.987802 0.021857 0.012198 -0.02186 

5 3.283301 0.991553 0.015893 0.008447 -0.01589 
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Table 2 Comparisons of results obtained by using Keller Box method and HPM [1] 

  

 

f  'f      

HPM NM 

Keller 

Box HPM NM 

Keller 

Box HPM NM 

Keller 

Box 

0 0 0 0 0 0 0 1 1 1 

0.2 0.00697 0.006641 0.006642 0.0696975 0.0664077 0.0664143 0.930302 0.933592 0.933586 

0.4 0.027876 0.026676 0.026562 0.1393444 0.1327641 0.1327763 0.860656 0.867236 0.867224 

0.6 0.062696 0.059722 0.05974 0.2088105 0.1989372 0.198954 0.791189 0.801063 0.801046 

0.8 0.111374 0.106108 0.106116 0.27788 0.2647094 0.2647296 0.72212 0.735291 0.73527 

1 0.173802 0.165572 0.165583 0.3462538 0.32978 0.3298033 0.653746 0.67022 0.670197 

1.2 0.249804 0.237949 0.237964 0.4135539 0.3937761 0.3938013 0.586446 0.606224 0.606199 

1.4 0.339122 0.322982 0.323 0.4793309 0.4562617 0.4562879 0.520669 0.543738 0.543712 

1.6 0.441401 0.420321 0.420342 0.5430747 0.5167567 0.5167832 0.456925 0.483243 0.483217 

1.8 0.55618 0.529518 0.529542 0.6042289 0.5747581 0.5747843 0.395771 0.425242 0.425216 

2 0.682883 0.650024 0.65005 0.6622097 0.6297657 0.6297911 0.337791 0.370234 0.370209 

2.2 0.820821 0.781193 0.78122 0.7164291 0.6813103 0.6813346 0.283571 0.31869 0.318665 

2.4 0.969187 0.92229 0.922317 0.7663226 0.7289819 0.729005 0.233677 0.271018 0.270995 

2.6 1.127077 1.072506 1.072533 0.8113803 0.772455 0.7724769 0.18862 0.227545 0.227523 

3 1.467413 1.396808 1.396834 0.8854328 0.8460444 0.8460642 0.114567 0.143955 0.153936 

3.2 1.647758 1.569095 1.56912 0.914001 0.8760814 0.8761004 0.095999 0.123918 0.1239 

3.4 1.83352 1.74695 1.746975 0.9369507 0.9017612 0.9017795 0.063049 0.088239 0.09822 

3.6 2.023791 1.929525 1.929549 0.9545718 0.9233296 0.9233473 0.055428 0.06667 0.076653 

3.8 2.217865 2.11603 2.116054 0.9673977 0.9411181 0.941135 0.032602 0.058882 0.058865 

4 2.415336 2.305746 2.30577 0.9762106 0.9555182 0.9555345 0.023789 0.031482 0.044465 

4.2 2.616229 2.49804 2.498064 0.9820237 0.966957 0.9669726 0.017976 0.033043 0.033027 

4.4 2.821149 2.692361 2.692386 0.9860369 0.9758708 0.9758854 0.013963 0.024129 0.024115 

4.6 3.031455 2.888248 2.888274 0.9895542 0.9826835 0.9826969 0.010446 0.017317 0.017303 

4.8 3.249458 3.085321 3.085347 0.993854 0.9877895 0.9878018 0.006146 0.012211 0.012198 

5 3.478658 3.283274 3.283301 0.9999999 0.9915419 0.991553 3.36E-10 0.008458 0.008447 
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Figure 1 Comparisons of results by Keller Box method , HPM and NM for  f(η) 

 

 
Figure 2 Comparisons of results by Keller Box method , HPM and NM for f’(η) 

 

 
Figure 3 Comparisons of results by Keller Box method , HPM and NM for  θ(η) 
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Figure 4 Effect of Prandtl Number on θ(η) 

 

V. CONCLUSION 
In this paper, Keller Box Method has been 

successfully applied to boundary layer heat transfer 

problem with specified boundary conditions. The 

obtained solutions are compared with ones from 

numerical method and Homotopy Perturbation 

Method. The excellent agreement of the Keller Box 

solutions and the exact solutions shows the reliability 

and the efficiency of the method. As prandtl number 

increases temperature distribution decreases which 

agrees well with the physical phenomena. 
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