
Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1177 | P a g e

Cryptographic Processor in The Implementation Of Ipsec

Protocols

Sridevi, Dr.Manjaiah D.H
Assistant Professor, Department of Computer Science, Karnatak University, Dharwad

Professor, Department of Computer Science, Mangalore University, Mangalore

Abstract
A compact cryptographic processor with custom integrated cryptographic coprocessors is designed and

implemented. The processor is mainly aimed for IPSec applications, which require intense processing power for

cryptographic operations. In the present design, this processing power is achieved via the custom cryptographic

coprocessors. These are an AES engine, a SHA-1 engine and a Montgomery modular multiplier, which are

connected to the main processor core through a generic flexible interface. The processor core is fully compatible

with Zylin Processor Unit (ZPU) instruction set, allowing the use of ZPU tool chain. A minimum set of required

instructions is implemented in hardware, while the rest of the instructions are emulated in software.

Keywords: Cryptography, Processor, GCC, IPSec, Zylin Processor Unit.

I. Introduction
The Internet Protocol (IP) is the protocol that

is used for data communication over the Internet. It is

also referred to as the Transmission Control

Protocol/Internet Protocol (TCP/IP). IP delivers

distinguished protocol packets, which are usually

referred to as datagrams, from the source host to the

destination host based on their addresses, by means of

addressing methods and structures for datagram

encapsulation. The first version of addressing

structure is referred to as Internet Protocol Version 4

(IPv4), which is still the dominant protocol of the

Internet. However, its successor, Internet Protocol

Version 6 (IPv6) is nowadays being deployed actively

worldwide. The main disadvantage of IP is its lack of

a general-purpose mechanism for ensuring the

authenticity and privacy of data. IP datagrams are

usually routed between devices over unknown

networks; hence, any information in the datagrams

can easily be intercepted and even changed. As a

result of the inherent security weaknesses of IP and

the increased utilization of Internet services for

critical applications, IP Security (IPSec) protocols

were developed [1]. At first, IPSec was developed for

IPv6, but then it has been engineered to cover the

security needs of both IPv4 and IPv6 networks. Its

operation in both versions differs only in the

datagram formats used for authentication header (AH)

and encapsulating security payload (ESP).

1.1 IPSec Operation and Core Protocols

When two devices want to communicate

securely, they set up a secure path that may traverse

across many insecure intermediate systems. To

perform this engagement, these devices must satisfy

certain rules:

• They must agree on a set of security protocols to

use so that each one sends data in a format the

other can understand.

• They must decide on a specific encryption

algorithm to use in encoding data.

• They must exchange keys that are used to decode

the data that has been cryptographically encoded.

• After background work is completed, each device

must use the protocols, methods, and keys

previously agreed upon to encode data and send

it across the network.

In the realization of its operation, IPSec uses

many different components and core protocols as

shown in Figure 1. Because of this multi-technique

and multi-protocol characteristic of IPSec, its main

architecture and behavior of all the core components

and protocols are not defined in a single Internet

standard. Instead, a collection of continuously

evolving Request for Comments (RFCs) [4] defines

the architecture, services and specific protocols which

are used in IPSec. Most important of these standards

are listed in Table .1.

Figure 1 Overview of IPSec protocols and

components

RESEARCH ARTICLE OPEN ACCESS

Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1178 | P a g e

1.2 Important IPSec standards.

RFC

Number

Name Description

4301 Security Architecture for the

Internet Protocol

The main IPSec document, describing the architecture and general

operation of the technology, and showing how the different components fit

together.

4302 IP Authentication Header Defines the IPSec Authentication Header (AH) protocol, which is used for

ensuring data integrity and origin verification.

4835 Cryptographic Algorithm

Implementation Requirements

for ESP and AH

Describes encryption and authentication algorithms for use by ESP and

AH.

4303 IP Encapsulating Security

Payload (ESP)

Describes the IPSec ESP protocol, which provides data encryption for

confidentiality.

4306 The Internet Key Exchange (IKE) Describes the IKE protocol that's used to negotiate security associations

and exchange keys between devices for secure communications.

Table 1: IPSec Standards

Two main pieces of IPSec, which actually

manage information encoding to ensure security, are

the authentication header (AH) and the encapsulating

security payload (ESP) [3]. They are known as the

core protocols of IPSec.

II. Cryptographic Coprocessors
The three coprocessors implement the AES

encryption, SHA-1 hashing and Montgomery modular

multiplication. Of these, AES encryption and SHA-1

hashing are must algorithms for IPSec, while

Montgomery modular multiplication (MMM) is the

computational component of the RSA algorithm used

in Internet Key Exchange (IKE) protocol of IPSec

protocol suite. The flexible coprocessor interface

explained before requires the coprocessors to behave

as RAMs from the ZPU based main processor’s point

of view. Therefore AES and SHA-1 coprocessors are

embedded into wrappers, which imitate single-port

RAM behavior. This is not necessary for the MMM

coprocessor, as it actually uses RAMs for operand

and result storage.

III. IPSEC protocol implementation
In order to present the operation and use of

the cryptographic processor in the implementation of

IPSec protocols and components. Each example

demonstrates the use of one of the coprocessors. The

first example uses the AES coprocessor in order to

implement the Counter with Cipher Block Chaining-

Message Authentication (CCM) mode, which is an

optional combined encryption and authentication

scheme of the IPSec protocol suite. It is followed by

the Hash based Message Authentication Code

(HMAC), which utilizes the SHA-1 coprocessor. The

last example uses the Montgomery modular multiplier

coprocessor in order to implement the RSA

encryption/decryption algorithm, which is an

important component of the Internet Key Exchange

(IKE) protocol of IPSec.

3.1 Counter with Cipher Block Chaining-Message

Authentication Code (CCM)

Counter with Cipher Block Chaining-

Message Authentication Code (CCM) [2] is used to

provide assurance of the privacy and the authenticity

of data by combining the techniques of the Counter

(CTR) mode [7] and the Cipher Block Chaining-

Message Authentication Code (CBC-MAC)

algorithm. CCM is based on an approved symmetric

key block cipher algorithm whose block size is 128

bits, such as the Advanced Encryption Standard

(AES) algorithm. CCM can be considered as a mode

of operation of the block cipher algorithm. A single

key to the block cipher must be established

beforehand among the parties to the data. So, CCM

should be implemented within a well-designed key

management structure. The security properties of

CCM depend on the secrecy of this key. CCM is

intended for use in a packet environment. All of the

data should be available in storage before CCM is

applied. CCM is not designed to support partial

processing or stream processing. Three inputs to

CCM are:

 data that will be both authenticated and encrypted

which is called the payload,

 associated data that will be authenticated but not

encrypted,

 a unique value called nonce, which is assigned to

the payload and the associated data.

CCM consists of two related processes:

generation-encryption and decryption-verification.

Only the forward cipher function of the block cipher

algorithm is used within these primitives. In

generation-encryption, cipher block chaining is

applied to the payload, the associated data, and the

nonce to generate a message authentication code

(MAC). Then, counter mode encryption is applied to

the MAC and the payload, to transform them into an

unreadable form which is called the cipher text.

Therefore, it can be seen that CCM generation-

encryption expands the size of the payload by the size

of the MAC. In decryption-verification, counter mode

decryption is applied to the supposed cipher text to

recover the MAC and the corresponding payload.

Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1179 | P a g e

Then, cipher block chaining is applied to the payload,

which is the received data, and the received nonce to

verify the correctness of the MAC. A successful

verification provides assurance that the payload and

the associated data originated from a source with

access to the key. A MAC provides stronger

assurance of authenticity than a checksum or an error

detecting code. The verification of a checksum or an

error detecting code is designed to detect only

accidental modifications of the data, while the

verification of a MAC is designed to detect

intentional, unauthorized modifications of the data, as

well as accidental modifications.

3.2 Description of CCM

As mentioned before, two CCM processes

are called generation-encryption and decryption-

verification. The order of the steps of these two

processes is a little bit flexible. For example, the

generation of the counter blocks may occur at any

time before they are used. In fact, the counter blocks

may be generated in advance to be considered as

inputs to the processes. The below algorithm explains

the generation-encryption process. The input data to

the generation-encryption process is a valid nonce, a

valid payload string and a valid associated data string,

which are formatted according to the formatting

function. The CBC-MAC mechanism is applied to the

formatted data to generate a MAC, whose length is a

prerequisite. Counter mode encryption, which

requires a sufficiently long sequence of counter

blocks as input, is applied to the payload string and

separately to the MAC. The resulting data which is

called the ciphertext (denoted C) is the output of the

generation-encryption process.

Prerequisites

Block cipher algorithm,

Key K,

Counter generation function,

MAC length Tlen,

Inputs:

Valid nonce N (salt + initialization vector(IV)),

Valid payload P of length plen bits (= M blocks –

each block is 128 bits long),

Valid associated data A of length Alen bits (= D

blocks – each block is 128 bits long),

Outputs:

Ciphertext C.

Steps:

1.Apply the formatting faction to (M, A, P) to

produce D+M blocks B1, B2, …., BD+M. IV is added at

the beginning of the block as B0 = IV.

2. Set Xi = Ek(B0).

3. for i= 1 to D+M, do Xi+1 = Ek (Xi Bi).

4. Set T = MSBplew(XD+M+1).

5. Apply the counter generation function to generate

the counter blocks Ctr0, Ctr1,…., CtrM, where M= |

Plen/128|.

6. for j=0 to M, do Sj = Ek(Ctrj).

7. Set S = S1 || S2 || … || SM .

8. Return C = (P MSBplew(S) || T MSBplew(S0

)).

The input to the decryption-verification

process, which is described in the below pseudo-code,

is a supposed ciphertext, an associated data string and

the nonce that is believed to be used in the generation

of the supposed ciphertext. Counter mode decryption

is applied to the supposed ciphertext to produce the

corresponding MAC and payload. If the nonce, the

associated data string and the payload are valid, then

these strings are formatted into blocks according to

the formatting function and the CBC-MAC

mechanism is applied to verify the MAC. If the

verification succeeds, then the decryption-verification

process returns the payload as output. Otherwise, only

the error message INVALID is returned. When the

error message INVALID is returned, the payload P

and the MAC T should not be displayed. Moreover,

the implementation should ensure that an

unauthorized party cannot distinguish if the error

message results from Step 7 or from Step 10, for

example from the timing of the error message.

Block cipher algorithm,

Key K,

Counter generation function,

Valid MAC length Tlen,

Inputs:

Valid nonce N (salt + initialization vector(IV)),

Associated data A of length Alen bits (= D blocks –

each block is 128 bits long),

Supposed ciphertext C of length Clen bits (= R blocks

– each block is 128 bits long),

Outputs:

Either the payload P of length plen bits (= M blocks –

each block is 128 bits long), or INVALID

Steps:

1. If clen Tlen, then return INVALID.

2. Apply the counter generation function to

generation the counter blocks

Ctr0, Ctr1,…., CtrM, where M= | Clen- Tlen

/128|.

 3. for j=0 to M, do Sj = Ek(Ctrj).

 4. Set S = S1 || S2 || … || SM .

 5. Set P = MSBclew-Tlen(C) MSBClen-Tlen(S)).

6. SET T = MSBTlen(C) MSBTlen(S0)).

7. If N, A or P is not valid, then return INVALID.

Else, Apply the formatting function to (N, A, P) to

produce the blocks B1, B2, | … BD+M .

8. Set Xi = Ek (B0)

9. For I = 1 to D+M, do Xi+1 = Ek (Xi Bi).

10. If T MSBTlen (XD+M+1), then return INVALID.

Else, return P.

3.3 AES-CCM

AES-CCM is performed on 16-byte (128-bit)

blocks. However, since the processor data bus is 32-

bits wide, AES input is not directly sent to the core in

128-bit format. At first, necessary data (such as flags,

nonce, payload, AAD) is read from corresponding

Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1180 | P a g e

RAM addresses and then the 128-bit input to the AES

core is formed and stored in four 32-bit temporary

variables in the software. These temporary variables

are mapped to 32-bit wide RAM locations (words) in

the actual hardware. 4-word AES input read from the

temporary memory locations is sent to the four AES

input registers to be processed. The AES input

registers are also mapped to specific locations in the

processor's address space. Once the AES inputs are

transferred, a write is issues to the virtual AES

command/status register signaling the AES to start its

encryption. This sets the physical "busy" signal in the

processor and halts its program execution, until the

AES coprocessor completes its run and clears the

"busy" signal by issuing the "encrypted block ready"

signal. The encrypted block is then read from four

(4x32=128-bit) AES output addresses. AES is

performed for blocks of cipher block chaining and

counter mode parts. In the end, the cipher text is

formed from the encrypted counter blocks and MAC

(MAC length is given as input - Tlen). For IPSec

purposes, certain inputs are fixed in the standard, such

as the length of AAD and the length of nonce. For

example, AAD length is stated as 8 or 12 bytes in the

standard [8]. Therefore, simplifications can be done

on the software code to cover only these IPSec

properties.

The decryption-verification is the reverse process of

the above operation.

3.4 Hash-based Message Authentication Code

(HMAC)

In communications, providing a way to check the

integrity of information transmitted over or stored in

an unknown medium is a major necessity.

Mechanisms that provide such integrity checks based

on a secret key are called message authentication

codes (MACs), as mentioned in previous section. A

MAC that uses an approved cryptographic hash

function in conjunction with a secret key is called

hash-based message authentication code (HMAC) [5].

The main goals behind the HMAC construction [9]

are:

• to use available hash functions without

modifications,

• to preserve the original performance of the hash

function,

• to use and handle keys in a simple way,

• to have a good cryptographic analysis of the

strength of the authentication mechanism on the

underlying hash function,

• to allow easy replace ability of the underlying

hash function, in case that faster or more secure

hash functions are available in the future.

Any iterative cryptographic hash function,

such as SHA-1, SHA-224 ... etc., may be used in the

calculation of an HMAC. So, the resulting MAC

algorithm is termed as HMAC-SHA-1, HMAC-SHA-

224 . etc., accordingly. The size of the output of

HMAC is the same as that of the underlying hash

function (160, 256 or 512 bits in case of SHA-1,

SHA-256 and SHA-512, respectively), although it can

be truncated if desired.

3.5 HMAC

In the definition of HMAC, the

cryptographic hash function is denoted by H and the

secret key is denoted by K. The byte-length of blocks

on which H operates iteratively, is denoted by B (B =

64 for SHA-1, SHA-224, SHA-256 and B = 128 for

SHA-384, SHA-512). The byte-length of hash

function outputs is denoted by L (L=20, 28, 32, 48

and 64 for SHA-1, SHA-224, SHA-256, SHA-384

and SHA-512, respectively). The authentication key

K can be of any length up to B, the block length of the

hash function. Two fixed and different strings ipad

and opad are defined as follows (the 'i' and 'o' are

mnemonics for inner and outer):

ipad = the byte 0x36 repeated B times,

opad = the byte 0x5C repeated B times.

To compute a MAC over the data 'text using the

HMAC function, the following operation is

performed:

MAC(text)t = HMAC(K, text)t = H((K0 opad) ||

H((K0 opad) || text)) t
Step by step process of the HMAC algorithm is as

follows:

1. If the length of K=B: set K0 = K. go to step 4.

2. If the length of K > B: hash K to obtain an L byte

string, then append (B-L) zeros to create a B-

byte string K0 (i.e . K0 = H(K) || 00 …00). Go to

step 4.

3. If the length of K< B : append zeros to the end of

K to create a B-byte string K0 (i. e if K is 20

bytes in length and B = 64, then K will be append

with 44 zero bytes 0X00).

4. XOR K0 with ipad to produced a B-byte string :

K0 ipad.

5. Append the stream of data ‘text’ to the string

resulting from step 4: ((K0 ipad) || text).

6. Apply H to the stream generated in step 5: H((K0

 ipad || text).

7. XOR K0 with opad: K0 ipad.

8. Append the result from step 6 to step 7:

(K0 opad) || H((K0 ipad) || text).

9. Apply H to the result from step 8:

H(K0 opad) || H((K0 ipad) || text)).

10. Select the leftmost t bytes of the result of step 9

as the MAC.

3.6 HMAC-SHA-1-96

HMAC-SHA-1-96 is performed on 64-byte

(512-bit) blocks. However, a SHA-1 input is not

directly sent to the core in 512-bit format. At first,

necessary data (such as key and payload) is read from

corresponding RAM addresses and then the 512-bit

input to the SHA-1 core is formed and stored in

sixteen 32-bit temporary variables. As in the case of

AES, once the SHA-1 coprocessor inputs are ready, a

Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1181 | P a g e

write is issued to the virtual SHA-1 command/status

register and the coprocessor starts its operations

halting the main processor’s program execution via

the “busy” signal. After SHA-1 completes processing

the 512-bit input block, it releases the busy and the

processor continues program execution. At this step,

the “hashed data” can either be read from the SHA-1

output registers, or hashing can be continued with

new inputs. For IPSec, certain inputs are fixed in the

standard. For example, the length of payload is fixed

to multiples of 512 bits and the key length is fixed to

20 bytes (160 bits – 5 RAM locations) [10].

Therefore, simplifications can be done on the

software code to cover only these IPSec properties.

The algorithm is rewritten according to this, as

follows:

B0[0:4] = (K ipad); B0[5:15]= ipad) bytes

B1 = text[0:15]

B2 = text[16:31]

-

-

-

BN = text[16x(N-1):16x(N-1))+15]

Clear=1;

H[0:4] = IV;

SHA_in = B0;

Start=1;

For(i=1 to N)

 H[0:4] = SHA_out;

 SHA_in =Bi;

Start=1;

End for

C= SHA_out;

A0[0:4] = (K opad);A0[5:15] = opad bytes

A0[0:4] = c; A1[5:15]= SHA_padding

Clear = 1;

h[0:4]= IV;

SHA_in = A0;

Start = 1;

h[0:4] = SHA_out;

SHA_in = A1;

Start = 1;

Y = SHA_out[0:2]

In the algorithm pseudo-code given above, the “clear”

signal is given in addition to the “start” in order to

identify the first 512-bit block input of the hashing

operation. The purpose of this identification is to

select initialization vector as h[0:4]. Unlike the “start”

signal, it does not activate the busy and halt program

execution.

3.4 RSA Encryption and Decryption for Internet

Key Exchange

The public key algorithm RSA (which stands

for Ron Rivest, Adi Shamir and Leonard Adleman,

who first publicly described it at MIT, in 1977) is the

first algorithm known to be suitable for both

asymmetric encryption/decryption and signature

generation/verification purposes, and it was one of the

first great advances in public key cryptography. RSA,

which became patent free and released to the public

domain in 2000, is the most widely used public key

algorithm in electronic commerce protocols and

believed to be secure given sufficiently long keys and

the use of up-to-date implementations. RSA involves

a public key and a private key. The public key can be

known to everyone and it is used for encrypting

messages. Messages encrypted with the public key

can only be decrypted using the private key. RSA gets

its security from integer factorization problem.

Difficulty of factoring large numbers is the basis of

security of RSA (512, 1024 or 2048 bits long,

generally).

3.6 RSA

RSA encryption algorithm has different

modes, such as RSA-512, RSA-1024, RSA-2048,

depending on the length of the inputs. Therefore,

RSA is performed on 64, 128 or 256 byte (512, 1024

or 2048 bits) blocks. However, an RSA input is not

directly sent to the MMM coprocessor in 512, 1024

or 2048 bits format. At first, necessary data (such as

message, keys, modulus and K constant) is read from

corresponding RAM addresses. As memory locations

are 32-bit wide, MMM inputs are sent to

corresponding 16(x32=512-bit), 32(x32=1024-bit) or

64(x32=2048-bit) input addresses to be processed.

The rest is similar to AES and SHA-1 coprocessor

operation. A write into the virtual MMM

command/status register starts its operation, activates

the busy signal, and halts the processor program

execution. When MMM output is ready, busy signal

is released and processor program continues its run by

transferring the multiplication result from the MMM

output registers to target addresses inside the

memory.

 RSA algorithm can directly be implemented in

software. Recall the algorithm in original format:

// r = MMM(1,K,n) //

Mem(MMM_A) mem(1);

Mem(MMM_B) mem(K);

Start = 1;

Mem(MMM_C) mem(n);

mem(m); em(MMM_Y);

for i=0 to E-1

 Mem(MMM_B) mem(m);

If e(i)

 // r = MMM(r,m,n) //

Mem(MMM_A) mem(r);

start = 1;

mem(r); em(MMM_Y);

end if

// m = MMM(m,m,n) //

Mem(MMM_A) mem(m);

start = 1;

mem(m); em(MMM_Y);

end for

Sridevi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1177-1182

www.ijera.com 1182 | P a g e

// r = MMM(r,1,n) //

Mem(MMM_A) mem(r);

Mem(MMM_B) mem(1);

start = 1;

mem(r); em(MMM_Y);

c mem;

IV. Conclusion
The processor is mainly targeted for IPSec

applications, and is composed of a ZPU instruction

set compatible microcontroller core, and

cryptographic coprocessors connected to this core via

a simple and generic plug-in interface. There are

three coprocessors capable of implementing the AES

encryption and SHA-1 hashing in full compliant with

the standards, as well as Montgomery modular

multiplication up to 2048-bits. These coprocessors are

accessed by the main controller core like regular

RAMs, which forms the basis idea for the flexible

interface. The interface is generic in the sense that it

allows any module to be connected to the main core

regardless of the input/output definition or the

function of the module with the addition of a simple

wrapper around the module. The cryptographic

processor is intended as a proof-of-concept for the

flexible interface and a development platform for a

commercial IPSec product. It will be possible to

evaluate performance of the complete IPSec protocol

suite on this processor on either simulation or FPGA

development boards.

Reference
[1] IPSec, http://en.wikipedia.org/wiki/IPsec

[2] Counter with CBC-MAC (CCM), RFC 3610,

2003.

[3] Kozierok, C. M., The TCP/IP Guide, 2005.

[4] RFC Index, http://tools.ietf.org/rfc/index

[5] Thull, D., Sannino, R., Performance

considerations for an embedded

implementation of OMA DRM 2, Design,

Automation and Test in Europe, 2005

[6] Osvik, D. A., Bos, J. W., Stefan, D.,

Canright, D., Fast software AES encryption,

In International Workshop on Fast Software

Encryption, LNCS Springer, 2010

[7] Using Advanced Encryption Standard (AES)

Counter Mode, RFC3686, 2004

[8] Using Advanced Encryption Standard (AES)

CCM Mode with IPsec Encapsulating

Security Payload (ESP), RFC4309, 2005

[9] Krawczyk, H., Bellare, M., Canetti, R.,

HMAC: Keyed-Hashing for Message

Authentication, Internet Engineering Task

Force, Request for Comments (RFC) 2104,

February 1997

[10] The Use of HMAC-SHA-1-96 within ESP

and AH, RFC2404, 1998

http://tools.ietf.org/rfc/index

