
Mehrdad Hashemi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1160-1162

www.ijera.com 1160 | P a g e

An Investigation about the Models of Parallel Computation

Mehrdad Hashemi
1
, Shabnam Ahari

2

1
Department of applied mathematics and cybernetic, Baku State University, Baku, Azerbaijan

2
Department of computer engineering, Islamic Azad university, Ahar, Iran

Abstract

In this paper we discuss on a basic facts about parallel processing. Suppose the fastest sequential algorithm for

doing a computation with parameter n has execution time of T(n). Then the fastest parallel algorithm with m

processors has execution time >= T(n)/m. If you could find a faster parallel algorithm, you could execute it

sequentially by having a sequential computer simulate parallelism and get a faster sequential algorithm. This

would contradict the fact that the given sequential algorithm is the fastest possible. We are making the

assumption that the cost of simulating parallel algorithms by sequential ones is negligible.

Keywords: Parallel, computation, models, complexity.

I. INTRODUCTION
A PRAM [1] computer follows the exclusion

read exclusion write (EREW) scheme of memory

access if, in one program step, each memory location

can be written or read by at most a single processor. It

isn’t hard to see that it is optimal in the sense that it

will always take at least n steps to sort n numbers on

that computer. For instance, some numbers might start

out n – 1 positions away from their final destination in

the sorted sequence and they can only move one

position per program step. On the other hand it turns

out that the PRAM-EREW computer described above

can sort n numbers in O(lg2 n) program steps using

an old algorithm due to Batcher. The difference is that

even if only one processor can access one memory

location at a time it is very significant that all

processors can access all of the available memory in a

single program step.

A comparator is a type of device (a computer-circuit,

for instance) with two inputs and two outputs:

figure 1. A sample of comparator

Such that:

• OUT1 = min(IN1, IN2)

• OUT2 = max(IN1, IN2)

The standard notation for a comparator (when

it is part of a larger network) is the more compact

diagram:

Figure 2. The standard notation for a comparator

A sorting network is a comparator network that has

the additional property:

The data that appears at the output vertices is

the result of sorting the data that was at the input

vertices.

A merging network is defined to be a

comparator network with the property that, if we

subdivide the inputs into two subsets of equal sizes,

and insert sorted data into each of these subsets, the

output is the result of merging the input-sequences

together. If a comparator network correctly sorts all

input-sequences drawn from the set {0, 1}, then it

correctly sorts any input-sequence of numbers, so that

it constitutes a sorting network. Similarly, if a

comparator-network whose inputs are subdivided into

two equal sets correctly merges all pairs of 0-1-

sequences, then it correctly merges all pairs of number

sequences.

Suppose that a sequence of numbers will be

called bitonic [2] if either of the following two

conditions is satisfied:

• It starts out being monotonically increasing up to

some point and then becomes monotonically

decreasing.

• It starts out being monotonically decreasing up to

some point and then becomes monotonically

increasing.

A sequence of 0’s and 1’s will be called clean

if it consists entirely of 0’s or entirely of 1’s.

For instance the sequence {4, 3, 2, 1, 3, 5, 7} is bitonic.

We will present an algorithm that correctly sorts all

bitonic sequences. This will turn out to imply an

efficient algorithm for merging all pairs of sorted

sequences, and then, an associated algorithm for

sorting all sequences.

RESEARCH ARTICLE OPEN ACCESS

Mehrdad Hashemi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1160-1162

www.ijera.com 1161 | P a g e

Figure 3. A bitonic halver of size 8

Given a bitonic sequence of size {a0, . . . ,

an−1}, where n = 2m, a bitonic halver is a comparator

network that performs the following sequence of

compare-exchange operations:

for i Ã 0 to m − 1 do in parallel

 if (ai < ai+m) then swap(ai, ai+m)

end for

Note that a bitonic halver performs some

limited sorting of its input.

II. RELATIONS BETWEEN PRAM MODELS
In this section we will use the sorting

algorithm to compare several variations on the PRAM

models of computation. We begin by describing two

models that appear to be substantially stronger than

the EREW model:

CREW — Concurrent Read, Exclusive Write

[3]. In this case any number of processors can read

from a memory location in one program step, but at

most one processor can write to a location at a time. In

some sense this model is the one that is most

commonly used in the development of algorithms.

CRCW — Concurrent Read, Concurrent

Write [3]. In this case any number of processors can

read from or write to a common memory location in

one program step. The outcome of a concurrent write

operation depends on the particular model of

computation being used (i.e. this case breaks up into a

number of sub-cases).

It is a somewhat surprising result, due to

Vishkin [4] that these models can be effectively

simulated by the EREW model. The original statement

is as follows:

If an algorithm on the CRCW model of

memory access executes in a time units using b

processors then it can be simulated on the EREW

model using O(a lg2 n) -time and b processors. The

RAM must be increased by a factor of O(b). This

theorem uses the Batcher sorting algorithm in an

essential way. If we substitute the (equally usable)

EREW version of the Cole sorting algorithm, we get

the following theorem:

Improved Vishkin Simulation Theorem If an

algorithm on the CRCW model of memory access

executes in a time units using b processors then it can

be simulated on the EREW model using O(a lg n) -

time and b processors. The RAM must be increased by

a factor of O(b). Incidentally, we are assuming the

SIMD model of program control. The algorithm works

by simulating the read and write operations in a single

program step of the CRCW machine.

III. COMPLEXITY CLASSES AND THE

PARALLEL PROCESSING THESIS
In this section we will be concerned with

various theoretical issues connected with parallel

processing. We will study the question of what

calculations can be efficiently done in parallel and in

what sense. We present the so-called Parallel

Processing Thesis of Fortune and Wyllie [5]. It

essentially shows that execution-time on a parallel

computer corresponds in some sense to space on a

sequential computer. The arguments used by Fortune

and Wyllie also give some insight into why the

execution time of many parallel algorithms is a power

of a logarithm of the complexity of the problem. One

of the most interesting theoretical questions that arise

in this field is whether there exist inherently sequential

problems. These are essentially computations for

which it is impossible to find parallel algorithms that

are substantially faster than the fastest sequential

algorithms. This is a subtle question, because there are

many problems that appear to be inherently sequential

at first glance but have fast parallel algorithms. In

many cases the fast parallel algorithms approach the

problem from a completely different angle than the

preferred sequential algorithms. One of the most

glaring examples of this is the problem of matrix

inversion, where:

 1. The fastest sequential algorithm (i.e., a form of

Gaussian Elimination) only lends itself to a limited

amount of parallelization.

 2. The fastest parallel algorithm would be extremely

bad from a sequential point of view.

This should not be too surprising, in many cases the

fastest sequential algorithms are the ones that reduce

the amount of parallelism in the computations to a

minimum. First it is necessary to make precise what

we mean by a parallel algorithm being substantially

faster than the corresponding sequential algorithm.

Here are some of the algorithms that have been

considered so far:

 1. Forming cumulative sums of n numbers. The

sequential algorithm has an execution time of O(n).

The parallel algorithm has an execution time of O(log

n) using O(n) processors;

 2. Sorting n numbers by performing comparisons.

The best sequential algorithms have an asymptotic

execution time of O(n log n). The best parallel

algorithms have asymptotic execution times of O(log

n) using O(n) processors;

 3. Inversion of an n × n non-sparse matrix. The best

sequential algorithms use Gaussian Elimination and

have an execution time of O(n3). The asymptotically

fastest known parallel algorithms have an execution

time of O(lg2 n) using (n× 2.376) processors.

 The general pattern that emerges is:

Mehrdad Hashemi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1160-1162

www.ijera.com 1162 | P a g e

• We have a sequential algorithm that executes in an

amount of time that is bounded by a polynomial

function of the input-size. The class of such problems

is denoted P;

• We have parallel algorithms that execute in an

amount of time that is bounded by a polynomial of the

logarithm of the input-size, and use a number of

processors bounded by a polynomial of the input size.

The class of these problems is denoted NC; As has

been remarked before, NC µ P — any algorithm for a

problem in NC can be sequentially simulated in an

amount of time that is bounded by a polynomial

function of the original input. Our question of whether

inherently sequential problems exist boils down to the

question of whether there exist any problems in P \

NC, or the question of whether NC = P. As of this

writing 1991 this question is still open. We will

discuss some partial results in this direction. They give

a natural relationship between parallel execution time

and the amount of RAM required by sequential

algorithms. From this we can deduce some rather

weak results regarding sequential execution time.

It is first necessary to define the complexity of

computations in a fairly rigorous sense. We will

consider general problems equipped with:

 • An encoding scheme for the input-data. This is some

procedure, chosen in advance, for representing the

input-data as a string in some language associated

with the problem. For instance, the general sorting

problem might get its input-data in a string of the form

{a1, a2, . . . }, where the “ai” are bit-strings

representing the numbers to be sorted.

• A complexity parameter that is proportional to the

size of the input-string. For instance, depending on

how one defines the sorting problem, the complexity

parameter might be equal to the number of items to be

sorted, or the total number of symbols required to

represent these data-items. These two definitions of

the sorting problem differ in significant ways. For

instance if we assume that inputs are all distinct, then

it requires O(n log n) symbols to represent n numbers.

This is due to the fact that “log n” bits are needed to

count from 0 to n − 1 so (at least) this many bits are

needed to represent each number in a set of n distinct

numbers. In this case, it makes a big difference

whether one defines the complexity-parameter to be

the number of data-items or the size (in bits) of the

input. If (as is usual) we assume the all inputs to a

sorting-algorithm can be represented by a bounded

number of bits, then the number of input items is

proportional to the actual size of the input.

REFERENCES

[1] J. Brenner, J. Keller, C. Kessler, Executing

PRAM Programs on GPUs, Procedia

Computer Science, Vol 9, 2012, pp. 1799-

1806.

[2] http://www.iti.fh-flensburg.de/lang/algorithm

en/sortieren/bitonic/oddn.htm

[3] M. Snir, On parallel searching. Society for

Industrial and Applied Mathematics. SIAM J.

COMPUT., Vol. 14, No. 3, August 1985, pp.

688-708.

[4] Uzi Vishkin, Implementation of simultaneous

memory access in models that forbid it. J.

Algorithms 4 1983, pp. 45–50.

[5] S. Fortune and J. Wyllie. Parallelism in

random access machines. ACM Symposium

on the Theory of Computing, vol. 10, 1978,

pp. 114–118.

[6] F. Yu, K. Ko, On parallel complexity of

analytic functions. Theoretical Computer

Science, Volumes 489–490, 10 June

2013, PP. 48-53.

http://www.sciencedirect.com/science/article/pii/S1877050912003195
http://www.sciencedirect.com/science/article/pii/S1877050912003195
http://www.iti.fh-flensburg.de/lang/algorithm%20en/sortieren/bitonic/oddn.htm
http://www.iti.fh-flensburg.de/lang/algorithm%20en/sortieren/bitonic/oddn.htm
http://www.sciencedirect.com/science/article/pii/S0304397513002703
http://www.sciencedirect.com/science/article/pii/S0304397513002703

