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Abstract 

In this paper we discuss on a basic facts about parallel processing. Suppose the fastest sequential algorithm for 

doing a computation with parameter n has execution time of T(n). Then the fastest parallel algorithm with m 

processors has execution time >= T(n)/m. If you could find a faster parallel algorithm, you could execute it 

sequentially by having a sequential computer simulate parallelism and get a faster sequential algorithm. This 

would contradict the fact that the given sequential algorithm is the fastest possible. We are making the 

assumption that the cost of simulating parallel algorithms by sequential ones is negligible. 
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I. INTRODUCTION 
A PRAM [1] computer follows the exclusion 

read exclusion write (EREW) scheme of memory 

access if, in one program step, each memory location 

can be written or read by at most a single processor. It 

isn’t hard to see that it is optimal in the sense that it 

will always take at least n steps to sort n numbers on 

that computer. For instance, some numbers might start 

out n – 1 positions away from their final destination in 

the sorted sequence and they can only move one 

position per program step. On the other hand it turns 

out that the PRAM-EREW computer described above 

can sort n numbers in  O(lg2 n) program steps using 

an old algorithm due to Batcher. The difference is that 

even if only one processor can access one memory 

location at a time it is very significant that all 

processors can access all of the available memory in a 

single program step. 

A comparator is a type of device (a computer-circuit, 

for instance) with two inputs and two outputs: 

 
figure 1.  A sample of comparator 

 

Such that: 

• OUT1 = min(IN1, IN2) 

• OUT2 = max(IN1, IN2) 

 

The standard notation for a comparator (when 

it is part of a larger network) is the more compact 

diagram: 

 
Figure 2. The standard notation for a comparator 

 

A sorting network is a comparator network that has 

the additional property: 

The data that appears at the output vertices is 

the result of sorting the data that was at the input 

vertices. 

A merging network is defined to be a 

comparator network with the property that, if we 

subdivide the inputs into two subsets of equal sizes, 

and insert sorted data into each of these subsets, the 

output is the result of merging the input-sequences 

together. If a comparator network correctly sorts all 

input-sequences drawn from the set {0, 1}, then it 

correctly sorts any input-sequence of numbers, so that 

it constitutes a sorting network. Similarly, if a 

comparator-network whose inputs are subdivided into 

two equal sets correctly merges all pairs of 0-1-

sequences, then it correctly merges all pairs of number 

sequences. 

Suppose that a sequence of numbers will be 

called bitonic [2] if either of the following two 

conditions is satisfied: 

• It starts out being monotonically increasing up to 

some point and then becomes monotonically 

decreasing. 

• It starts out being monotonically decreasing up to 

some point and then becomes monotonically 

increasing. 

A sequence of 0’s and 1’s will be called clean 

if it consists entirely of 0’s or entirely of 1’s. 

For instance the sequence {4, 3, 2, 1, 3, 5, 7} is bitonic. 

We will present an algorithm that correctly sorts all 

bitonic sequences. This will turn out to imply an 

efficient algorithm for merging all pairs of sorted 

sequences, and then, an associated algorithm for 

sorting all sequences. 
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Figure 3. A bitonic halver of size 8 

 

Given a bitonic sequence of size {a0, . . . , 

an−1}, where n = 2m, a bitonic halver is a comparator 

network that performs the following sequence of 

compare-exchange operations: 

 

for i Ã 0 to m − 1 do in parallel 

      if (ai < ai+m) then swap(ai, ai+m) 

end for 

 

Note that a bitonic halver performs some 

limited sorting of its input. 

 

II. RELATIONS BETWEEN PRAM MODELS 
In this section we will use the sorting 

algorithm to compare several variations on the PRAM 

models of computation. We begin by describing two 

models that appear to be substantially stronger than 

the EREW model: 

CREW — Concurrent Read, Exclusive Write 

[3]. In this case any number of processors can read 

from a memory location in one program step, but at 

most one processor can write to a location at a time. In 

some sense this model is the one that is most 

commonly used in the development of algorithms. 

CRCW — Concurrent Read, Concurrent 

Write [3]. In this case any number of processors can 

read from or write to a common memory location in 

one program step. The outcome of a concurrent write 

operation depends on the particular model of 

computation being used (i.e. this case breaks up into a 

number of sub-cases).  

It is a somewhat surprising result, due to 

Vishkin [4] that these models can be effectively 

simulated by the EREW model. The original statement 

is as follows: 

If an algorithm on the CRCW model of 

memory access executes in a time units using b 

processors then it can be simulated on the EREW 

model using O(a lg2 n) -time and b processors. The 

RAM must be increased by a factor of O(b). This 

theorem uses the Batcher sorting algorithm in an 

essential way. If we substitute the (equally usable) 

EREW version of the Cole sorting algorithm, we get 

the following theorem: 

Improved Vishkin Simulation Theorem If an 

algorithm on the CRCW model of memory access 

executes in a time units using b processors then it can 

be simulated on the EREW model using O(a lg n) -

time and b processors. The RAM must be increased by 

a factor of O(b). Incidentally, we are assuming the 

SIMD model of program control. The algorithm works 

by simulating the read and write operations in a single 

program step of the CRCW machine. 

 

III. COMPLEXITY CLASSES AND THE 

PARALLEL PROCESSING THESIS 
In this section we will be concerned with 

various theoretical issues connected with parallel 

processing. We will study the question of what 

calculations can be efficiently done in parallel and in 

what sense. We present the so-called Parallel 

Processing Thesis of Fortune and Wyllie [5]. It 

essentially shows that execution-time on a parallel 

computer corresponds in some sense to space on a 

sequential computer. The arguments used by Fortune 

and Wyllie also give some insight into why the 

execution time of many parallel algorithms is a power 

of a logarithm of the complexity of the problem. One 

of the most interesting theoretical questions that arise 

in this field is whether there exist inherently sequential 

problems. These are essentially computations for 

which it is impossible to find parallel algorithms that 

are substantially faster than the fastest sequential 

algorithms. This is a subtle question, because there are 

many problems that appear to be inherently sequential 

at first glance but have fast parallel algorithms. In 

many cases the fast parallel algorithms approach the 

problem from a completely different angle than the 

preferred sequential algorithms. One of the most 

glaring examples of this is the problem of matrix 

inversion, where: 

     1. The fastest sequential algorithm (i.e., a form of 

Gaussian Elimination) only lends itself to a limited 

amount of parallelization. 

 2. The fastest parallel algorithm would be extremely 

bad from a sequential point of view. 

This should not be too surprising, in many cases the 

fastest sequential algorithms are the ones that reduce 

the amount of parallelism in the computations to a 

minimum. First it is necessary to make precise what 

we mean by a parallel algorithm being substantially 

faster than the corresponding sequential algorithm. 

Here are some of the algorithms that have been 

considered so far: 

     1. Forming cumulative sums of n numbers. The 

sequential algorithm has an execution time of O(n). 

The parallel algorithm has an execution time of O(log 

n) using O(n) processors; 

     2. Sorting n numbers by performing comparisons. 

The best sequential algorithms have an asymptotic 

execution time of O(n log n). The best parallel 

algorithms have asymptotic execution times of O(log 

n) using O(n) processors; 

     3. Inversion of an n × n non-sparse matrix. The best 

sequential algorithms use Gaussian Elimination and 

have an execution time of O(n3). The asymptotically 

fastest known parallel algorithms have an execution 

time of O(lg2 n) using (n× 2.376) processors. 

   The general pattern that emerges is: 
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• We have a sequential algorithm that executes in an 

amount of time that is bounded by a polynomial  

function of the input-size. The class of such problems 

is denoted P; 

• We have parallel algorithms that execute in an 

amount of time that is bounded by a polynomial of the 

logarithm of the input-size, and use a number of 

processors bounded by a polynomial of the input size. 

The class of these problems is denoted NC; As has 

been remarked before, NC µ P — any algorithm for a 

problem in NC can be sequentially simulated in an 

amount of time that is bounded by a polynomial 

function of the original input. Our question of whether 

inherently sequential problems exist boils down to the 

question of whether there exist any problems in P \ 

NC, or the question of whether NC = P. As of this 

writing 1991 this question is still open. We will 

discuss some partial results in this direction. They give 

a natural relationship between parallel execution time 

and the amount of RAM required by sequential 

algorithms. From this we can deduce some rather 

weak results regarding sequential execution time. 

It is first necessary to define the complexity of 

computations in a fairly rigorous sense. We will 

consider general problems equipped with: 

 • An encoding scheme for the input-data. This is some 

procedure, chosen in advance, for representing the 

input-data as a string in some language associated 

with the problem. For instance, the general sorting 

problem might get its input-data in a string of the form 

{a1, a2, . . . }, where the “ai” are bit-strings 

representing the numbers to be sorted. 

• A complexity parameter that is proportional to the 

size of the input-string. For instance, depending on 

how one defines the sorting problem, the complexity 

parameter might be equal to the number of items to be 

sorted, or the total number of symbols required to 

represent these data-items. These two definitions of 

the sorting problem differ in significant ways. For 

instance if we assume that inputs are all distinct, then 

it requires O(n log n) symbols to represent n numbers. 

This is due to the fact that “log n” bits are needed to 

count from 0 to n − 1 so (at least) this many bits are 

needed to represent each number in a set of n distinct 

numbers. In this case, it makes a big difference 

whether one defines the complexity-parameter to be 

the number of data-items or the size (in bits) of the 

input. If (as is usual) we assume the all inputs to a 

sorting-algorithm can be represented by a bounded 

number of bits, then the number of input items is 

proportional to the actual size of the input. 
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