
M. A. Fahmy et al Int. Journal of Engineering Research and Applications                     www.ijera.com 

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1146-1154 

 

 

www.ijera.com                                                                                                                                      1146 | P a g e 

 

 

 

 

Computer Implementation of the Drbem for Studying the Classical 

Uncoupled Theory of Thermoelasticity of Functionally Graded 

Anisotropic Rotating Plates 
 

M. A. Fahmy
(a,b)

, A. M. Salem
b
, M. S. Metwally

c
 And M. M. Rashid

c
 

a
Mathematics Department,University College, Umm Al-Qura University,Makkah,The Kingdom of Saudi Arabia. 

b
Faculty of Computers and Informatics, Suez Canal University,Ismailia,Egypt. 

c
Faculty of Science, Suez University, Suez,Egypt. 

 

Abstract 
A numerical computer model based on the dual reciprocity boundary element method (DRBEM) is extended to 

study the classical uncoupled theory of thermoelasticity of functionally graded anisotropic rotating plates. In the 

case of plane deformation, a predictor-corrector implicit-explicit time integration algorithm was developed and 

implemented for use with the DRBEM to obtain the solution for the displacement and temperature fields in the 

context of the classical uncoupled theory of thermoelasticity. Numerical results that demonstrate the validity of the 

proposed method are also presented in the tables. 
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I. Introduction 
Biot [1] introduced the classical coupled 

thermo-elasticity theory (CCTE) to overcome the first 

shortcoming in the classical thermo-elasticity theory 

(CTE) introduced by Duhamel [2] and Neuman [3] 

where it predicts two phenomena not compatible with 

physical observations. First, the equation of heat 

conduction of this theory does not contain any elastic 

terms. Second, the heat equation is of a parabolic type, 

predicting infinite speeds of propagation for heat waves. 

Most of the approaches that came out to overcome the 

unacceptable prediction of the classical theory are based 

on the general notion of relaxing the heat flux in the 

classical Fourier heat conduction equation, thereby 

introducing a non-Fourier effect. One of the simplest 

forms of these equation is due to the work of Lord and 

Shulman [4] who introduced extended thermo-elasticity 

theory (ETE) with one relaxation time by constructing a 

new law of heat conduction to replace the classical 

Fourier's law. This law contains the heat flux vector as 

well as its time derivative. It contains also new constant 

that acts as relaxation time. Since the heat equation of 

this theory is of the wave-type, it automatically ensures 

finite speeds of propagation for heat and elastic waves. 

Green and Lindsay [5] included a temperature rate 

among the constitutive variables to develop a 

temperature-rate-dependent thermo-elasticity theory 

(TRDTE) that does not violate the classical Fourier's law 

of heat conduction when the body under consideration 

has a center of symmetry; this theory also predicts a 

finite speed of heat propagation and is known as the 

theory of thermoelasticity with two relaxation times. 

According to these theories, heat propagation should be 

viewed as a wave phenomenon rather than diffusion one. 

Relevant theoretical developments on the subject were 

made by Green and Naghdi [6, 7] they developed three 

models for generalized thermoelasticity of homogeneous 

isotropic materials which are labeled as model I, II and 

III. It is hard to find the analytical solution of a problem 

in a general case, therefore, an important number of 

engineering and mathematical papers devoted to the 

numerical solution have studied the overall behavior of 

such materials (see, e.g., [8-27]). 

Functionally graded materials (FGMs) are made 

of a mixture with arbitrary composition of two different 

materials, and the volume fraction of each material 

changes continuously and gradually. The FGMs concept 

is applicable to many industrial fields such as aerospace, 

nuclear energy, chemical plant, electronics, biomaterials 

and so on. Works by Skouras et al. [28], Mojdehi et al. 

[29], Loghman et al. [30] and Mirzaei and Dehghan [31] 

are examples involving functionally graded materials. 

One of the most frequently used techniques for 

converting the domain integral into a boundary one is the 

so-called dual reciprocity boundary element method 

(DRBEM). This method was initially developed by 

Nardini and Brebbia [32] in the context of two-

dimensional (2D) elastodynamics and has been extended 
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to deal with a variety of problems wherein the domain 

integral may account for linear-nonlinear static-dynamic 

effects. A more extensive historical review and 

applications of dual reciprocity boundary element 

method may be found in Brebbia et al. [33], Wrobel and 

Brebbia [34], Partridge and Brebbia [35], Partridge and 

Wrobel [36] and Fahmy [37-40]. 

The main objective of this paper is to study the 

generalized thermoelasticity problems in a rotating 

anisotropic functionally graded plate in the context of the 

classical uncoupled theory of thermoelasticity. A 

predictor-corrector implicit-explicit time integration 

algorithm was developed and implemented for use with 

the dual reciprocity boundary element method (DRBEM) 

to obtain the solution for the temperature and 

displacement fields. The accuracy of the proposed 

method was examined and confirmed by comparing the 

obtained results with those known before.  

 

II. Formulation of the problem 

Consider a Cartesian coordinates system      

as shown in Fig. 1. We shall consider a functionally 

graded anisotropic plate rotating about z-axis with a 

constant angular velocity. The plate occupies the region 

                              with 

graded material properties in the thickness direction.  

In this paper, the material is functionally graded 

along the    direction. Thus, the governing equations in 

the context of the classical uncoupled theory of 

thermoelasticity theory can be written in the following 

form: 

            
                                          

                                                              

                                                                           
where     is the mechanical stress tensor,    is the 

displacement,   is the temperature,       and     are 

respectively, the constant elastic moduli and stress-

temperature coefficients of the anisotropic medium,   is 

the uniform angular velocity,     are the thermal 

conductivity coefficients satisfying the symmetry 

relation         and the strict inequality      
  

         holds at all points in the medium,   is the 

density,   is the specific heat capacity,   is the time. 

 

III. Numerical implementation 
Making use of (2), we can write (1) as follows 

                          
                

where 

        
 

   
               

 

   
   

 

   
  

        
 

   
                     

   1   −  2  . 

The field equations can now be written in operator form 

as follows 

                                                                                        

                                                                                        
where the operators     and     are defined in equation 

(4), and the operators     and     are defined as follows 

       
 

   

 

   
                                                                  

                                                                               
Using the weighted residual method (WRM), the 

differential equation (5) is transformed into an integral 

equation 

               
 

 

                                                     

Now, we choose the fundamental solution    
  as 

weighting function as follows 

      
                                                                      

The corresponding traction field can be written as 

   
            

                                                                  

The thermoelastic traction vector can be written as 

follows 

   
   

      
                                            

Applying integration by parts to (9) using the 

sifting property of the Dirac distribution, with (10) and 

(12), we can write the following elastic integral 

representation formula

           
       

       
        

 

          
    

 

                                                                                            

The fundamental solution    of the thermal operator 

   , defined by 

    
                                                                      

              By implementing the WRM and integration by 

parts, the differential equation (6) is transformed into 

the thermal reciprocity equation 

       
      

                   

  

          

where the heat fluxes are independent of the elastic 

field and can be expressed as follows: 

                                                                                
          

                                                                       
By the use of sifting property, we obtain from (16) the 

thermal integral representation formula 

                 

 

      
    

 

                     



M. A. Fahmy et al Int. Journal of Engineering Research and Applications                     www.ijera.com 

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1146-1154 

 

 

www.ijera.com                                                                                                                                      1148 | P a g e 

The integral representation formulae of elastic and 

thermal fields (13) and (18) can be combined to form a 

single equation as follows 

 
     
    

      
   
     

      
    

  
  
 
   

   
  

    
  
  
        

   
  

    
  
   
    

    

  

                                

It is convenient to use the contracted notation to introduce generalized thermoelastic vectors and tensors, which 

contain corresponding elastic and thermal variables as follows: 

    
                    
                                 

                                                                                                                                                        

    
                    
                                 

                                                                                                                                                         

   
   

   
                             

                                         
                                         
                                                    

                                                                                                                     

    
   

   
                             

    
                                      

                                        
                                                   

                                                                                                                      

   
     

                                                                                                                                                                                       

The thermoelastic representation formula (19) can be written in contracted notation as: 

           
                  

      

  

                                                                                                                     

The vector    can be written in the split form as follows 

     
    

    
    

     
                                                                                                                                                          

where 

  
   

                        
                                         

                                                                                                                                                 

  
                             

                              
                                             

                                                                                           

  
                        

with    

   
                              
                                                           

                                                                                                                              

  
                               

                       
                               

                                                                                          

  
                                 

                                                          
                                                             

                                                                 

The thermoelastic representation formula (19) can also be written in matrix form as follows: 

        
   
 

   
    
 

   
              

 
             

 
  
   

    
 
                                                           

Our task now is to implement the DRBEM. To 

transform the domain integral in (25) to the boundary, 

we approximate the source vector    in the domain as 

usual by a series of given tensor functions    
 

 and 

unknown coefficients   
 

 

       
 
  
 
 

 

   

                                                                

According to the DRBEM, the surface of the solid has 

to be discretized into boundary elements. In order to 

make the implementation easy to compute, we use    

collocation points on the boundary  and another    in 

the interior of   so that the total number of 

interpolation points is         . 
Thus, the thermoelastic representation formula (25) can 

be written in the following form 

           
        

      

 

      
    

 
  

 

 

   

  
 
        

By applying the WRM to the following 

inhomogeneous elastic and thermal equations: 
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where the weighting functions are chosen to be the 

elastic and thermal fundamental solutions    
  and   . 

Then the elastic and thermal representation formulae 

are similar to those of Fahmy [41] within the context of 

the uncoupled theory and are given as follows 

   
          

    
 
    

    
 
 

 

  

     
    

 
   

 

                  

 

                  

 

           

 

               

The dual representation formulae of elastic and thermal 

fields can be combined to form a single equation as 

follows 

   
          

    
 
    

    
 
   

 

                                    

     
    

 
   

 

                                                                    

 

with the substitution of (41) into (36), the dual 

reciprocity representation formula of coupled 

thermoelasticity can be expressed as follows 

 

     

      
        

      

 

      
    

 

   

      
    

 
    

    
 
   

 

   
 
                               

 

To calculate interior stresses, (42) is differentiated with 

respect to    as follows 

      

   
         

          
      

 

 

 

 

      
    

    

    

 

   

        
    

 

 

      
    

 
      

 
                           

According to the steps described in Fahmy 

[42], the dual reciprocity boundary integral equation 

(40) can be written in the following system of equations 

                                                                       
It is important to note the difference between the 

matrices   and   : whereas   contains the fundamental 

solution   
 , the matrix    contains the modified 

fundamental tensor    
  with the coupling term. 

The technique was proposed by Partridge et al. [43] can 

be extended to treat the convective terms, then the 

generalized displacements    and velocities     are 

approximated by a series of tensor functions    
 

 and 

unknown coefficients   
 
 and    

 
 

       
      

 
 

 

   

                                                             

        
       

 
 

 

   

                                                             

The gradients of the generalized displacement and 

velocity can be approximated as follows 

          
      

 
 

 

   

                                                         

            
       

 
 

 

   

                                                       

These approximations are substituted into 

equation (28) to approximate the corresponding source 

term as follows 

  
     

   

 

   

  
 
                                                                       

where 

   
            

 
                                                                  

 

The same point collocation procedure 

described in Gaul, et al. [44] can be applied to (33), 

(43) and (44). This leads to the following system of 

equations 

                                                                        
Similarly, the application of the point 

collocation procedure to the source terms equations 

(29), (30), (31) and (47) leads to the following system 

of equations 
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with    

   
                              
                                                           

               

                                                                       

                                                                                        

                                                                                 

Solving the system (49) for  ,   and    yields 

                                                                 
Now, the coefficients   can be expressed in terms of 

nodal values of the unknown displacements  , 

velocities     and accelerations     as follows: 

                                            
                                                                              

 

where    and    are assembled using the submatrices 
    and     respectively. 

Substituting from Eq. (55) into Eq. (42), we obtain 

                                                                            

in which       and  are independent of time and are 

defined by 

                         

                             

                                                                               
where  ,     and   represent the volume, mass, 

damping and stiffness matrices, respectively;         

and  represent the acceleration, velocity, 

displacement and external force vectors, respectively. 

The initial value problem consists of finding the 

function        satisfying equation (56) and the 

initial conditions                  where       

are given vectors of initial data. Then, from Eq. (56), 

we can compute the initial acceleration vector    as 

follows  

                                                                         
An implicit-explicit time integration algorithm of 

Hughes et al. [45, 46], was developed and implemented 

for use with the DRBEM. This algorithm consists of 

satisfying the following equations 

        
       

                                       
              

                                                      
where 

                       
   

 
                         

in which the implicit and explicit parts are respectively 

denoted by the superscripts   and  . Also, we used the 

quantities       and        to denote the predictor 

values, and      and       to denote the corrector 

values [45, 46]. It is easy to recognize that the equations 

(60)-(63) correspond to the Newmark formulas [47]. 

At each time-step, equations (59)-(61), constitute an 

algebraic problem in terms of the unknown      . The 

first step in the code starts by forming and factoring the 

effective mass 

                                                                        
The time step    must be constant to run this step. As 

the time-step    is changed, the first step should be 

repeated at each new step. The second step is to form 

residual force 

    
        

        
                                      

Note that in the implicit part,    is always non 

symmetric. However,    still possesses the usual 

"band-profile" structure associated with the 

connectivity of the DRBEM mesh, and has a symmetric 

profile. So the third step is to solve             
  

using a Crout elimination algorithm [48] which fully 

exploits that structure in that zeroes outside the profile 

are neither stored nor operated upon. The fourth step is 

to use predictor-corrector equation (60) to obtain the 

corrector displacement. 

The stability analysis of the algorithm under 

consideration has been discussed in detail in Hughes 

and Liu [45] and the stability conditions have also been 

derived in the same reference, therefore does not 

strictly apply to the considered problem.  

 

IV. Numercal result and discussion 
Following Rasolofosaon and Zinszner [49] 

monoclinic North Sea sandstone reservoir rock was 

chosen as an anisotropic material and physical data are 

as follows: 

Elasticity tensor 

 

      

 
 
 
 
 
 
             
             
             

                     
              
             

             
             

              

                       
                 
                    

 
 
 
 
 

          

Mechanical temperature coefficient 

 

     
          
          
      

  
    

   
                          

 

Tensor of thermal conductivity is 

     
       
          
          

                                     

Mass density        kg/   and heat capacity 

      J/(kg K), Oersted,  

Gauss/Oersted, ,  . The 

numerical values of the temperature and displacement 

are obtained by discretizing the boundary into 120 
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elements  and choosing 60 well spaced 

out collocation points  in the interior of the 

solution domain, refer to the recent work of Fahmy [50-

52]. 

The initial and boundary conditions considered in the 

calculations are 

at                                                 

at                 
   

  
 

   

  
    

  

  
                             

at                 
   

  
 

   

  
    

  

  
                             

at                 
   

  
 

   

  
    

  

  
                             

at     
   

  
 

   

  
    

  

  
                                          

The present work should be applicable to any 

dynamic uncoupled thermo-elastic deformation 

problem.  

Table 1 shows the variation of the temperature  , the 

displacements    and    and thermal stresses    ,     

and     with time  . We can conclude from this table 

that the displacements and thermal stresses increase 

with increasing   but the temperature   decreases with 

increasing  . In the special case under consideration. 

These results obtained with the DRBEM have been 

written in the table 1, the validity of the proposed 

method was examined and confirmed by comparing the 

obtained results with those obtained in table 2 using the 

Meshless Local Petrov-Galerkin (MLPG) method of 

Hosseini et al. [53]. It can be seen from these tables that 

the DRBEM results are in excellent agreement with the 

results obtained by MLPG method.

 

 
 

 

 

 

 

Table 1. Variation of the temperature, displacements and thermal stresses with time for DRBEM method  

                      

0.0 1.00000000 0.79734265 -0.78235742 0.04789432 0.19209755 -0.58793410 
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0.1 0.99746321 0.80398721 -0.76828456 0.04938734 0.25930234 -0.53984251 

0.2 0.98356724 0.81562437 -0.74876432 0.05193486 0.31759834 -0.48923817 

0.3 0.97251367 0.82386479 -0.72345126 0.05398537 0.37654921 -0.43574542 

0.4 0.96254384 0.83947624 -0.70398641 0.05568934 0.43827356 -0.38094762 

0.5 0.95924873 0.84763896 -0.68964320 0.05789432 0.49873361 -0.33028974 

0.6 0.94783428 0.85375738 -0.66834231 0.05938274 0.55982301 -0.28034681 

0.7 0.93456832 0.86897435 -0.64789345 0.06197354 0.61439860 -0.23945218 

0.8 0.92785329 0.87524235 -0.63789324 0.06315391 0.67136902 -0.18703923 

0.9 0.91462893 0.88946544 -0.62974832 0.06572943 0.73489623 -0.13903657 

1.0 0.90245678 0.89865445 -0.61977453 0.06783491 0.79573454 -0.08935421 

 

Table 2. Variation of the temperature, displacements and thermal stresses with time for MLPG method 

                      

0.0 1.00000000 0.79734260 -0.78235738 0.04789436 0.19209756 -0.58793412 

0.1 0.99746315 0.80398716 -0.76828456 0.04938738 0.25930237 -0.53984253 

0.2 0.98356718 0.81562432 -0.74876432 0.05193490 0.31759837 -0.48923820 

0.3 0.97251361 0.82386474 -0.72345126 0.05398541 0.37654923 -0.43574545 

0.4 0.96254378 0.83947619 -0.70398641 0.05568938 0.43827357 -0.38094765 

0.5 0.95924867 0.84763891 -0.68964320 0.05789436 0.49873362 -0.33028977 

0.6 0.94783461 0.85375733 -0.66834231 0.05938278 0.55982302 -0.28034684 

0.7 0.93456826 0.86897430 -0.64789345 0.06197358 0.61439861 -0.23945221 

0.8 0.92785323 0.87524230 -0.63789324 0.06315395 0.67136901 -0.18703926 

0.9 0.91462887 0.88946539 -0.62974832 0.06572947 0.73489622 -0.13903660 

1.0 0.90245681 0.89865440 -0.61977453 0.06783495 0.79573455 -0.08935424 
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