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Abstract 
In this paper, an SEIRS epidemic model with nonlinear incidence rate is investigated. The model exhibits two 

equilibria namely, the disease-free equilibrium and the endemic equilibrium. It is shown that if the basic 

reproduction number, R0<1 the disease free equilibrium is locally and globally asymptotically stable. Also, we 

show that R0>1, the disease equilibrium is locally asymptotically stable and the disease is uniformly persisted. 

Some numerical simulations are given to illustrate the analytical results. 
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I. Introduction 
The spread of infectious disease has always 

been of concerns and a threat to public health. 

Epidemic models have been studied by many authors. 

Most of them are interested in the formulation of the 

incidence rate. Greenhalgh [14] considered SEIR 

models that incorporate density dependence in the 

death rate. Cooke and van den Driessche [16] 

introduced and studied SEIRS models with two 

delays. Recently, Greenhalgh [15] studied Hopf 

bifurcations in models of the SEIRS type with density 

dependent contact rate and death rate. Liu et al., [1] 

analyzed the dynamical behavior of SEIRS with non-

linear incidence rate. Rinaldi [2] analyzed epidemic 

models with latent period. He obtained global 

stability results for the non-trivial equilibrium for the 

model. 

In order to model this transmission process, 

several authors employ the following incidence 

functions. The first one is the bilinear incidence rate

SI , where S and I are respectively the number of 

susceptible and infective individuals in the 

population, and   is a positive constant [6-10]. The 

second one is the saturated incidence rate of the form 

S

SI

11 




, where 1  is a positive constant. The effect 

of saturation factor 1  stems from epidemic control 

taking appropriate percussive measures [11-14]. The 

third one is the saturated incidence rate of the form

I

SI

21 




, where 2  is a positive constant. Here, the 

number of effective contacts between infective 

individuals or due to the protective measures by the 

susceptible individuals [7, 11, 16]. 

In this paper, SEIRS model with vital dynamics is 

considered along a saturated incidence rate of the 

form
I

SI





1
. Unlike [2], we assume that the disease 

does not give permanent immunity. The result is 

written in terms of basic reproduction number and 

stabilities of the equilibria are investigated. 

 

II. Mathematical Model Formulation 
Rinaldi in his paper [2] considered an SEIRS 

model with vital dynamics as follows: 
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where individuals are susceptible (S), then Exposed 

(E), then infected (I), the recovered (R ) with 

temporary immunity, becoming susceptible again 

where immunity is lost.   is the birth rate which is 

equal to the rate of mortality,   is the disease 

transmission coefficient,  is the rate of losing 

immunity at time t,   is the rate of developing 
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infectivity,   is the recovery rate. In this paper, we 

extend equation (2.1) to include the saturated 

incidence rate 
I

SI





1
 and we assume that the birth 

rate and death rate are not equal. 

 

The Proposed Model 
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where A is the recruitment rate of the population and 

I

SI





1
 represents the inhibition effect of the 

behavioural change of the susceptible individuals 

where there is an increase in the number of infective 

individuals. Other parameters are as defined in (2.1) 

 

III. Local stability of the Disease Free 

Equilibrium (DFE) 
The model has a disease-free equilibrium 

obtained by setting the right hand sides of (2.2) to 

zero. 
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with I=0, this gives the DFE 
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Equation (2.2) becomes 
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By linearizing (2.2), we have 
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which can be written in matrix form 
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For negative roots, we must have by Descartes’ rule 

of signs 
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Lemma 1: If R0<1, the disease free equilibrium P0 is 

locally asymptotically stable; if R0=1, P0 is stable; If 

R0>1, P0 is unstable. 

 

Proof: We shall check the stability of the disease free 

equilibrium P0, from the model, then the linearization 

of disease-free equilibrium P0 gives the following 

characteristic equation. 
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From equation (3.7), it can be seen that 

)(, 21    are two of the 

eigenvalues and they are always negative. To obtain 

other eigenvalues of equation (3.7)  
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From equation (3.7), we see that all roots have 

negative real parts if 
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That is, if R0<1 

The disease free equilibrium P0, is locally 

asymptotically stable, If R0=1, one eigenvalue of 

equation (3.7) is zero and it is simple. Then P0 is 

stable. 

If R0>1, one of the roots of equation (3.7) has a 

positive real part, then P0 is unstable 

 

IV. Global stability of the disease-free 

equilibrium 
Define Lyapunov function: 
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If I=0, L
1
=0 but  if 0I  and R0<1, L

1
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Therefore, the disease free equilibrium is globally 

asymptotically stable. 

 

V. Local Stability of the Endemic 

Equilibrium 
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The resulting Jacobian matrix is  
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The resulting characteristic equation for the model is  
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 Numerical simulations 
To see the dynamical behaviour of system 

(2.2), we solve the system by using maple using the 

parameters; 
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In figure 6.1, 6.2, 6.3, we use different 

values for   and we discovered that the higher the 

value of , the more the susceptible class reaches 

steady state and the exposed, infected and recovered 

classes approach zero. This implies that the parameter 

has a part to play in the eradication of the disease in 

the population. 
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, all the roots are in the left-half plane. 

Therefore, the endemic equilibrium is stable. 
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Fig. 6.1: Graph of S, E, I, R against time t, when ,1,04.0,143.0,398.0  

 02.01.0,0033.0  Aand  

 
Fig. 6.2: Graph of S, E, I, R against time t, when ,1,04.0,143.0,398.0  

 02.04.0,0033.0  Aand  
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Fig. 6.3: Graph of S, E, I, R against time t, when ,1,04.0,143.0,398.0  

 02.07.0,0033.0  Aand
 

II. Conclusions 
In this paper, an SEIRS deterministic model 

with saturated incidence rate is formulated. Some of 

the main findings of this study are; 

(i) 
The model has locally and globally 

asymptotically stable  disease-free equilibrium 

whenever the associated reproduction number is 

less than unity;
 

(ii) 
The model has a unique endemic equilibrium and 

the endemic equilibrium is locally-asymptotically 

stable.
 

(iii)  Numerical simulations illustrate the importance 

of the parameter,   that measures the effects of 

sociological, psychological or other mechanisms 

of the disease. 
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