
Mr. Sandesh Y.M et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.42-46

www.ijera.com 42 | P a g e

Implementation of Convolution Encoder and Viterbi Decoder for

Constraint Length 7 and Bit Rate 1/2

Mr. Sandesh Y.M*, Mr. Kasetty Rambabu**
*(Department of Electronics & Communication, Nagarjuna College of Engineering & Technology, Bengaluru)

** (Department of Electronics & Communication, Nagarjuna College of Engineering & Technology,Bengaluru)

ABSTRACT
Convolutional codes are non blocking codes that can be designed to either error detecting or correcting.

Convolution coding has been used in communication systems including deep space communication and wireless
communication. At the receiver end the original message sequence is obtained from the received data using

Viterbi decoder. It implements Viterbi Algorithm which is a maximum likelihood algorithm, based on the

minimum cumulative hamming distance it decides the optimal trellis path that is most likely followed at the

encoder. In this paper I present the convolution encoder and Viterbi decoder for constraint length 7 and bit rate

1/2.

Keywords - Convolution Encoder, trellis diagram, Verilog HDL, Viterbi algorithm, Viterbi decoder.

I. INTRODUCTION
Elias introduced convolutional codes in

1955[1]. Convolution coding has been used in
communication systems including deep space

communication and wireless communication. An

advantage of convolutional coding is that it can be

applied to a continuous data stream as well as block of

data. Convolutional coding scheme correlates

information elements by means of exclusive -or

(XOR) operation, resulting in the increases of

transmission redundancy[2]. Convolutional codes are

used in applications that require good performance

with low implementation cost. Several practical

procedures have been developed for decoding.
In 1967 A.J Viterbi introduced "Viterbi

decoding" based on the maximum likelihood

algorithm. At the receiver, the actual received encoded

data plus the noise is compared with the encoded data

sequence for each of the possible outputs of the

convolution encoder. The closest hypothetical

encoded data sequence will be optimum received

encoded data sequence[1]. Viterbi algorithm is the

most resource consuming, efficient and robust.

II. CONVOLUTION ENCODER
Encoding of convolutional codes can be

accomplished using simple registers. In convolutional

encoder, the message stream continuously runs

through the encoder unlike in the block coding

schemes where the message is first divided into long

blocks and then encoded. Thus the convolutional

encoder requires very little buffering and storage

hardware[3]. In this paper for a convolutional encoder,

the following notations are used.

 c = number of output bits.
 x = number of input bits entering at a time.

 m = number of stages of shift register.

L = number of bits in a message sequence.

 j = number of modulo 2 adders.

 Constraint Length: K = (m + 1) digits.

 Bit Rate: r = x / c

Figure 1. Convolution encoder for constraint length

(K)=7,bit rate (r)=1/2

The block diagram of convolution encoder is

shown in figure 2. To generate the output, the encoder

uses 7 values of the input signal (1 present input bit

and 6 previous input bits). The set of values of input
data in the shift register is called a state. The number

of input data values used to generate the code is called

the constraint length. Each set of outputs is generated

by XOR ing a pattern of current and shifted values of

input data.

If g1
(j), g2

(j), g3
(j), g7

(j) denote the

"impulse responses" also called "generator

sequences" of input-output path through 'jth' modulo-

2 Adder. Then the encoder generates 'j' number of

RESEARCH ARTICLE OPEN ACCESS

Output C
1

Output C
2

input

X=dn

+

dn-1 dn-2 dn-3 dn-4 dn-5 dn-6

+

Mr. Sandesh Y.M et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.42-46

www.ijera.com 43 | P a g e

output sequences denoted by C(1), C(2). From definition

of discrete convolution[3], we have

Cn
(j)

= dn-i * gi+1
(j)

 - - -(1)

 Therefore, g(1) and g(2) for the convolution

encoder shown in figure1 is given by [2][3]

g(1) = g1
(1) g2

(1) g3
(1) g4

(1) g5
(1) g6

(1) = 1 0 1 1 0 1 1 g(2)

= g1
(2) g2

(2) g3
(2) g4

(2) g5
(2) g6

(2) = 1 1 1 1 0 0 1

 The 2 output bits are generated by XOR ing

the following bits.

C1= dn ⊕ dn-2 ⊕ dn-3 ⊕ dn-5 ⊕ dn-6 - - -(2)

C2= dn ⊕ dn-1 ⊕ dn-2 ⊕ dn-3 ⊕ dn-6 - - -(3)

A. State Diagram

The state of an encoder is defined as its shift

register contents. Each new 'x' bit input results in a

new state. Therefore for one bit entering the encoder

there are 21 = 2 possible branches for every state. If

the Constraint length k=7, then the size of shift

register would be m=6 which results in 2m states.

Therefore 26 = 64 states are named from S0 to S63.

In the figure 2, 'State Diagram' is shown, here

all the 64 states are represented and labelled as

S0,S1,.......S63. Consider the state S0 (000000). With

'0' input, the shift register remains at same state S0 and
is shown as a dotted loop starting from S0 and ending

at S0. With '1' input, the shift register moves to state

S1 (100000) and is shown as a solid line starting from

S0 and ending at S1. To make easy for tracking the

transition two different types of line are used. Solid

line represents the transition when the input bit is '1'

and dotted line represents the transition when the input

bit is '0'.

Figure 2. State diagram of K=7, r=1/2 convolution

encoder

B. Code Tree

In the state diagram shown in Figure 3. It is

very difficult to follow the paths because too many

paths leads to confusion hence for better

understanding state diagram can be re-drawn as 'code-

tree'. The following rules are followed while
constructing the code tree.

If the input is a '0', then the upper path is

followed and if the input is a '1', then lower path is

followed, the circles represents the 'node' and lines

represents the 'branch'. The output code [C(1) C(2)] for

each input is shown on the branches.

Consider the input sequence 1 0 1 1 0 1 1 0

as the input to the convolution encoder, then the code

tree for the above input is as shown below.

Figure 3. Code tree for the input 1011011

III. VITERBI DECODER
When a sequence of data is received from the

channel, it is required to estimate the original

sequence that has been sent. The process of
identifying original message sequence from the

received data can be done using the diagram called

"trellis"[4]. A Viterbi decoder uses the Viterbi

algorithm for decoding a bit stream that has been

encoded using Forward error correction based on a

convolutional code[5].Figure 4 shows the block

diagram of Viterbi decoder.

Figure 4. Block diagram of Viterbi decoder

It consists of following functional units.
a) Branch Metric Unit (BMU)

b) Add Compare and Select Unit (ACS)

c) Survivor Memory Unit

d) Trace Back Unit (TBU)

previous
State

Information

Branch
Metric

Survivor Path
Metric Metric

previous
State

Information

Survivor Path
Metric Metric

Optimal

Path

Branch
Metric

unit

Add Compare

and Select Unit

Trace
Back

Unit

Survivor

Memory

Mr. Sandesh Y.M et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.42-46

www.ijera.com 44 | P a g e

Using the functional units of Viterbi decoder

the Viterbi Algorithm is computed and the original

message sequence is obtained by following the below

mentioned steps[2].

Step 1: Two parallel binary bits are inputted into the

Viterbi decoder and then the hamming distance
computation module (BMU) calculates sixty four set

of hamming distance. Each set consists of two values

because each current state can be reached by two

possible paths.

Step 2: Cumulative hamming distance till the last

branch is added to hamming distance of the new

branches by ACS module. After adding operation each

current state gets two new cumulative hamming

distances, now ACS module compares the size of the

two cumulative distances and selects the smaller one

as a survivor. The smaller cumulative hamming

distance becomes the benchmark for the next
computation. Survivor paths of all the sixty four states

are stored in RAM blocks of Survivor memory unit.

Step 3: sixty four survivor paths are stored in the

RAM blocks at each stage. When there are no more

encoded bits to process the detection of a node having

minimum path metric is done by comparing all the

sixty four cumulative hamming distances at the last

stage.

Step 4: Using the minimum path metric of last stage

the Trace back Unit starts back tracing survivor paths

which are stored in the memory unit. according to
survivor path values the original transmitted message

is determined.

A. Branch Metric Unit

Figure 5. Block diagram of Branch Metric Unit

In this unit hamming distance computation is

done. This Unit compares the received codes with the

expected codes of the current state and calculates the

hamming distance between them. The block diagram

of BMU is shown in figure 5. Hamming distance is

calculated by giving the received codes and expected

codes to modular 2 Adder and number of one's present

in the resulting two bits is checked. This gives the

hamming distance between those codes.

B. Add Compare and Select Unit

Figure 6. Block diagram of Add Compare and Select

Unit

The hardware architecture of the ACS

module is shown in figure 6. Path metric of the
node/state is found by adding the path metric from the

previous stage and the present branch metrics. Since

there are two possible way to reach any node/state two

path metrics are obtained, these two are compared to

select the one with the least path metric. The selected

least path metric is sent for storage as well as it is used

as benchmark for calculating the path metric of next

stage.

C. Survivor Memory Unit

This unit is used for storing the survivor path
values of the ACS modules. Each stage there are 64

survivor paths and number of such stages vary

depending on the length of encoded bits received.

another memory is reserved for trace back depth

which defines the maximum number of stages that is

allowed during the decoding process.

D. Trace Back Unit

Once the minimum path metrics of all the

nodes at each stage is calculated, the minimum path

metric at the last stage is found. The node having the

minimum path metrics at the last stage is given as
input to Trace Back Unit and then it starts trace

backing the survival paths from that node and outputs

the corresponding bit which has caused the transition

of that path. In this paper decoding depth of 64 is set

in the decoder. The below figure 7 shows the trace

back procedure followed.

Figure 7. Trace back procedure of optimal path

Hamming

Distance

Expected

Codes

Received

Codes

Two

Bits

Modular

2
Adder

Count the
number of

1 in the
two bits

Possible

Branch

Metric 2

Path metric

from previous

stage

Possible

Branch

Metric 1

Path metric

from previous

stage

Possible

Path

metric 1

Possible

Path

metric 2
Survivor

Path

metric to

next stage

Survivor

Path

metric for

storage
Add

Add

Compare

Mr. Sandesh Y.M et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.42-46

www.ijera.com 45 | P a g e

Butterfly Diagram

As mentioned earlier there are always two

possible path to reach any node/state. The

representation of this is done using the figure 8 as

shown below which is popularly referred as butterfly

diagram.

Figure 8. Butterfly diagram

In the diagram the state S40 ('000101') is taken

as example, this state can be reached from two

different states namely S20 and S52. During

computation out of these two any 'one' state will have

the minimum path metric. The transition path having

the minimum path metric is labelled as survivor path

and stored in the memory. While tracing back if at any

point this node comes then the survivor path to that

node is followed to reach the previous stage and the

bit causing that transition is taken as output. In the
above figure the transition caused due to '0' is marked

in dotted line and the transition caused due to '1' is

marked as solid line.

Trellis Diagram

The original message sequence is encoded

following a path which has to be determined at the

decoder part of receiver to get the original message

sequence from the encoded data. For the

representation of this path a 'trellis diagram' is used.

An example of trellis structure for K=3 and r=1/2 is

given below in figure 9.

Figure 9. Trellis diagram for K = 3 and r = 1/2

IV. IMPLEMENTATION
Implementation of Convolution Encoder and

Viterbi Decoder for constraint length 7 and bit rate 1/2

is done using Verilog HDL. The design is simulated

and synthesized using ModelSim PE Student

Edition10.2a and Xilinx ISE Design Suit 14.3

respectively. The design is tested for different trials by

introducing the errors manually.

V. RESULTS
The Convolution Encoder and Viterbi

Decoder for constraint length 7 and bit rate 1/2 has

been developed and synthesis is done. Figure 10

shows the output of encoder.

Input = 1 0 1 1 0 1 1

output = 1101000110011000

Figure 10. Output waveform of encoder

Considering the effect of noise suppose if the

encoded data is corrupted then also decoder should be

able to retrieve the original message sequence. Figure

11 shows the output of decoder if the error has

occurred at second bit of the encoded sequence.

Input = 1001000110011000

output = 1 0 1 1 0 1 1

Figure 11. Output waveform of decoder

In the figure we can observe the trace
backing process results in the original message

sequence (output is read in the direction or arrow)

rectifying the error.

Input bit 1 output bit '11'
for the first
input bit '1'

Error in the

2nd bit

output reading

direction

S

x

Sx+

32

001010 000101

001011 100101

Mr. Sandesh Y.M et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.42-46

www.ijera.com 46 | P a g e

The synthesis report gives the device

utilization table for both convolution encoder and

Viterbi decoder as shown in table 1 and table 2.

Table 1. Device utilization table for convolution

encoder

Table 2. Device utilization table for Viterbi decoder

VI. CONCLUSION
Convolution encoder and Viterbi decoder for

constraint length 7 and bit rate 1/2 is implemented

using Verilog HDL and simulated using ModelSim PE

Student Edition

.

10.2a and synthesis is done using Xilinx ISE

Design Suit 14.3 tool. The working of the design is

cross verified for many trials with introducing errors.

REFRENCES
[1]. Madhu Vamshi Malladi, "Reconfigurable

Viterbi Decoder", The University of New

Brunswick, Canada, 2005.

[2]. Yan Sun, Zhizhong Ding "FPGA Design and

Implementation of a Convolutional Encoder

and a Viterbi Decoder Based on 802.11a for

OFDM", Wireless Engineering and
Technology, 2012, 3, 125-131,

doi:10.4236/wet.2012.33019 Published

Online July 2012

[3]. "Information Theory and Coding", by Prof.

K. Giridhar, pooja publications.

[4]. V.Kavinilavu, S. Salivahanan, V. S.

Kanchana Bhaaskaran, Samiappa

Sakthikumaran, B. Brindha and C. Vinoth,"

Implementation of Convolutional Encoder &
Viterbi Decoder using Verilog HDL",IEEE,

2011

[5]. HEMA.S, SURESH BABU.V, RAMESH P

"FPGA Implementation of Viterbi Decoder",

Proceedings of the 6th WSEAS Int. Conf. on

Electronics, Hardware, Wireless and Optical

Communications, Corfu Island, Greece,

February 16-19, 2007.

[6]. DR. Anubhuti Khare, Manish Saxena,

Jagdish Patel "FPGA Implementation of

Viterbi Decoder.

[7]. "Error Detection and Correction" at
www.mathworks.in

[8]. Sherif Welsen Shaker, Salwa Hussein

Elramly, Khaled Ali Shehata "FPGA

Implementation of a Reconfigurable Viterbi

Decoder for Wimax Receiver", International

Conference on Microelectronics, 2009.

Acknowledgement

I would like to express my sincere gratitude to Mr.

Kasetty Rambabu for his guidance in the course of my

research. I am also grateful to Dr. K.N Hari Bhat and

Mr. Ashish Gupta for their generous discussion and

helps, without their help this paper is impossible to be

completed.

 Sandesh Y.M

