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ABSTRACT 
Decision making is the process of selecting a possible course of action from all available alternatives. Many real 

world physical situations can be categorized as hierarchical optimization problems and be formulated as Multi-

level Programming (MLP) models. Instead of solid optimality concept, it is more accuracy adopting the 

satisfaction concept that play an important role in the analysis of hierarchical structures and no assumptions or 

information are required regarding the Decision Makers (DMs) utility function. In this article a compromise 

weighted solution is presented for MLP problems, where a non-dominated solution set is obtained. In weighting 

approach, the relative weights represent the relative importance of the objective functions for all DMs whose 

provide their preferences of their decision variables that is the lower and upper-bounds to the decision variables 

they control. The hierarchical system is converted into Scalar Optimization Problem (SOP) by finding proper 

weights using the Analytic Hierarchy Process (AHP) so that objective functions can be combined into a single 

objective. A brief historical overview and a comparative study is presented for some approaches used in solving 

MLP problem with the solution obtained in the weighting approach with two cases collateral numerical 

illustrative examples. 

Keywords - Multi level decision making; hierarchical structures; weighting approach; scalar optimization 

problem; analytic hierarchy process. 

 

I. INTRODUCTION 
Hierarchical data structures are very common 

in the social and behavioral sciences and Multi-level 

(ML) decision making models are developed for 

analyzing hierarchically structured data. So, MLP is an 

important branch of Operation Research, this problem 

consists of two or more levels, namely; first level, 

second level, and so on up to last level. MLP problem 

is a sequence of many optimization problems in which 

the constraints region of one is determined by the 

solution of other DMs. The first (higher, upper) level 

Decision Maker (DM1) is called the center (leader). 

The lower-levels Decision Makers (DM2, DM3 …) 

called followers. They execute their policies after the 

decision of higher levels DMs and then the leader 

optimizes his objective independently but may be 

affected by the reaction of the followers. ML decision 

making models are used for representing many 

hierarchical optimization situations in real word 

strategic, planning, and management such as; financial  

control, economic analysis, facility location, 

government regulation, organizational management, 

conflict resolution, network design, traffic assignment, 

signal optimization, planning for resource 

management, defense, transportation, central economic 

planning at the regional or national level to create 

model problems concerning organizational design [1, 

2, 3].  

ML decision making often involves many uncertain 

factors and it is hard to formulate. Contributions had 

been delivered by mathematicians, economists, 

engineers and many other researchers and developers. 

In first time, Bi-Level Programming (BLP) (as a 

special case of MLP) is introduced by Von 

Stackelberg in the context of unbalanced economic 

markets. After that moment this field has obtained a 

rapid development and intensive investigation in both 

theories and applications. Much effort has been done 

on the development of both linear and nonlinear ML 

decision making modeling and solution methods. The 

study of MLP problems is not vast and wide as 

compared with BLP problems in the literature. Over 

the last three decades, tremendous amount of research 

effort has been made on MLP for hierarchical 

decentralized planning problems leading to the 

publication of many interesting results in the literature 

and many methodologies have been proposed to solve 

it potentially [4, 5]. 

MLP problem can be defined as a p-person, 

non-zero sum game with perfect information in which 

each player moves sequentially from top to bottom. 

ML decentralized models is characterized by a center 

that controls more than one independent divisions on 

the lower-levels. For instance, by adopting three 

criteria with respect to; strategic, production and 

operational planning as objective functions for three 
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different levels, MLP problem; that is Tri-Level 

Programming (TLP) problem can be set for 

hierarchical decision situation in firms with three 

different DMs in three different levels, one DM on 

each level [6, 7]. 

Multi objective decision making solutions 

procedure cannot be directly applied to MLP problem, 

since in MLP problem, DMs are on different 

hierarchical levels and each one controls only a subset 

of the decision variables. There are two main types of 

uncertainties in modeling MLP problems; one is that 

the parameter values in the objective functions and 

constraints of the leader and the followers may be 

uncertain or inaccurate; another type of uncertainties 

involves the form of the objective functions and 

constraint functions. That is, how to determine the 

relationships among proposed decision variables and 

formulate these functions for a real decision problem 

[8].  

  

Unfortunately, MLP problems are difficult to 

solve and not every problem has a solution even though 

it has a nonempty compact feasible set and it have been 

proved to be NP-hard. The features of it, mainly its 

nonconvexity, make it difficult one, even when all 

involved functions are linear. Also, there are some 

difficulties from nonuniqueness of lower-levels optimal 

solutions and on its optimality conditions [See, 9, 10]. 

This article will be organized as: a short 

overview of ML models, its use, history, characteristics 

and formulation is presented in section 2, AHP concept 

and non-dominated solution in section 3. Section 4 

provides a weighting approach for generating non-

dominated solution for MLP problem. Two numerical 

illustrative examples and a short discussion are 

presented in section 5. The article will be finalized with 

its conclusion. 

 

II. MLP problems Characterizing and 

Formulation 
MLP problems are characterized that a DM at 

a certain level of the hierarchy may have his objective 

function and decision space determined partially by 

other levels where each DM controls over some 

decision variables. So, the followers can take part of the 

system decision which be concerned by their control 

variables because they always try to optimize their 

objective functions but they must take the goal or 

preference of the leader into consideration. DM1 

defines his objective function and decision variables, 

this information then constrains the DM2’s feasible 

space and so on. So, the preference information is 

delivered from the upper-levels to the lower-levels 

sequentially. The geometric properties of the linear 

MLP problems are obtained in [11] for general max-

min problem and presented in [5] for the linear BLP 

problem. In [7] showed that when all the functions of 

the MLP problem are linear and its feasible region is a 

polyhedron, the optimal solution occurs at a vertex of 

feasible region. MLP is particularly appropriate for 

problems with the following characteristics [12]: 

1) The system has interactive decision 

making units within a predominantly 

hierarchical structure. 

2) The external effect on a DM’s problem 

can be reflected in both his objective 

function and his set of feasible 

decisions. 

3) The loss of cost of one level is unequal 

to the added gain to other level. 

4) The order of the play is very important 

and the choice of the upper-level limits 

affects the choice or strategy of the 

lower-levels. 

5) The execution of decision is sequential, 

from upper to lower-levels. 

6) Each DM controls only a subset of the 

decision variables. 

7) Each level optimizes its own objective 

function independently apart from other 

levels. 

8) Each DM is fully informed about all 

prior choices. 

 

TLP problem’s formulation has different 

versions that are given in many articles. Linear TLP 

problem can be formulated as follows [13]:  

max  f1(X) = c11x1 + c12x2 + c13x3,                                              

 
 
x1

 

where, x2 and x3 solve: 

max  f2(X) = c21x1 + c22x2 + c23x3,  
   

x2
 

where, x3 solves: 

max   f3(X) = c31x1 + c32x2 + c33x3 

 
 
x3

 

              s.t.    A1x1 + A2x2 + A3x3 ≤ b, 

                                       x1, x2, x3 ≥ 0. 

 

Where, X=(x1, x2, x3) denote the decision 

variables under control of DM1, DM2 and DM3 

respectively. For i =1, 2, 3, xi is ni-dimensional decision 

variable, and fi(X) is the related objective function to 1
st
, 

2
nd

, and 3
rd

 level, respectively. Let X = x1∪ x2∪ x3 and n 

= n1 + n2 + n3 then, c11, c21, c31 are constant row vectors 

of size (1×n1), c12, c22, c32 are of size (1×n2) and c13, c23, 

c33 are of size (1×n3), b is an m-dimensional constant 

column vector, and Ai is an m × ni constant matrix. 

Each DM has to improve his strategy from a jointly 

dependent set S ; 

              S = {X | A1x1+A2x2 +A3x3 ≤ b, x1, x2, x3 ≥0}. 

             

Solution approaches can be classified into 

four categories; extreme point search, transformation 

approach, descent and heuristic and evolutionary 

approach [10]. While, in [14] an additional category is 

added, interior points approach through the neural 

network approaches. According to the stages of 

development, these methods can be classified only into 
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two categories; first one, extreme point search, 

transformation approach, and descent and heuristic can 

be referred to as the traditional approaches, and second 

one, intelligent computation or evolutionary approach 

and interior point approach are based on more recent 

developments. Computational methods are diverse 

from vertex enumeration approaches such as K
th

-best 

algorithm [15, 16, 17], Kuhn-Tucker approaches, [18, 

19] to penalty function approaches [20]. New feasible 

and efficient algorithms are presented for solving BLP 

and TLP problems in [21, 22] respectively. 

When formulated problems are such difficult 

classes of optimization problems and consequently it is 

difficult to obtain exact its optimal solutions, DMs may 

require approximate optimal solutions. Fuzzy 

approaches are proposed for obtaining non-dominated 

solutions using fuzzy membership functions and the 

tolerance concept which simplifies the representation 

and the computations for the compromises among 

levels. The basic concept is the same as implies that 

each lowest level DM optimizes his objective function, 

taking a goal or preference of the upper-level DM into 

consideration. An effective fuzzy method by using the 

concept of the tolerance membership function of fuzzy 

set theory to MLP problems is developed in [6] and is 

extended in [23] for satisfactory solution. A fuzzy 

approach for MLP problems that is a supervised search 

procedure with the use of max–min operator presented 

in [24] to simplify the complex nested structure by 

utilizing the concept of the degree of satisfaction, in 

terms of fuzzy membership functions. In [25], further 

extension for Lai’s concept, [6] by introducing the 

compensatory fuzzy operator. In [26, 27], some 

developing for alternative MLP techniques based on 

fuzzy mathematical programming. A fuzzy goal 

programming procedure for solving quadratic BLP 

problems presented in [28] and the work in [29] 

presented for solving BLP and TLP non-linear 

multiobjective problems as an extension of the fuzzy 

approach for MLP problems in [22]. In [30], a 

presentation of a fuzzy goal programming method to 

overcome such difficulties in MLP problems for proper 

distribution of decision powers to the DMs to arrive at 

a satisfaction decision for overall benefit of the 

organization.  

Interactive procedures have met with a great 

success with such situations include full cooperation 

among DMs without predetermined preference 

information, by using interactive and fuzzy interactive 

methods, MLP problem can be solved, giving the best 

satisfactory results where the leader satisfies his 

maximal (updated maximal) satisfaction level and 

also, each DM in lower-levels accepts his satisfactory 

level. The basic concept is that the computational 

complexity with re-evaluation of the problem 

repeatedly by redefining the elicited membership 

functions values in the solution search process for 

searching higher degree of satisfaction and obtaining 

the satisfactory solutions. In [31], suggestion of an 

interactive approach for nonlinear bi-level 

multiobjective decision making problem, while in 

[32], an interactive fuzzy programming for linear 

MLP problems is presented. In [33], an interactive 

fuzzy programming for 0–1 MLP problems through 

genetic algorithms is proposed. Interactive fuzzy 

programming approaches for both linear fractional and 

decentralized BLP problems are presented in [34, 35]. 

In [36], there is a presentation of weighting method 

for BLP. A new algorithm for solving BLP problems 

is presented in [24] and in [37] a global optimization 

algorithm for solving linear fractional BLP problem.  

Recently, an assignment scheme of relative 

satisfaction for the higher-level DM is proposed in 

[38] to ensure his leadership and therefore prevent the 

paradox problem reported in the literature, where 

lower-level DMs have higher satisfaction degrees than 

that of the higher-level DM. a fuzzy TOPSIS 

(technique for order preference by similarity to ideal 

solution ) algorithm is proposed in [39] to solve BL 

multi-objective decision making problems, the model 

is a multiple criteria method to identify solutions from 

a finite set of alternatives based upon simultaneous 

minimization of distance from an ideal point and 

maximization of  distance from a nadir point for 

getting the satisfactory solution. an approach based on 

particle swarm optimization is proposed to solve 

nonlinear BLP problem in [40] by applying Kuhn-

Tucker condition to the lower-level problem and 

transforming the problem into a regular nonlinear 

programming with complementary constraints, then 

the approach is applied for getting the approximate 

optimal solution. Using the concept of chance 

constraints, an interactive fuzzy programming method 

for stochastic BLP is proposed in [41]. It has an 

advantage that candidates for a satisfactory solution 

can be easily obtained through the combined use of 

the bisection method and the phase one of the simplex 

method. An explicit solution to MLP problems is 

presented in [19], and a new algorithm for solving 

linear TLP problems in [25] and in [26] a fuzzy 

mathematical programming applied to MLP problems 

is developed. 

Compromise or coordination is usually 
needed in order to reach a satisfactory solution, even in 

noncooperative environments. Most real world 

decision problems involve multiple criteria that are 

often conflict in general and it is sometimes necessary 

to conduct trade-off analysis in multiple criteria 

decision analysis. Because of the special nature of the 

problem and the need of adopting some cooperation 

among DMs, many approaches had been presented to 

solve MLP problems mostly based on fuzzy and 

interaction concepts. While BLP is a special case of 

MLP, and only a special case, is considered in [36], the 

main motivation in this submission was studying its 

applicability with the general state, MLP. In literature, 

any solution approach used for special cases needs 

more studies while used for the general case. In this 

article, an extension work of [36] is considered, where 

the weighting approach allows DMs to provide two 
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issues; their preferences bound for the decision 

variables that are the lower and upper-bounds for it, 

and their assigned importance for objective functions 

in all levels. In weighting approach the hierarchical 

system will be converted into SOP by finding the 

proper weights for all objective functions and pairwise 

comparisons manner using AHP [42, 43, 44] so that 

objective functions of three levels can be combined 

into a single objective function, where its relative 

weights represent the relative importance of DMs’s 

objective functions. After assessing the consistency of 

the pairwise judgments, a non-dominated solution set is 

obtained. Perhaps the most creative task in making a 

decision with the hierarchical situations is to choose 

the factors that are important for that decision.  

 

III. AHP and Non-dominated solution 
AHP is a mathematical technique developed 

for incorporating multi criteria decision making and 

designed to solve its complex problems. AHP and 

similar methods often use pairwise comparison 

matrices for determining the scores of alternatives with 

respect to a given criterion, or determining values of a 

weight vector. There are many papers applied AHP to 

solve decision problem. For example, in [45], over 100 

applications of AHP in the service and government 

sectors are studied. While, the majority practitioner 

agreed to use the effective mathematical technique, 

eigenvector method proposed in [42], some researchers 

suggested other choices such as mean transformation, 

or row geometric mean.  For example, in [46, 47] a 

refined method to adjust the maximum entry being one 

for the weight of alternatives is developed; in [48] a 

usage of the geometric mean method instead of the 

eigenvector method. The process requires each DM to 

provide judgments about the relative importance of his 

objective and then specify a preference for it for each 

other’s.  

AHP can be conducted in three steps; perform 

pairwise comparisons, assess consistency of pairwise 

judgments, compute the relative weights and then, it is 

enables DM to make pairwise comparisons of 

importance between objectives according to the scale 

in table (1). 

Because human is not always consistent, the 

theory of AHP does not demand perfect consistency 

and allows some small inconsistency in judgment and 

provides a measure of inconsistency. Before computing 

the weights based on pairwise judgments, the degree of 

inconsistency is measured by the Consistency Index 

(CI). Perfect consistency implies a value of zero for CI. 

Therefore, it is considered acceptable if CI ≤ 10%. For 

CI values greater than 10%, the pairwise judgments 

may be revised before the weights are computed. 

 

 

 

 

 

Option Numerical value(s) 

Equal 

Marginally strong  

Strong 

Very strong 

Extremely strong 

Intermediate judgment 

values for fuzzy inputs 

1 

3 

5 

7 

9 

2, 4, 6, 8 

Table (1): Gradation scale for quantitative comparison of alternatives 

Mathematically, the weighting method can be 

stated as follows: 

 
The weights wp operating on fp(X), can be 

interpreted as ‘‘the relative weight or worth’’ of that 

objective function when compared to other’s then, the 

solution for previous problem is equivalent to the best 

compromise solution, i.e., the optimal solution relative 

to a particular preference structure. Moreover, this 

optimal solution is a non-dominated solution provided 

all the weights are positive. Allowing negative weights 

would be equivalent to transforming the maximizing 

problem to a minimizing one, for which a different set 

of non-dominated solutions will be exist. The trivial 

case where all the weights are zero will simply identify 

X  S as an optimal solution and will not distinguish 

between dominated and non-dominated solutions [36]. 

The concept of non-dominated solution was 

introduced by Pareto, an economist in 1896. A 

preferred (best) solution is a non-dominated solution 

which is chosen by the DM his self that is lies in the 

region of acceptance of all DMs. Non-dominated 

solution is to design the best alternative by considering 

the various interactions within the design constraints 

that best satisfy the DM by way of obtaining some 

acceptable levels of quantifiable objective functions. 

This method be distinguished with; a set of quantifiable 

objective functions, a set of well defined constraints 

and a process of obtaining some trade-off information, 

between the stated quantifiable objective functions. 
The most common strategy for finding non-dominated 

solutions of MLP problems is to convert it into a SOP. 

DMs provide their preference and converting MLP 

problem into a SOP by finding vector of weights for 

objectives. A feasible solution X
*
 S  is a non-

dominated solution if there does not exists any other 

feasible solution X S such that: 
 

 
 

IV. Weighting approach for MLP 

problems 
Weighting approach does not require any 

assumptions or information regarding DMs utility 

function. Considering, the procedure of AHP 
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methodology in three steps; inputs (importance of 

objectives – bounds of variables), model and output 

(ranked priorities). In the weighting problem P(w) in 

the absence explicit preference structure, the strategy is 

to generate all or representative subsets of non-

dominated solutions from which a DM can select the 

suitable solution. A Linear TLP problem is represented 

as:  
max  f1(X)                                             

  x1
 

max  f2(X) 
   

x2
 

max   f3(X) 

 
 
x3

 

s.t.    A1x1 + A2x2 + A3x3 ≤ b, 

                         x1, x2, x3 ≥ 0. 

 

Where, f1(X), f2(X) and f3(X) and constraints 

are linear functions. Solving SOP involves finding X
*


S  such that fp(X
*
) ≥ fp(X)  X S . The point X

*
 is said 

to be global optimum. If strict inequality holds for the 

objective functions, then X
* 

is the unique global 

optimum. If the inequality holds for some 

neighborhood of X
*
, then X

*
 is a local or relative 

optimum while it is strict local optimum if strict 

inequality holds in a neighborhood of X
*
. By using the 

AHP pairwise comparison process, weights or priorities 

are derived from a set of judgments. While it is difficult 

to justify weights that are arbitrarily assigned, it is 

relatively easy to justify judgments and the basis (hard 

data, knowledge, experience) for the judgments. 

Suppose already the relative weights of three objective 

functions are known, for TL hierarchical objective 

functions a complete pairwise comparison matrix A can 

be expressed as; A=[aij] i,j =1, 2, 3 is a matrix of size 

3×3 with the following properties; aij > 0, aii =1, and 

aij=1/aji for i,j=1, 2, 3, where aij is the numerical 

answer given by the each DM for the question “How 

many times objective i is more important than objective 

j?” 

 
After the normalized matrix, N of pairwise 

comparison matrix A for a hierarchical TL structure is 

designed, the normalized principal eigen vector 

(priority vector) can be obtained by some ways such as 

averaging across the rows where, it shows the relative 

weights for objectives. The weighting problem is to 

find the 3-dimensional weight vector W=(w1,w2,w3)
T
 

such that the appropriate ratios of the components of W 

reflect or, at least, approximate all the aij values (i, j=1, 

2 ,3), given by DMs. Then, the weighting problem for 

linear TLP becomes as follows: 

 
LP and UP are the lower and upper-bounds of 

decision variables provided by the respective DM. The 

previous problem, with a single objective function is 

solved. Here the weighting coefficients convey the 

importance attached to objective functions. Suppose 

that the relative importance of all objective functions 

and the bounds of the variables are known then the 

preferred solution is obtained by solving P(w) with 

infinite number of selections through varying of weight 

vectors as shown in fig. 1. 

The weighting approach is adopting in this 

article because it is related to the interactive 

techniques and  belongs to the cooperative direction 

for dealing with the hierarchical structure situations in 

which applying the satisfaction concept is more 

suitable than optimality concept to achieve overall 

satisfactory level among all decision makers that 

satisfies their preferences or importance. The 

weighting approach generates non-dominated 

solutions by utilizing various values of W. In such a 

case the weighting coefficients W do not reflect the 

relative importance of the objective functions in the 

proportional sense, but are only parameters varied to 

locate the non-dominated points [49]. Solution 

techniques derived in the MLP problems literature 

often assume uniqueness [5], which is what is done in 

the exposition of this article as well. 

 
 

Fig. 1: weighted combinations tree for one decimal value 
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V. Illustrative Examples 
Example 1: Consider the following numerical TLP 

problem [23]; 

3213211 437),,(max
1

xxxxxxf
x

 , 

where 2x and 3x solve:   

23212 ),,(max
2

xxxxf
x

 ,  

where 3x solves:   

33213 ),,(max
3

xxxxf
x

  

 st:     x1+ x2+ x3  ≤ 3, 

           x1+ x2 - x3  ≤ 1, 

          x1+ x2+ x3  ≥ 1, 

          -x1+ x2+ x3 ≤ 1,  

                     x3 ≤ 0.5,  

              x1, x2, x3  0. 

 

The pairwise comparison matrix, A of order 3 

and its normalized matrix, N for the hierarchical TLP 

objective functions are given as: 

 

 

 
The following priority vector that is 

normalized relative weights      W=(w1,w2,w3)
T
 can be 

obtained by; 

 
 

The principal eigen value; λmax=1.75(0.58)+ 

4(0.24) + 6(0.18) =3.055. Then, the consistency index 

(CI) = (λ max – n)/n - 1=(3.055– 3)/2 =0.0275  where, n 

denote number of comparisons. While Random 

Consistency Index (RI)=0.58. Then, the Consistency 

Ratio (CR) = CI/RI = 0.0275/0.58 = 0.474% ˂0.10% 

(accepted ratio) and A is a consistent matrix. 

Weighting approach for solving TLP problem 

achieves the non-dominated solution and according to 

the related increased decimal points for objective 

functions weights, the number of weight vectors 

increase more and more. Example 1, shows that while 

varying the infinite number of different weight 

vectors; the solution remains more or less the non-

dominated one where, for one decimal point, 66 

weight vectors are set as in table (2) and it is 

increasing more and more for two decimal points as 

shown in table (3) and so on.  

 
Table (2): 66 different weighted combinations and solutions for 

one decimal value for weights 

 

The individual problems for each DM are 

calculated in his level subject to the set of constraints 

to determine his optimal solution as; 

 f1

=8.5 at (1.5, 0, 0.5), 

 f2

=1 at (0, 1, 0) and 

 f3

=0.5 at (0, 0.5, 0.5), (0.5, 1, 0.5) or (1.5, 0, 0.5).  

 

Lower and upper-bounds are arbitrary values 

or it is assumed by its individual optimal solution in 

all levels problems. In other words, lower and upper-

bounds are represented by obtained minimum & 

maximum values from the individual problems in all 

levels. Changes in lower and upper-bounds values 

reflect the flexibility in the approach that translates the 

preferences of all decision makers.  

Assuming that the lower and upper-bounds 

provided for the decision variables by DMs are as 

follows; 0≤ x1 ≤ 1.5, 1 ≤ x2 ≤ 2 and  x3 =0.5 or all 

variables in the closed interval [0, 1],  with note that 

these bounds are set from the individual solutions for 

each level. Hence, the weighting problem is therefore 

formulated as: 

 

w1 w2 w3 x1, x2, x3  (   f1, f2, f3 # 

0.0 

0.0 

0.1 

…. 

0.9 

1.0 

1.0 

0.9 

…. 

0.1 

0.0 

1, 1, 1 

1, 1, 1 

…. 

1, 1, 1 

1, 1, 1 

1.0 

1.0 

…. 

1.0 

1.0 

6, 1, 1 

6, 1, 1 

…. 

6, 1, 1 

6, 1, 1 

11 

0.1 

0.0 

0.1 

…. 

0.8 

0.9 

0.9 

0.8 

…. 

0.1 

0.0 

1, 1, 1 

1, 1, 1 

…. 

1, 1, 1 

1, 1, 1 

1.5 

1.5 

…. 

1.5 

1.5 

6, 1, 1 

6, 1, 1 

…. 

6, 1, 1 

6, 1, 1 

10 

…. …. …. …. …. …. …. 

0.5 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

1, 1, 1 

1, 1, 1 

1, 1, 1 

1, 1, 1 

1, 1, 1 

1, 1, 1 

3.5 

3.5 

3.5 

3.5 

3.5 

3.5 

6, 1, 1 

6, 1, 1 

6, 1, 1 

6, 1, 1 

6, 1, 1 

6, 1, 1 

6 

…. …. …. ….  ….  

0.9 
0.0 

0.1 

0.1 

0.0 

1, 0.5, 0.5 

1, 0.5, 0.5 

5.9 

5.9 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 
2 

1.0 0.0 0.0 1, 0.5, 0.5 6.5 6.5, 0.5, 0.5 1 
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Table (3): detailed information of set of non-dominated solutions for 

two decimal values for weights 

 

A non-dominated solution set is generated throughout 

parametrically varying the weights, then the TLP 

problem’s solution, obtained in two cases; 

 Case (1): with unequal lower and upper-bounds 

X=(x1, x2, x3) = (1, 0.5, 0.5), f1, f2, f3 = 6.5, 0.5, 0.5 

respectively, with P(w)=3.98. 

 Case (2): with equal lower and upper-bounds  

X=(x1, x2, x3) = (0.5, 1, 0.5), f1, f2, f3 =4.5, 1, 0.5 

respectively, with P(w)=2.94.  

 

Problem’s solution is calculated using some 

approaches such as; the K
th

-best algorithm in [17], the 

fuzzy approach in [23], and the interactive approach 

used in [32]. A brief comparative study for the 

solutions is presented using the three mentioned 

approaches beside to the weighting approach for 

dealing with the TLP problem as one of the famous 

models for MLP problems. Then, the DMs satisfaction 

levels in both weighting approach and K
th

-best 

algorithm can be calculated as the ratio of the optimal 

solution for the complete TLP problem over the 

optimal solution for the individual problem for each 

DM. 

In the fuzzy approach [23], DMs on the 

upper-levels (only) determine the tolerance values for 

their decision variables and assuming that x1, x2 should 

be around 0.95, 0.58 respectively, with negative and 

positive-side tolerances (0.95, 0) and (0.58, 0), 

respectively. The interactive fuzzy approach in [32] 

provides a solution concept for TLP problems in full 

cooperative decision making situations to obtain 

satisfactory solutions where fuzzy membership 

functions are built for fi where i=1, 2, 3 with 

determined minimal satisfaction levels. Lower and 

upper-bounds are set for DMs’s overall satisfaction 

levels if needed and it is calculated from the ratio 

μi+1(fi+1)/μi(fi). 

As soon as expected, upper-levels DMs start 

their initial minimal satisfactory levels
 

=1.0, and 

suppose that lower and upper-bounds of the ratio of 

overall satisfactory degrees may be set as [0.5, 1.0]. 

Table (4) shows the results of example 1, using the 

weighting approach in two different cases for the lower 

and upper-bounds of decision variables besides other 

three different approaches. The results include the 

satisfaction level for all DMs represented by the 

degrees of the membership functions. Note that the 

achieved compromised weighted solutions may be the 

same obtained by other methods or around them. 

 

 

Weighting 

approach 
Zhang 

et al. 

[17] 

Shih et 

al. [23] 

Sakawa 

et al. 

[32] 
Case 

(1) 

Case 

(2) 

x1 0.5000 1.0000 0.5000 0.9200 0.8450 

x2 1.0000 0.5000 1.0000 0.5800 0.6500 

x3 0.5000 0.5000 0.5000 0.5000 0.5000 

f1 4.5000 6.5000 4.5000 6.1800 5.8650 

f2 1.0000 0.5000 1.0000 0.5800 0.6500 

f3 0.5000 0.5000 0.5000 0.5000 0.5000 

μ(f1) 0.5294 0.7647 0.5294 1.0000 0.6900 

μ(f2) 1.0000 0.5000 1.0000 1.0000 0.6500 

μ(f3) 1.0000 1.0000 1.0000 1.0000 1.0000 

Table (4): example 1 results using the weighted approach and other 

different approaches  

w1 w2 w3 x1, x2, x3  ( ) f1, f2, f3 # 

0.56 

0.00 

0.01 

…. 

0.43 

0.44 

0.44 

0.43 

…. 

0.01 

0.00 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

3.86 

3.86 

…. 

3.86 

3.86 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

45 

0.57 

0.00 

0.01 

…. 

0.42 

0.43 

0.43 

0.42 

…. 

0.01 

0.00 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

3.92 

3.92 

…. 

3.92 

3.92 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

44 

0.58 

0.00 

0.01 

…. 

0.23 

0.24 

0.25 

…. 

0.41 

0.42 

0.42 

0.41 

…. 

0.19 

0.18 

0.17 

…. 

0.01 

0.00 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

3.98 

3.98 

…. 

3.98 

3.98 

3.98 

…. 

3.98 

3.98 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

43 

0.59 

0.00 

0.01 

…. 

0.40 

0.41 

0.41 

0.40 

…. 

0.01 

0.00 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

4.04 

4.04 

…. 

4.04 

4.04 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

42 

0.60 

0.00 

0.01 

…. 

0.39 

0.40 

0.40 

0.39 

…. 

0.01 

0.00 

1, 0.5, 0.5 

1, 0.5, 0.5 

…. 

1, 0.5, 0.5 

1, 0.5, 0.5 

4.10 

4.10 

…. 

4.10 

4.10 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

…. 

6.5, 0.5, 0.5 

6.5, 0.5, 0.5 

41 
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Example 2: Consider the following numerical TLP 

problem [23, 27, 32]; 

43211 2437)(max
2,1

xxxxXf
xx



, 

where 3x and 4x solve:   

4322 43)(max
3

xxxXf
x

 ,  

where 4x solves:   

43213 2)(max
4

xxxxXf
x

  

st: x1+ x2+ x3+x4≤ 5, 

     x1+ x2 - x3 –x4≤ 2, 

        x1+ x2+ x3  ≥ 1, 

        -x1+ x2+ x3 ≤ 1,  

    x1- x2+ x3+2x4≤ 4, 

        x1+2x3+3x4≤ 3, 

                       x4≤ 2, 

        x1, x2, x3, x4  0. 

 

The optimal solutions of the individual 

problems will be as; 

 f1

=16.25 at (2.25, 0, 0, 0.25), 

 f2

=5 at (1, 0, 1, 0) and 

 f3

=5 at (1.33, 1.5, 0.83, 0).  

 

Given, the DMs preferences to set the pairwise 

comparison matrix, B as: 

 
The following priority vector W=(w1,w2,w3)

T
 = (0.31, 

0.11, 0.58), the Consistency Ratio (CR) = 0.0072 

˂0.10, then, B is a consistent matrix. 

 

Assuming that the lower and upper-bounds 

are as follows; 1≤ x1 ≤ 2.25,  0 ≤ x2 ≤ 1.5, 0 ≤ x3 ≤ 1 

and  0≤ x4≤ 0.25 or all variables in the closed interval 

[0, 2.25]. Hence, the weighting problem objective 

function is:  

 
Where, in the two cases the problem solutions are 

identical as: 

X=(x1, x2, x3, x4) = (2.25, 0, 0, 0.25), f1, f2, f3 = 16.25, 1, 

4.75 respectively, with P(w)=7.9025. Table (5) shows 

the results of example 2, using the weighting approach 

besides other three different approaches. 

 

 

 

 

 

 

 

 

 

 

Weighting 

approach 
Sinha        

[27] 

Shih et al. 

[23] 

Surapati 

et al. 

[32] Cases (1 & 2) 

x1 2.2500 1.5900 1.6400 0.8570 

x2 0.0000 1.0800 0.9800 1.8570 

x3 0.0000 0.6200 0.6800 0.0000 

x4 0.2500 0.0600 0.0000 0.7140 

f1 16.2500 12.0100 11.7000 13.0000 

f2 1.0000 3.18000 3.0200 4.7100 

f3 4.7500 4.9400 4.9400 4.2800 

μ(f1) 1.0000 0.0680 1.0000 0.7110 

μ(f2) 0.2000 0.0080 1.0000 0.9280 

μ(f3) 0.9500 0.0000 1.0000 0.7600 

Table (5): example 2 results using the weighted approach and other 

different approaches  

 

VI. Conclusion 
AHP gives the relative weights to form a 

single objective function while converting the 

hierarchical system into SOP by finding proper 

weights so that objective functions of all levels can be 

combined into a super objective function. In this 

article, a compromise weighted approach is applied to 

solve MLP problem with testing the applicability of 

the weighting approach for the MLP case, checking 

the outputs accuracy of applying the weighting 

approach in MLP problems by comparing the results 

with other applied approaches and the approach was 

applied on the MLP problem throughout two different 

cases; equal and unequal (individual values) lower and 

upper-bounds for the decision variables values for 

each decision maker in his level. The approach can be 

applicable as satisfactory or an approximation solution 

for; ML fractional programming problems and 

nonlinear MLP problems. The proposed approach is 

effective tool for finding a satisfactory (near optimal) 

solution where it can produces results which are very 

close or improved to the results obtained by most of 

the other existing methods with observing that even 

though varying the weight vectors, the solutions 

remain more or less the same. This approach 

determines a set of non-dominated solutions and 

unique characteristic of a MLP problem is with this 

approach reflected by allowing each DM to determine 

the importance of his objective regarding to other’s 

and to assign lower and upper-bounds for the decision 

variables under his control. These bounds are 

additional constraints. From this set, the DM chooses 

the most satisfying solution, making implicit trade-

offs between all objective functions on the different 

levels based on some previously un-indicated or non-

quantifiable criteria. 
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