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Abstract 
A method to estimate the non-steady emission rate of a point source by using pollutants concentration data is 

given. To solve this ill-posed inverse problem, a variational problem with constraints is proposed, where the 

objective functional for minimizing is the norm of the first derivative of the emission rate, and the integral 

constraints for the pollutants concentration contain full information, in a compact form, on the dispersion 

phenomenon in the atmosphere and include the anomaly of concentration data. A three-dimensional dispersion 

air pollution model with point sources is considered in a limited region to forecast the concentration of 

pollutants. The corresponding adjoint model and the duality principle are used to write the constraints in terms 

of influence (adjoint) functions. It is shown that both models are well posed in the sense of Hadamard. The 

corresponding discrete formulation, obtained from the variational problem, is an easily-solvable quadratic 

programming problem whose solution determines the emission rate of the source. Numerical results obtained for 

a simple box model and a one-dimensional diffusion problem demonstrate the method's ability. 

Keywords: inverse problem, estimation of parameters, dispersion model, adjoint model. 

 

I. Introduction 
Dispersion models are routinely used to 

assess the impact of emission sources on air quality 

for different meteorological conditions. These models 

are also used at nuclear and industrial plants for 

emergency response and impact assessments for 

hazardous substances accidentally released into the 

atmosphere [1,2]. Apart from their direct application, 

such models are a fundamental instrument for solving 

such inverse problems as the assessment of the air 

pollution problem parameters [2,3,4]. 

The inverse problems involve the 

determination of the causes from the knowledge of the 

effects in a system. As the effects we consider 

observed or desired values of the state variables, and 

the causes are the initial conditions, the forcing or the 

parameter values that are capable of driving the 

system to the effects [3,5]. Frequently, the inverse 

problems are ill-posed, presenting different types of 

instabilities or the difficulties related with existence 

and uniqueness of solutions [5,6]. Therefore, the 

solution of inverse problems requires the use of such 

methods that allow us to suppress the instability and 

choose a solution congruent with the studied 

phenomenon. Such methods are known as the methods 

of regularization of inverse problems [5,6]. Among 

these methods, it should be noted those introduced by 

Tikhonov [7], which consist in minimizing a 

functional that combines the data errors and the norms 

of the control variable and some of its derivatives. The 

inverse problem considered here, consists in 

evaluating unknown sources of the atmospheric 

pollutants by using a given set of measured 

concentrations. The solution of such inverse problem 

can be used to estimate and verify emission 

inventories [8] of many (chemical or biological) toxic 

and radioactive species, as well as to detect unknown 

sources of atmospheric tracers. For example, the 

detection and location of nuclear testing or terrorism-

related events can be achieved using observations of 

radionuclides in the atmosphere [2,9]. In particular, 

the solution of this inverse problem provides an 

opportunity to assess the intensity of undeclared 

emissions of dangerous contaminants [10].  

In the study of such inverse problems, the 

intensity of the source is often considered to be 

stationary or defined as an impulse in time 

(explosion), and this feature is essentially used in all 

methods developed to estimate the intensity of the 

source. As a result, these methods do not cover all of 

the actual events of emissions and have a limited 

application [4,9,10]. Also, the developed methods 

frequently use analytical solutions of a simple 

dispersion model of pollutants (Gaussian plume 

model) that limits their application only to the cases of 

steady conditions of dispersion in the atmosphere 

[4,10,11]. 

In the present work, we suggest a method for 

assessing unknown non-steady emission rate of a new 

point source by using a linear dispersion model with 

time-variable parameters. It is assumed that an 

accident, or undeclared release took place at unknown 

time, but the location of the source is known (for 

example, it was discovered by a satellite). The inverse 

problem is ill-posed and a regularization method is 

necessary in order to find the solution [11,12,13]. It is 
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shown the usefulness of the Tikhonov regularization 

in the case when the functional to be minimized 

contains the derivative of the emission rate, and is 

subjected to integral constraints on the pollutant 

concentration which contains full information, in a 

compact form, on the dispersion phenomenon in the 

atmosphere and utilize the data on the anomalies of 

pollutant concentration. The adjoint solutions (or 

influence functions) used in the integral constraints 

exhibit the explicit relation between the emission rate 

and the data on the anomalies of pollutant 

concentration. The resulting variational problem is 

easily solved. In Section II, we formulate the general 

variational problem, while a dispersion model and its 

corresponding adjoint, which match the features of the 

general formulation, are presented in Section III. 

Finally, in Section IV the numerical approach of the 

variational problem is presented, and two examples of 

the solution of  inverse problem are developed in 

detail using synthetic data. 

 

II. Formulation of the problem 
Let us suppose that a singular event, such as 

an explosion or release of a dangerous substance, 

happened completely during a time interval  0,T  in 

a known place 0r  located in a region D , and the 

emission rate of new source ( )Q t  is the control 

variable that must be determined. We also assume that 

the distribution 
0 ( ) r  of this pollutant in D  at the 

initial moment 0t  , and the emission rates ( , )f tr  

of the other sources located in D  are well known, and 

hence, the actual state 
)

 in region D  for 0t   is 

known (for example, 
)

 can be determined with a 

model). Taking into account the new source, the 

dispersion model for calculating the pollutant 

concentration   in time interval  0,T  can be 

written as  

 

 0( , ) ( ) ( )  in  0,A f t Q t T
t


 


   


r r r D                                                                                

                                                                                   (1) 
0( ,0) ( ) in r r D                                              (2) 

 

where A  is the linear operator that describes the 

advection of pollutants by winds or currents, turbulent 

diffusion, deposition and decay of pollutants due to 

chemical reactions, 0( ) r r   is the Dirac delta, and 

0r  is the location of new source. 

On the other hand, let us denote by 
)

 the 

solution of dispersion problem (1)-(2) only with 

forcing ( , )f tr  ( ( ) 0Q t  ). Thus, the anomaly of the 

pollutant concentration    
)

   satisfies the 

dispersion problem 

 

 0( ) ( )  in  0,A Q t T
t


 


  


r r D                (3) 

( ,0) 0 in r D                                                      (4) 

 

As it was noted before, the basic 

concentration of the pollutant 
)

 is supposed known 

as the solution of the dispersion model (3)-(4) with the 

initial distribution 
0 ( ) r  and forcing ( , )f tr . 

Further, the concentration   can be partially 

evaluated by means of its monitoring in some places 

of region D . Therefore, the time series of the 

anomaly    
)

 of the pollutant  can be obtained 

at the monitoring sites. 

It is reasonable to assume that the errors in 

the measurements of concentration   are small. 

However, the errors in the basic function 
)

 are 

typically much larger than the errors of measurements, 

because this function is the result of solution of a 

computational model that does not describe exactly 

the processes of dispersion and transformations in the 

atmosphere. Therefore, we assume that the errors in 

the values of  
)

, obtained in different monitoring 

sites, are of the same magnitude as the errors in 

function 
)

. Such perturbations in the anomaly 

   
)

 of concentration of pollutant generate the 

numerical instability in the process of inversion of 

data, and they are the fundamental reason for 

introducing one of the regularization methods. To this 

end, we first obtain integral equations that establish a 

direct relationship between the "cause" and the 

"effect" in the system.  

In order to find an explicit relationship 

between the anomaly   (state variable) and the 

emission rate ( )Q t  (control variable), we introduce 

the influence function g  as the solution of the 

following adjoint model: 

 

 ( , )  in  0,
g

A g p t T
t


  


r D                   (5) 

( , ) 0 ing T r D                                                 (6) 

 

The adjoint operator A
 is defined by means of the 

Lagrange identity [14]: 

 

   , ,A g A g                                                (7) 

 

where   ,h g h g d D
r   is the inner product of the 

Hilbert space  2L D . 

 Multiplying (3) by g  and taking the integral 

over (0, )TD  we get 
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0

T

g d dt
t




 D
r                     

0
0 0

( ) ( )
T T

gA d dt gQ t d dt     D D
r r r r             (8) 

 

The integration by parts of the first integral and the 

use of conditions (4) and (6) leads to 

 

0 0
( )

T T g
g d dt d dt

t t




 
 

    D D
r r  

 

 Using in (8) Lagrange identity (7) and the well-

known property of Dirac delta one can get 

 

0
0 0

( ) ( , )
T Tg

A g d dt Q t g t dt
t

  
   
 

  D
r r  

 

 Finally, taking into account equation (5) we 

obtain 

 

0
0 0

( , ) ( ) ( , )
T T

p t d dt Q t g t dt   D
r r r  

 

In particular, if the forcing ( , )p tr  in (5) is defined as 

 

( , ) ( ) ( )ip t t T   r r r  

 

then the last equation is reduced to 

 

0
0

( , ) ( ) ( , )
T

i iT Q t g t dt  r r                                     (9) 

 

Equation (9) is the desired explicit 

relationship between the emission rate ( )Q t  and the 

anomaly of pollutant concentration at time t T and 

monitoring sites ir , 1,...,i N . It should be noted 

that the adjoint function ig  depends only on the 

dispersion conditions in the atmosphere and 

monitoring site ir , but it is independent of the control 

variable Q . Thus, in order to use equations (9), the 

N  different adjoint functions must be calculated. 

On the other hand, let R  be a monitoring site 

and let jt T  be a sampling time ( 1,2,...,j M ). 

Then the forcing ( , )p tr  in (5) can be defined as 

 

( , ) ( ) ( )jp t t t   r r R ,                                                                                                    

 

and in addition to (9), one can obtain a set of 

alternative equations 

 

0
0

( , ) ( ) ( , )
T

j jt Q t g t dt  R r , 1,2,...,j M         (10) 

 

where   
1

( , )
M

j j
t


R   is the time series (without 

errors) of the anomaly of pollutant concentration 

obtained at the monitoring site R  and sampling time 

jt T . Again, the adjoint function jg  depends only 

on the dispersion conditions in the atmosphere and the 

sampling moments jt , and is independent of the 

control variable Q . Note that in order to use the 

formulas (10), it is necessary to calculate the M 

adjoint functions. Besides, according to (5)-(6), 

 

0( , ) 0 in  ( , )j jg t t Tr  

 

 and hence, equations (10) are reduced to 

 

0
0

( , ) ( ) ( , )
jt

j jt Q t g t dt  R r  , 1,2,...,j M       (11) 

 

 In the case of stationary conditions of 

atmospheric dispersion, the operator A  is time 

independent, and 

 

0 0( , ) ( , ) in  (0, ),  1,2,...,j j jg t g T t t t j M   r r

                                                                                 (12) 

 

where the adjoint function g , known as the basic 

kernel, is the solution of (5)-(6) with forcing 

( , ) ( ) ( )p t t T   r r R . Thus, equations (11) 

accept the form 

 

0
0

( , ) ( ) ( , )
jt

j jt Q t g T t t dt   R r , 1,2,...,j M                                                                                                  

                                                                                (13) 

 

and hence, in the stationary case, it is necessary to 

calculate only one adjoint function g  to establish the 

explicit relationships between ( )Q t  and the time 

series  
1

( , )
M

j j
t


R  of the anomaly of the pollutant 

concentration at the monitoring site R . Thus, in the 

stationary case, the calculations are much simpler.  

It should be emphasized that the use of 

equations (9) or (11) depends on the monitoring 

information available. Equation (9) is useful in the 

case when the pollutant concentrations are available 

simultaneously from different monitoring stations in 

D , while equation (11) can be applied if there is a 

time series of pollutant concentrations obtained from a 

single monitoring station in the region. Hereafter, in 

the study of the inverse problem, only equations (11) 

will be used. 

There are two particular cases when the 

source strength can be immediately identified from 

equations (11). First, when the mean value of the 

errors j  in the anomaly of pollutant concentration 
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are equal to zero, and the intensity of source is 

constant: ( ) cQ t Q , 0 t T  . Then, summing the 

relations (11) over j  from 1 to M  yields 

 
1

0
0

1 1

( , )
j

M M t

c j j

j j

Q g t dt



 

  
   
  
  r                  (14) 

 

where j  is the anomaly of pollutant concentration 

registered at moment jt  and ( , )j j jt   R , 

1,...,j M . Second, when the mean value of errors 

j  are equal to zero, and the source intensity is of 

the form of an impulse at time et t : 

( ) ( )e eQ t Q t t  , 0 et T  . Then, summing 

the relations (11) over j  from 1 to M  yields 

 
1

0

1 1

( , )
M M

e j j e

j j

Q g t



 

  
   
  
  r                          (15) 

                                                                                                            

Suppose now that the emission rate of a point 

source is non-steady and a time series  
1

M

j j



 of the 

anomalies of pollutant concentration is available at the 

monitoring site R . We now suggest a regularization 

method (Tikhonov regularization) for the inverse 

problem: 

                                                                                        
2

0

1

2
minimize   ( )

T dQ
J Q dt

dt

 
  

 
               (16) 

subject to:  ( ) 0, 0 ,   (0) ( ) 0,Q t t T Q Q T                                                                          

(17) 

0
0

and ( ) ( , ) , 1,..,
jt

j jQ t g t dt j M      r    (18)                                                                        

 

where ( , )j j jt   R  and j  is the 

corresponding error in the anomaly of pollutant 

concentration at moments jt t , 1,...,j M . 

 

 The functional (16) is minimized in order to 

filter out perturbations and reconstruct the emission 

rate. Note that due to errors in the anomalies of 

pollutant concentration, it is impossible to directly use 

equation (11). That is why we consider the difference 

of terms in (18). In this constraint of variational 

problem (16)-(18), the positive parameter   is 

introduced for extending the feasibility space in which 

there exists the solution of the inverse problem. As it 

will be explained in the examples below, this 

parameter influences the smoothness of the solution 

obtained, and its optimum value is a function of the 

maximum error in the anomaly. 

Note that, both the objective function and the 

constraints directly depend of the control variable Q , 

and therefore, the discrete version of problem (16)-

(18) will determine an optimization problem of many 

real variables (quadratic programming problem). Such 

a problem is posed and solved in Section IV with the 

quadprog routine of MATLAB [15]. In the next 

section, we describe the dispersion and adjoint models 

that complete the formulation of inverse problem. 

 

III. Dispersion and adjoint models 
 The results described in the previous section 

are valid for any dispersion model (1)-(2), provided 

that the operator A  is linear and its adjoint operator is 

defined by means of Lagrange identity. These models 

can differ by the number of physical and chemical 

processes taken into account and by the forms of 

parameterization of these processes. Hereinafter we 

briefly describe a model which can be used to predict 

the dispersion of a few substances emitted from 

various sources. The details can be found in [16].  

 

3.1 Dispersion model 
 We now consider a general dispersion model 

for short-term forecast of various pollutants emitted 

from sources located in a region D . Such a model can 

be used to describe the concentrations   or  
)

  as 

much as the anomaly   of the released substance. Of 

course, the corresponding values of parameters, initial 

condition and forcing must be specified in each 

concrete case. 

 Let  (0, )D HD   be a simply connected 

bounded domain in 
3

R  whose boundary  

0 HS S S   D  is the union of a cylindrical 

lateral surface S ,  the base 0S  at the bottom, and top 

cover HS   at  z H  (see Figure 1). In the domain 

D , we consider the following dispersion model Μ  

for K  quasi-passive pollutants: 

 

( )k k
k k k k z

t z z

 
     

 
      

  
U                                                                

( , )s

k kf t  r                                             (19) 

3 ins s

k k k   e D                                              (20) 

0( ,0) ( ) ink k r r D                                          (21) 

0 onk n kU S      n                                 (22) 

0 onk S    n                                             (23) 

00 onk S   n
)

                                             (24) 

onsk
z n k k k HU S

z


    

  


                           (25) 

onsk
z k k HS

z


   

 


                                       (26) 
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0 in
u v w

x y z

  
     

  
U D                          (27) 

For each k ( 1,...,k K ), ( , ) 0k t r  represents the 

concentration of k th primary pollutant, 
0 ( )k r  is its 

initial distribution at 0t  , and ( , ) 0k t r  is the 

coefficient describing the decay of this element due to 

chemical transformations. Also, ( , ) 0t r   and 

( , ) 0t r
)

 are the turbulent diffusion tensors, 

 

( , ) 0 0
( , ) 0

0 ( , ) 0
0 ( , )

0 0 ( , )

,  ,

x

x

y

y

z

t
t

t
t

t




  




 

 
   
      

 

r
r

r
r

r

)
                                                                                              

(28) 

 

and the term 
s

k  in (19), describes the change of 

concentration of particles per unit time because of 

sedimentation with constant velocity 0s

k  . It is 

assumed that the wind velocity ( , ) ( , , )t u v wU r  is 

known and satisfies the continuity equation (27) in 

D . 

 
Fig. 1 Cross section of region D . 

 

 Without loss of generality, we assume that 

the forcing 

   

1

( , ) ( ) ( )
N

k ik i

i

f t q t 


 r r r                                  (29) 

 

is formed by the point sources (for example, by 

various industries) located at the points i r D ,  

1,...,i N .  Here ( )ikq t  is the emission rate of k th 

pollutant of the i th source. Thus,   

 

1

( ) ( )
K

i ik

k

q t q t


                                                       (30) 

 

is the emission rate of the i th source formed by the 

emission rates of K  different pollutants, and 

( )i r r  is the Dirac delta centered at the plant 

position 
ir , 1,...,i N . Note that the line or area 

sources in region D  can also be modeled as point 

sources [17], and therefore equation (29) is a rather 

general form of the forcing in equation (19). 

 The conditions on the open boundary D  of 

limited domain D  lead to the well-posed problem in 

the sense of Hadamard [18]. We denote by 

nU  U n  the projection of the velocity U  on the 

outward unit normal n  to the boundary S , which is 

divided into the outflow part S 
 where 0nU   

(advective pollution flow is directed out of D ) and 

the inflow part  S 
 where  0nU   (advective 

pollution flow is directed into D ). It is assumed that 

region D  is large enough and includes all important 

pollution sources. In other words, we suppose that 

there is no sources outside D , and hence,  the total 

flow of pollutants (the sum of the diffusive flow and 

advective flow) is zero on the inflow part S 
 

(condition (22)). The pollution flow is non-zero only 

on S 
, besides, according to (23), the diffusive flow 

on S 
 is assumed to be negligible as compared with 

the corresponding advective flow. The conditions (25) 

and (26) have similar meanings on HS , where the 

sedimentation of the particles has been also taken into 

account. Equation (24) indicates that there is no flow 

of the substances through 0S , since  U n   and 
s

k  

are both zero on the surface of irregular terrain (see 

Fig. 1). In general, (25) and (26) are necessary 

because 0w  on 0S  and (27) lead to a non-zero 

vertical velocity component at HS : 

 

0
( , , , )

z u v
w x y z t dz

x y

  
   

  
                           (31) 

 

The boundary conditions are mathematically 

good, because the resulting problem (19)-(27) is well 

posed, that is its solution exists, is unique and 

continuously depends on the initial condition and 

forcing [19]. This follows from the fact that the 

problem operator 

 

( )k k k k kA          U                                                

sk
z k

z z







 
                                          (32) 

 

 is nonnegative: 

 

 
)1

2

0

2
2

3
2

1
,

2

s

k k k k k
D S

A d dS          r e n  
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2 2 21
0

2H H

s

k k k k n k
D S S S

d dS U dS    


    r (33)       

 

Here   , d   D
r   is the inner product and 

 
1/ 2

2

2
d  D
r  is the norm. Then it can be shown 

[19] that 

 
0

2 2 20
max ( , )k k k

t T
T f t 

 
  r                     (34) 

 

The boundary conditions are also physically 

appropriate, since the integration of (19) over domain 

D  leads to the mass balance equation 

 

             
1

( )
H

N

k ik n k
S S

i

d q t U dS
t

 
 




  


 D

r                                                                                                            

   
0

3

s

k k k k
S

d dS     D
r e n             (35) 

 

Thus, the total mass of the pollutants 

increases due to the nonzero emission sources ( )ikq t , 

and decreases because of advective outflow across 

HS S  , chemical transformations and 

sedimentation of pollutants on the ground. 

Finally, in order to get the numerical solution 

of dispersion model (19)-(27) and its adjoint, the 

balanced and absolutely stable second-order finite-

difference schemes based on the application of 

splitting method and Crank-Nicolson scheme are used 

[20,21]. 

 

3.2 Adjoint model 

Clearly, the concentration of a pollutant k  

in a point ( , )tr , as well as the mean concentration   

 

,

1
( , )

T

k

k

T

t d dt








 


  J r r                                (36) 

 

in a zone  D  and time interval  ,T T  

depend on the pollution emission rates of dispersion 

model (19)-(27). However, such relationships are 

implicit, whereas for the solution of some problems of 

control and decision-making is desirable to establish 

explicit relationships between the emission levels and 

the above-mentioned functional (concentration in a 

point, the average concentration, etc.). Such explicit 

relations can be obtained by means of solutions of the 

adjoint dispersion model [14,22] and Lagrange’s 

identity (duality principle) [22,23]. The adjoint 

approach not only provides an effective and 

economical technique for the sensitivity study of the 

model solution with respect to variations in its 

parameters [24], but also permits to solve such 

important problems as optimal allocation of new 

industries [14], control of pollution emissions 

[16,25,26], detection of the industrial plants that 

violate prescribed emission rates [27], remediation of 

aquatic systems polluted by oil [28,29], etc. 

 

 To this end, we now consider in the domain 

(0, )TD  the adjoint model associated with the 

original dispersion model by means of the Lagrange 

identity    , ,A g A g   : 

 

( )k k
k k k k z

g g
g g g

t z z
  

 
       
  

U                                                                                  

( , )s

k p t g r                                                       (37) 

3   in  s s

k k kg g e D                                              (38) 

( , ) 0 inkg T r D                                                 (39) 

0 onk n kg U g S    n                                (40) 

0 onkg S   n                                              (41) 

00 ons

k kg S    n g n
)

                                (42) 

0 onk
z n k H

g
U g S

z
 

 


                                  (43) 

0 onk
z H

g
S

z
 




                                               (44) 

 

We note that the adjoint model (37)-(44) being solved 

backward in time (from t T  to 0t  ) also has a 

unique solution, which continuously depends on the 

forcing ( , )p tr . This fact can be immediately shown 

by using the substitution t T t    and comparing the 

resulting model with the original dispersion model 

[19]. 

 The concrete form of forcing ( , )p tr  in (37) 

depends on the functional under consideration. In 

particular, the forcing 

 
1

| |
( , ) ( , )

( , )
     0, ( , ) ( , )

, t T T
p t

t T T







   

  
   

r
r

r
 

 

allows us to evaluate the mean concentration (36) in 

the zone D  and time interval  ,T T . 

Indeed, if the last forcing is used then combining the 

solutions of dispersion model and its adjoint [14,22], 

one can obtain an alternative (dual to (36)) formula for 

the mean concentration 

 

0

,
0

1

( , ) ( ) ( ,0) ( ) ,
N

T
k

k i ik k k

i

g t q t dt g d 



  D
J r r r r                                                                                  

1, ,k K K                                                (45) 

 

in the domain  ,T T  . The estimate (45) is 

the required formula that explicitly relates  ,

k

J  with 
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0 ( )k r  and ( )ikq t . Although the solution 
kg  of 

adjoint model depends on the meteorological 

conditions and the parameters  
k , 

s

k ,   and  , it 

is independent of the emission rates ( )ikq t  and initial 

pollution distribution 
0 ( )k r . This solution 

kg  is 

nonnegative and serves in (45) as the weight function 

for 
0 ( )k r  and ( )ikq t . The last integral in (45) 

determines the contribution of  
0

k   into ,

k

J . 

 On the other hand, if the forcing  

( , ) ( ) ( )s jp t t t   r r r  is used in the adjoint 

model (37)-(44), then the resulting functional 

 

0

0
1

( , ) ( , ) ( ) ( ,0) ( ) ,
N

T

k s j k i ik k k

i

t g t q t dt g d 


  D
r r r r r                                                                                                                 

       1, ,k K K                                 (46)                                                                              

 

represents the explicit dependence of the 

concentration of pollutant k  in point ( , )s jtr  on the 

emission rates ( )ikq t  and initial pollution distribution 

0

k . Note that equations (9), (10) and (11) are 

particular cases of result (46). Obviously, estimation 

(46) is the limiting case of equation (45) when   

tends to zero and zone     shrinks to a point. 

 

IV. Numerical approach and examples 
4.1 Formulation of the quadratic programming 

problem 
In order to calculate numerical solutions of 

variational problem (16)-(18), and estimate the 

unknown emission rate ( )Q t  of new source, we 

introduce here a quadratic programming problem. To 

this end, we define a finite set of basic functions 

(linear splines) as follows: 

 

1

1

1 ( ) / ,

( ) 1 ( ) / ,

0, otherwise

l l l

l l l l

t t t t t t

t t t t t t t





    


     



                   (47) 

 

where lt l t   are the nodes of a regular mesh in 

interval [0, ]T , ( 0,1,..., ,l L t L T    ), and the 

functions 0  and L  are equal to zero outside of this 

interval. The basic functions (47) have the following 

useful properties: 

 

1,
( ) , , 0,1,...,

0,
l j

l j
t l j L

l j



 


                     (48) 

 
2 22

0

0 0 0

1 2
, ,

T T T
lL

d dd
dt dt dt

dt dt t dt t

     
      

     
                                                                                                 

1,..., 1l L                                      (49) 

and 

 

1

0

1
, 1,...,

T
l ld d

dt l L
dt dt t

   
    

  
              (50) 

 

Besides, 

 

0
0, 1

T j l
d d

dt j l
dt dt

   
    

  
                       (51) 

 

 We now propose the emission rate ( )Q t  in 

the following form: 

 
1

1

( ) ( )
L

l l

l

Q t Q t




                                                    (52) 

 

where, due to property (48), 0 (0) 0,Q Q   

( ) 0LQ Q T   and ( ), 1,..., 1j jQ Q t j L   . 

Substituting equation (52) into functional (16), and 

taking into account the properties (49)-(51), we get 

 

 
1

2

tJ HQ Q Q  

 

where   1 2 1, ,...,
t

LQ Q Q Q  is a vector in the space 

1L
R , and H  is a tridiagonal, symmetric and 

positive-definite matrix of order 1L , whose entries 

are defined by the inner products 
0

T

jl j lH dt     , 

that is, 

 

2 1 0 0 0

1 2 1 0

0 1 2 01

0 1 0

0 1 2 1

0 0 0 1 2

H
t

 
 
  
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  
  

  
   

L

O

O M

O O O

M

L

 

 

 Without loss of generality, we assume that 

the sampling time moments coincide with the mesh 

nodes in the interval [0, ]T  and therefore M L . 

Thus, substituting equation (52) into integral equation 

(11), we get 

 

1

( , ) , 1,..,
j

j jl l

l

t a Q j L


 R                              (53) 

 

where 

1

1
0( ) ( , )

l

l

t

jl l j
t

a t g t dt




  r                                        (54) 
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Taking into account these approximations, 

the corresponding quadratic programming problem for 

the variational problem (16)-(18) can be posed as 

follows: 

 
1

minimize   
2

tJ HQ Q Q                      (55) 

0subject to: 0, 1,..., 1,  0l LQ l L Q Q      (56)                      

1

and     , , 1,..,
j

j jl l

l

a Q j L  


             (57) 

 

where coefficients jla  are given by (54). Note that, in 

order to simplify the constraints (57), we can calculate 

the coefficients jla  by using second order formulas 

(like trapezoidal rule):  

 

0 0( , ),  1,..., -1,     and    ( , ),
2

jj j j jl j l

t
a g t j L a t g t


    r r                                                                                               

1,..., 1,   l L l j L                          (58) 

 

Note that the quadratic programming 

problem (55)-(57) have a solution because the 

feasibility space given by (56)-(57) is a nonempty 

compact set in the space 
1L

R , and the objective 

function ( )J Q  is continuous. Besides, since H  is a 

positive-definite matrix then ( )J Q  is a strictly 

convex function, and hence, the solution of (55)-(57) 

is unique in the convex feasibility space (56)-(57) 

[30]. Such a solution can be calculated using the 

quadprog routine of  MATLAB [15], as soon as the 

adjoint functions have been determined. 

As for the quadprog routine, we can note that 

in the case when the problem, we are going to solve 

with quadprog, has only upper and lower bounds, i.e., 

no linear inequalities or equalities are specified, the 

default algorithm is the large-scale method. Moreover, 

if such a problem has only linear equalities, i.e., no 

upper and lower bounds or linear inequalities are 

specified, the default algorithm of quadprog  is also 

the large-scale method. This method is a subspace 

trust-region method based on the interior-reflective 

Newton method described in [31]. Each iteration 

involves the approximate solution of a large linear 

system using the method of preconditioned conjugate 

gradients (PCG). Otherwise, medium-scale 

optimization is used, and quadprog uses an active set 

method, which is also a projection method, similar to 

that described in [32]. This method determines an 

initial feasible solution by solving a linear 

programming problem. Due to the structure of 

quadratic programming problem (55)-(57), the second 

method of quadprog routine is applied in the 

examples. 

 

4.2 Numerical examples 
In order to show the performance of 

quadratic programming problem (55)-(57) in the 

approximation of the solution of inverse problem, 

some numerical examples are presented in this 

section. The examples take into account the errors in 

the data, since the anomaly of concentration 
)

     is the difference between sample values of 

the concentration and solution values of the dispersion 

model, and both types of data have errors. Due to 

unavoidable errors in real data, as well as by the fact 

that the inverse problem is ill-posed, the determination 

of intensity ( )Q t  of new source is not an easy task, 

and the formulations (16)-(18) and (55)-(57) are 

necessary as we shall see. In the synthetic examples of 

this section, the errors are uniformly distributed. 

 

4.2.1 Example 1 

We begin with a simple dispersion model of 

dimension zero (box model) for the pollutant 

concentration anomaly [17], 

 

21 1
( ) ( ), 0

d
ua Q t t T

dt V V


                  (59) 

(0) 0                                                                   (60) 

 

It is assumed here that at any moment, the pollutant 

forms an homogeneous mixture with the air in the 

region [0, ] [0, ] [0, ]a a a D , which is a box of 

length a  and volume 
3V a . The steady velocity u  

of the wind is horizontal, and   denotes the chemical 

transformation coefficient for the pollutant. Note that 

problem (59)-(60) is a particular case of the general 

mass balance equation (35) for a single pollutant, 

without taking into account the sedimentation 

( 0s

kv  ), and considering just one point source in 

region D  with emission rate ( )Q t . 

 We will try to assess ( )Q t  directly from 

(59)-(60). To this end, two well known finite central 

difference formulas of second order of approximation 

are used in (59) to get 

 

1 1 1 1 1

2 2

j j j j

jr Q
t V

       
 


 

 

where  
21

V
r ua  , jQ  approximates ( )jQ t  at the 

moments  jt j t   ( 0,1,...,j L ), t T L   is the 

time period between sample data, and   
0

L

j j



 is the 

time series of the anomaly of pollutant concentration. 

Grouping the terms in the last equation, we get 

 

1 1

1 1
,

2
j j j

V
Q r r

t t
  

    
       

     
 

                                                                                

1,..., 1j L                          (61) 
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In order to test equation (61) we consider the input 

signal (emission rate) 

 

0, 0 2

( ) , 2 4

0, 4 10

t

Q t q t

t

 


  
  

                                           (62) 

 

 and the output signal (pollutant concentration) 

 

 

 

1 exp( ( 2))

exp( ( 4)) exp( ( 2))

0,0 2

( ) ,2 4

,4 10

q

rV

q

rV

r t

r t r t

t

t t

t

   

    

 


 
  

                                                                                 (63) 

 

for dispersion model (59)-(60). Figure 2 shows both 

signals for the following parameters:  1 a km , 
10.5 u kmh , 

10.0001 h  , 10 T h  and 
1100 q kgh . 

 
Fig. 2  Emission rate ( )Q t  and anomaly of pollutant  

concentration   given by (62) and (63). 

 

 Taking into account equation (63), the 

synthetic time series is given as 

 

( ) , ,  , 0,1,...,j j j jt t T L t j t j L                                                                                          

(64) 

 

where the perturbations (errors)  
0

L

j j



 are 

uniformly distributed. Figure 3 shows an example of 

the time series calculated with (64) for 0.05 t h  , 

where the values j  were randomly chosen from a 

uniform distribution in the interval ( 0.5,0.5) . In this 

example, the amplitude of errors was normalized in 

order to be up to about 15% of the maximum output 

signal  . 

 

Fig. 3  Synthetic time series  
0

L

j j



 for the anomaly 

            of pollutant concentration. 

 

The result of applying the scheme (61) with 

the synthetic time series shown on Figure 3 is plotted 

in Figure 4. It is clearly seen that the amplitude of 

errors has grown up to 175% (since the inverse 

problem is ill-posed), and hence, the emission rate 

( )Q t  has been lost. This result can be explained as 

follows. Substituting (64) into equation (61), we get 
 

 21
( ) ( )j jQ t Q V r o t

t


 
     

 
 

 

where  max j
j

  . Thus, the error of amplitude 

increases with volume V  and  sample frequency 

1/ t . In particular, if the number of observations in 

the interval (0, )T  increases, then 0t   and 

therefore the estimate of ( )Q t  using the scheme (61) 

becomes worse. Other methods based on the finite 

differences are performed similarly to scheme (61) 

[5]. 

 
Fig. 4  Emission rate ( )aQ t  obtained from scheme 

         (61) and emission rate ( )Q t  given by (62). 
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We now consider the quadratic programming 

problem (55)-(57) plus (58) to solve this particular 

inverse problem. For the dispersion model (59)-(60), 

the explicit relationship between the unknown 

emission rate ( )Q t  and the pollutant concentration 

anomaly   can be established through the solution of 

equation (59) by means of Laplace transform [33]. 

Such a solution takes the following integral form 

 

0

1
( ) ( ) , 0

t
rt rt e Q e d t T

V

                      (65) 

 

where 
21

V
r ua  . Then the corresponding 

equations (11) can be written as 

 

0
( ) ( ) ( ) , ,   1,...,

jt

j j jt Q t g t dt t j t j L      

 

where the kernel of integral equation is 

 1( ) jr t t

j V
g t e

 
 , 0 jt t  . Besides, due to the 

steady dispersion conditions considered in this 

example, the basic kernel is 
 1( )

r T t

V
g t e

 
 , 

0 t T  , which possesses the property 

( ) ( )j jg T t t g t     for jt t   (see equation (12)). 

The Figure 5 shows the input signal (62) and solution 

of quadratic programming problem (55)-(57) with 

(58). Such a solution was calculated by using the 

quadprog routine of MATLAB [15]. In this example, 

the time series  
0

L

j j



 is generated by means of (64) 

and it is plotted in Figure 3. It is clear that the 

numerical solution of regularization method (16)-(18) 

has improved the estimation of the emission rate 

found through the simple scheme (61). 

 
Fig. 5  Emission rate ( )bQ t  obtained from (55)-(57) 

and emission rate ( )Q t  given by (62). 

 

On the other hand, the numerical experiments 

show that if the parameter     then the solution 

of (55)-(57) is smoothed and tends to zero, since the 

feasibility space expands so that it contains the global 

minimum of the objective function J . At the other 

extreme, when     where 

max { } 0j j   , the regularization leads to the 

best approximation of the emission rate. The Figure 6 

shows the solution of (55)-(57) for the synthetic data 

presented in Figure 3, where e   , 

1.8,  1.4  y  1.0e  . The relative errors of the 

corresponding approximations are 

0.32, 0.28  and  0.19 . Finally, when   , the 

solution of inverse problem is unstable (the 

oscillations are shown in Figure 4). Since for real data 

the value of   is unknown, such a change in the 

behavior of the solution indicates the point where the 

optimum value of   has been reached. 

 
Fig. 6  Behavior of the solution of quadratic 

        programming problem (55)-(57) when    . 

 

4.2.2 Example 2 

We now consider a one-dimensional model 

of diffusion for the pollutant concentration anomaly 

( , )x t  : 

 
2

02
( ) ( ),   0 1,   0Q t x x x t T

t x

 
 

 
      

 
                           

                                                                                 (66) 

(0, ) 0,   0t t
x





 


                                            (67) 

(1, ) (1, ),   0t t t
x


 


  


                                (68) 

( ,0) 0,   0 1x x                                               (69) 

 

where 0   is the diffusion coefficient and 0x  is the 

location of a point source in domain  0,1D  with 
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emission rate ( )Q t . The condition (67) means that 

there is no pollutant flow at 0x   (the closed 

boundary), and condition (68) means that at 1x   

(the open boundary) the flow of pollutant is 

proportional to   with 0  . As a result, the mass of 

pollutant in D  increases due to the emission rate Q  

and decreases because of the outflow at the boundary 

point 1x   according to the following mass balance 

equation: 

 
1

0

( , ) ( ) (1, )x t dx Q t t
t
 


 

 
 

 

 Similarly to the general dispersion model 

(19)-(27), the diffusion model (66)-(69) is well posed, 

since its solution exists, is unique and continuously 

depends on the initial condition and forcing. This 

follows from the fact that the problem operator A  

defined as  
2

2
A

x


 


 


 

 

is nonnegative: 

 

 
21

2

0

, (1, )A dx t
x


   

 
  

 
  

 

 By solving the Sturm-Liouville problem for 

the diffusion model (66)-(69), its non-negative 

solution can be expressed by Fourier series [34] as: 

 

 2

1 0

( , ) ( ) cos( )k

t
t

k k

k

x t d Q d xe   
   


 



 
  

 
      (70) 

 

where  

 

 2 1

02cos( )[1 sin ] ,   1,2,k k kd x k


 


   K  , 

 

 
1

cos( )k k
x




 is an orthogonal system of functions 

(eigenfunctions), and the corresponding frequencies 

k  (eigenvalues) are the roots of equation 

 

cos( )- sin( ) = 0    . 

 

Such frequencies can be efficiently calculated by 

Newton’s method [35].  

 Note that for the numerical experiments of 

this section we used the Fejér series [36,37], 

calculated from the Fourier series (70), in order to 

have the pointwise convergence to ( , )x t . That is, in 

practice we consider in (70) the Fejér coefficients: 

 

( 1)
1 ,   1,2,k k

k
d d k K

K

 
   
 

)
K  , 

 

instead of kd , where K  is the truncation number of 

the series. 

 On the other hand, the application of 

Lagrange identity    , ,A g A g    to the 

diffusion model (66)-(69) leads to the following 

adjoint model 

 
2

2
( , ),   0 1,   0

g g
p x t x t T

t x


 
      
 

    (71) 

(0, ) 0,   0
g

t t
x




 


                                            (72) 

(1, ) (1, ),   0
g

t g t t
x

 


  


                                (73) 

( , ) 0,   0 1g x T x                                             (74) 

 

where the forcing is defined as 

( , ) ( ) ( )jp x t x t t   R , and R  is the 

monitoring point in domain D .  

 As it was shown in Section II, the use of 

solution of adjoint problem (71)-(74) leads to the 

formula  

 

0
0

( , ) ( ) ( , )
jt

j jt Q t g x t dt  R  

 

that corresponds to equation (11). Here, the adjoint 

function jg  can be expressed as 

 

 2

0 0

1

( , ) cos( ),   k jt t

j k k j

k

g x t c x t te
 




 



         (75) 

 

where  

 

 2 12cos( )[1 sin ] ,   1,2,k k kc k


 


  R K  

 

are Fourier coefficients of series (75). 

 In the numerical experiments, as it was 

mentioned before, we consider in the series (75) the 

Fejér coefficients 

 

( 1)
1 ,   1,2,k k

k
c c k K

K

 
   
 

)
K  , 

 

instead of kc , where K  is the truncation number of 

the series. 

 In this example, due to the steady dispersion 

conditions, the basic kernel 
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 2

0 0

1

( , ) cos( ),   0k T t

k k

k

g x t c x t Te  

 


 



                                                                              

                                                                               (76) 

 

possesses the property 0 0( , ) ( , )j jg x T t t g x t     

for jt t   (see equation (12)). 

The Figure 7 shows the input signal ( )Q t  

given by (62) and the corresponding output signal 

( , )t R  calculated according to (70) for the following 

parameters: 0 0.3 x km , 0.8 kmR , 1.0 km  , 

20.5 km  , 10 T h , 
1100 q kgh  and 

10000K  . 

 
Fig. 7  Emission rate ( )Q t  given by (62) and 

concentration   at x R  calculated with (70). 

 

 In the Figure 8 is shown the basic kernel 

0( , )g x t  calculated according to (76) and two 

examples of adjoint functions 0( , )jg x t  (see (75)). As 

it can see, each adjoint function is a displacement in 

time of the basic kernel (equation (12)). 

 
Fig. 8  Basic kernel 0( , )g x t  and adjoint functions 

0( , )jg x t  for 3.0jt   and 7.0jt  . 

 

Once the adjoint functions have been 

obtained by means of the basic kernel we can consider 

the quadratic programming problem (55)-(57) with 

(58) to solve the inverse problem. As in example 1, 

the synthetic time series  
0

L

j j



 for the anomaly of 

pollutant concentration is generated by formula (64), 

where the errors  
0

L

j j



 are uniformly distributed: 

 

( , ) , ,j j jt t T L     R  

, 0,1,...,jt j t j L   . 

 

The Figure 9 shows the time series calculated 

for 0.05 t h  , where the values j  were 

randomly chosen from a uniform distribution in the 

interval ( 0.5,0.5) . In this example, the amplitude of 

errors was normalized so as to be up to about 15% of 

the maximum output signal ( , )t R . The Figure 10 

shows the input signal (62) and the behavior of the 

solutions of quadratic programming problem (55)-(57) 

with (58) when    , where e   , 

max { } 0j j    and 8.0,  4.0, 2.0,  1.0e  . 

These solutions were calculated using the quadprog 

routine of MATLAB [15]. The behavior of solutions 

with respect to parameter   is similar to that 

described in example 1. Indeed, for    we get the 

best approximation of the emission rate ( )Q t  that the 

method can provide. 

 

 

Fig. 9  Synthetic time series  
0

L

j j



 for the anomaly 

of pollutant concentration at x R . 
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Fig. 10  Behavior of the solution of quadratic 

programming problem (55)-(57) when    . 

 

This example is interesting because a parcel 

of the pollutant released at 0 0.3x   and moment t , 

is propagated by diffusion in both directions (to the 

left and to the right). The part of this parcel that has 

been dispersed to the right, is registered at the 

monitoring point 0.8R  at moment 1t t , while the 

other part of the parcel is registered at moment 2 1t t  

like a feedback process (reflection). This dynamical 

phenomenon is the consequence of the presence of 

closed boundary at 0x  . The problem is that such a 

feedback can be erroneously interpreted as the 

presence of one more source located to the left from 

the location of the true source, and that this false 

source can generate an additional impulse in ( )Q t  

outside of the time interval  2,4 . However, thanks 

to information provided by the adjoint solutions, this 

false interpretation is recognized by the regularization 

process, and finally the only source is correctly 

determined (see Figure 10). 

 

V. Conclusions 
A variational problem to find the unknown 

non-stationary emission rate ( )Q t  of a point source is 

formulated. This method requires at least one time 

series of the anomaly of pollutant concentration in a 

monitoring site. It is shown that the use of adjoint 

functions is fundamental to establish integral 

constraints on variational problem, which explicitly 

relate such anomalies and ( )Q t . Analytical 

expressions obtained from these relations allow 

estimating the emission rate in two particular cases, 

namely when ( )Q t  is constant and when ( )Q t  is an 

impulse in time (as in case of explosion). In the 

general case, the minimization of the L2-norm of first 

derivative of ( )Q t  is a useful regularization for 

unstable inverse problems, since such regularization 

filters the errors in the data and permits to obtain a 

smooth approximation of ( )Q t . This approximation 

of ( )Q t  is the solution of a discrete problem 

associated with the variational problem. Besides, such 

a discrete problem represents a simple quadratic 

programming problem which is solved efficiently by 

quadprog routine of MATLAB. Numerical 

experiments show that for determining the emission 

rate, the optimal value of parameter   is the 

maximum value of the error in the data of the anomaly 

of pollutant concentration. 
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