
David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 352 | P a g e

Implementation of an NEP in Java

David Batard, Víctor Martínez

Abstract
TheNetworks of Evolutionary Processors (NEPs) are computing mechanisms directly inspired from the behavior

of cell populations more specifically the point mutations in DNA strands.These mechanisms are been used for

solving NP-complete problems by means of a parallel computation postulation.This paper describes an

implementation of the basic model of NEP and includes the possibility of designing some of the most common

variants of it by means of a graphic user interface which eases the configuration of a given problem. It is a

system designed to be used in a multicore processor in order to benefit from the multi thread use.

Keywords: NEP, Evolutionary processors, natural computing, Implementation.

I. Introduction
Networks of Evolutionary Processors (NEP)

are a rather new computing mechanism directly

inspired from the behavior of cell populations. Every

cell is described by a set of words, evolving by
mutations, which are represented by operations on

these words, resembling the manner carried out by

DNA strings [Păun, 1998]. At the end of the process,

only the cells with correct strings will survive. The

main potential in this model is the simultaneous way

it develops for which a basic architecture for parallel

and distributed computing is required consisting on

several processors, each of them placed in a node of a

virtual complete graph, which are able to handle data

associated with the respective node. Each node

processor acts on the local data in accordance with
some predefined rules. Local data is then sent through

the network according to well-defined protocols. Only

data which is able to pass a filtering process can be

communicated. This filtering process may be required

to satisfy some conditions imposed by the sending

processor, by the receiving processor, or by both of

them. All the nodes simultaneously send their data

and the receiving nodes also simultaneously handle

all the arriving messages, according to specific

strategies. In addition, the data in the nodes is

organized in the form of large multiset of words

where each word could appear in an arbitrarily large
number of copies and all the copies are processed in

parallel so that every possible action takes place.

This basic model has evolved to others

which extend not only the definition but the

applications. In this case we consider the hybrid

networks of evolutionary processors (HNEP) where

the rules in every processor could be applied

differently opposed to the basic model as described in

[Martín-Vide, 2003].Also other variants can be

considered as they all share the same general

characteristics.

In this paperwe describe the initial work of

implementation of a general NEP which can be

thought to represent the most common variations of

the basic model, considering the concurrent way it

was conceived to perform and having a graphic user

interface for an easier way of defining it and getting

the outcomes.

II. Basic concepts
A network of evolutionary processors of size

n is a construct:

𝛤 = 𝑉,𝑁1 ,𝑁2,… ,𝑁𝑛 ,𝐺 ,

where V is an alphabet of symbols and for each 1 ≤ i

≤ n, Ni = (Mi , Ai , PIi , 𝐹𝐼𝑖𝑃𝑂i , 𝐹Oi) is the 𝒾 -th

evolutionary node processor of the network. The

parameters of every processor are:

 𝑀𝑖 is a finite set of evolution rules of one of the

following forms only:

– a→ b a, b ∈V (substitution rules),

– a→ ε a ∈V (deletion rules),

– ε→ a a ∈V (insertion rules),

In this case for the hybrid NEP we are

considering each deletion node or insertion node

having its own working mode (performs the operation

at any position, in the left-hand end, or in the right-

hand end of the word) and different nodes are allowed

to use different ways of filtering. Thus, the same
network may have nodes where the deletion operation

can be performed at arbitrary position and nodes

where the deletion can be done only at the right-hand

end of the word.

 𝐴𝑖 is a finite set of strings over V. The set

Ai is the set of initial strings in the 𝒾 -th node. We

consider that each string appearing in any node at any

step has an arbitrarily large number of copiesin that

node.

 PI, FI ⊆ Vare the input permitting/forbidding

contexts of the processor, while PO, FO ⊆ V are the

output permitting/forbidding contexts of the

processor. These filters can work in four different

way as described below:

RESEARCH ARTICLE OPEN ACCESS

David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 353 | P a g e

For two disjoint subsets P and F of an alphabet V and

a word over V, we define the predicates φ(1) and

 φ(2)as follows:

 φ 1 w; P, F ≡ P ⊆ alph w ∧ F ∩ alph w
= ∅

 φ 2 w; P, F ≡ alph w ∩ P
≠ ∅ ∧ F ∩ alph w = ∅.

 φ 3 w; P, F ≡ alph w ⊆ P

 φ 4 w; P, F ≡ P ⊆ alph w ∧ F ⊈ alph w
The construction of these predicates is based on

random-context conditions defined by the two sets P

(permitting contexts) and F (forbidding contexts). For

every language L ⊆ V∗ and β ∈ { 1 , 2 , 3 , (4)} ,
we define:

 φβ L, P, F = {w ∈ L| φβ w; P, F }.
Finally, G= ({ N1 , N2 ,… , Nn }, E) is an undirected

graph called the underlying graph of the network.The

edges of G, that is the elements of E, are given in the

form of sets of two nodes.

By a configuration (state) of a NEP as above

we mean an n-tupleC = (L1 , L2 ,… , Ln), with

 Li⊆𝑉∗for all 1 ≤ i ≤ n. A configuration represents the

sets of strings which are present in any node at a
given moment. The initial configuration of the

network is C0 = (A1 , A2 ,… , 𝐴n). A configuration can

change either by an evolutionary step or by a

communicating step. When changing by an

evolutionary step, each component Li of the

configuration is changed in accordance with the

evolutionary rules associated with the node i.

Formally, we say that the configuration C1=

(L1 , L2 ,… , Ln), directly changesinto the configuration

 C2 = (L1
′ , L2

′ ,… , Ln
′) by an evolutionary step, written

as C1 ⟹ C2 if Li
′ is the set of strings obtained by

applying the rules of Rito the strings in Lias follows:

(i) If the same substitution or deletion rule may

replace different occurrences of the same symbol

within a string, all these occurrences must be replaced

within different copies of that string. The result is a

multiset in which every string that can be obtained

appears in an arbitrarily large number of copies.

(ii) An insertion rule is applied at any position in a
string. Again, the result is a multiset in which every

string, that can be obtained by application of an

insertion rule to an arbitrary position in an existing

string, appears in an arbitrarily large number of

copies.

(iii) If more than one rule, no matter its type, applies

to a string, all of them must be used for different

copies of that string.

When changing by a communication step,

each node processor Nisends all copies of the strings

it has which are able to pass its output filter to all the

node processors connected to Ni and receives all

copies of the strings sent by any node processor

connected with Ni providing that they can pass its

input filter.

Formally, we say that the configuration C1 =

(L1 , L2 ,… , Ln)directly changes into the configuration

 C2 = (L1
′ , L2

′ ,… , Ln
′) by a communication step, written

as C1 ⊢ C2if

𝐿𝑖
′ = 𝐿𝑖\{𝑤 | 𝑤 ∈ 𝐿𝑖 ∩ 𝑃𝑂𝑖}

∪ {𝑥 | 𝑥

 NI ,𝑁𝑗 ∈E

∈ 𝐿𝑗 ∩ 𝑃𝑂𝑗 ∩ 𝑃𝑖}

for every 1 ≤ i ≤ n.

Let Γ = (V, N1 , N2 ,… , Nn) be an NEP. By a
computation in Γwe mean a sequence of

configurations C0 , C1 , C2 , . . ., where C0 is the initial

configuration, C2i ⟹ C2i+1and C2i+1 ⊢ C2i+2for all i

≥ 0.

If the sequence is finite, we have a finite

computation. The result of any finite or infinite

computation is a language which is collected in a

designated node called the output node of the

network. If one considers the output node of the

network as being the node k, and if C0, C1, . . . is a
computation, then all strings existing in the node k at

some step t - the 𝑘-th component of Ct- belong to the

language generated by the network. Let us denote this

language by Lk (Γ). The time complexity of

computing a finite set of strings Z is the minimal

number of steps t in a computation C0, C1, . . . , Ct . . .

such that Z is a subset of the k-th component of Ct .

III. Implementation
This NEP implementation is thought to be a

base for future additions and adaptations as the

discoveries in this field are moving forward, so the

class structure is considered to be lithe by means of

the use of interfaces along with abstract classes which

gather the common and required features of the

formal definition.

The relation and dependencies of classes for
simulating the NEP model are showed in Figure 1, in

a simplified way.

David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 354 | P a g e

Fig. 1. Class diagram of the main design

We can see in this diagram the relation
among all the involved classes. We thought the main

class NEP should be in charge of keeping reference to

the rest of the well-known components of a NEP such

as the alphabet in a form of a Stringin which every

character is standing for a symbol, the graph, the list

of nodes or processors and the stopping conditions.

This class it is also in charge of initiating and

controlling the evolutionary and communication

processes trough the method go()which is in charge of

doing this rotation of steps in accordance with the

established model and controlling with the

anyStoppingCondition() the possibility of stopping
the processing due to the occurrence of any of the

required conditions for stopping the computation.

This class also interacts with others devoted to the

data management and NEP configuration procedure

as well as for retrieving the outcomes of a calculation.

For the Graph class we have an array list of

Connection which is a class describing a connection

between two nodes by keeping the names of the nodes

related in a form ofint values,which are also the

numbers of the positions of each node in the list of

nodes. The method neighbors(int node)of this class
was thought to be of use in communication stepsfor

retrieving the list of nodes connected to a given one

for next exchange of words among them.

As we mentioned, the NEP stops when at least one of

the stopping condition is met. In this case we have

considered covering the most common ones as in

jNEP in[Rosal, 2008].The Figure 1 shows how from

an interface it was conceived the general structure of

the stopping condition by means of the stop(NEP

nep)method allowing future variant to be considered

without extended variation since each of the four

already in the implementing classes(Stopping

Condition Consecutive Configuration, Stopping

Condition Words Disappear, Stopping Condition

Non Empty, Stopping Condition Step) of interface

IStopping Condition share the same method but

differing in theirs attributes. Explaining each one of

them we say that for the Stopping Condition

Consecutive Configurationto succeed stopping the

computation if two consecutiveidentical

configurations are found once communication and
evolutionary steps were performed. For the Stopping

Condition Words Disappearto trigger the stop if

none of the words listed are in the NEP. The

Stopping Condition Non Emptyif one of the nodesis

non-empty and the Stopping Condition Step for

stopping after a given amount of steps.

The processors are other key components of

a NEP simulation, in this they are referred as nodes.

The Node class which has a MultiSetreference,

standing for the group of words of the processor

treated as an ArrayList<String>and implementing a
group of methods useful for the filtering and rules

application processes. In the nodes we have a list of

rules defined by theIRule interface and instantiated

buy a group of the classes: InsertionRule,

DeletionRule, SubstitutionRulethe ones are meant

to cover the basic model of NEP,implementing the

applyRule(String word)method of the interface and

inheriting from the Rule class, not considered in the

David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 355 | P a g e

class diagram for space reasons.The common

attributes come from Ruleas symbol, torepresent the

symbolto apply the rule to, coming as a Stringbut so

far considering the only character it carries and the

attribute how, also a String referring the way it has

to be done as in the position the rule has to be used,
having one of this values: left, right, any.This also

reworks the basic model which was conceived for

applying rules at the end of the word.

Nodes have two filters as attributes, the

inputfilter and the outputfilterwhich are instantiated

from one of the four filtering classes (Filter1, Filter2,

Filter3, Filter4) according to the level of strength in

the filtering processes described in [Martín-Vide,

2003], each one implementing the IFilterinterface

where the applyFilter()returns a list of words able to

pass the filter and the passFilter()for considering a

single word.
EvolutionaryStepis the class conceived to manage

the list of nodes for the purpose of performing an

evolutionary step; for doing that and by means of

generating a new thread by each node in every step.

For that, it requires the ThreadNode class which uses

a node reference to access the node multiset and rules.

The run() method in every thread applies randomly

the rules to every word and every copy till no more
can be applied. Once the evolutionary step is finished

the NEP commands to the method

apply(ArrayList<Node>nodes,Graph graph)of the

CommunicatingStepclass to proceed with the

exchange of words using the defined filters of each

node.

The need of a way for nicely defining and

storing the different designs of NEP is something

considered in this implementation. Some previous

application for this models do not present a solution

for this matter but for only for storing and reading

from a configuration file which the user has to learn
how to create. In the Figure 2 we show the class

diagram for the Input/Output of the different

configurations.

Fig. 2. Class diagram for user interface.

Once the InitialView starts it is necessary to

upload the file containing the NEP description,

specified in a jsonsyntax, to the NEP instance

referenced by this view and by means of the

getSavedConfiguration(String path)method of the

PessistentConfiguration class, accessible through

the Load NEP button as showed in Figure 3 which

allows us to locate y select the desired configuration.

Fig. 3. Initial View of NEP system.

The ConfigurationViewresponsible for the

main interaction with the user permitting the creation

and modification, of a current NEP. The use of the

UserNep class it is given as a translation mechanism

between the form of writing in the visual components

and the NEP object oriented structure. For example in

Figure 4 for defining the graph, a structure in the way

of tuples of nodes numbersassociated with a comma

David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 356 | P a g e

and delimited through brackets as follows: (0,1)(1,2)

(0,2). For that purpose the readGraphString(String

sgraph) is in charge of the translation of a string

representation of the graph to a Graph class form, in

the opposite direction the writeGraph(NEP

nep)method is responsible of putting in a string form
the Graph content required for visualizing it in the

ConfigurationView.

In this view the comma is used for

separating the individual elements as words in the

multiset, also the symbolization -> for describing

the rules having consequent, not for the deletion or

insertion ruleswhich only requires the one different

from the empty symbol.

The Node panel also in Figure 4 allows us to move

through the different nodes using the

<<<<<Previous Node<<<<<, and >>>>>Next

Node >>>>> buttons as well as going directly to the
desired one if the configuration is too long.

Fig. 4.ConfigurationView

IV. Conclusion
In this paper we have described the design

and implementation of an abstract computer devise

called NEP, aiming to achieve a solution for fitting

the most common variants. The use of a graphic user

interface is also one of the first attempts of this type

of simulations allowing a fast and pleasant

configuration of the NEP.

This work plays to be a starting tool for

future analysis of the different variants the NEP

family as it will be submitted to forthcoming
developments in order complete a better and more

complete solution.

Bibliography
[1] [Bel-Enguix, 2008] Bel-Enguix G., Jiménez

M.: A BioInspired Model for Parsing of

Natural Languages.Studies in Computational

Intelligence, Springer Verlag, Berlin, 2008,

Vol. 129/2008, 369-378.

[2] [Bottoni, 2011] Bottoni, P., Labella, A.,
Manea, F., Mitrana, V., Petre, I., Sempere,

J.: Complexity-preserving simulations

among three variants of accepting networks

of evolutionary processors, Springer

Science+Business Media B.V. 2011.

[3] [Castellanos, 2001] Castellanos, J., Martin-

Vide, C., Mitrana, V., Sempere, J.: Solving

NP-complete problems with networks of

evolutionary processors. Proceedings of

IWANN 2001, LNCS 2084, Springer-

Verlag, 2001, 621–628.
[4] [Castellanos, 2003] Castellanos, J., C.

Martin-Vide, V. Mitrana& J.M. Sempere,

Networks of Evolutionary processors,

ActaInformatica. 39 (2003): 517-529.

[5] [Manea, 2004] Manea, F., Martin-Vide, V.,

&Mitrana, V., Solving 3CNF-SAT and HPP

in linear time using WWW, Proc. of MCU

2004, LNCS, in press.

http://www.springerlink.com/content/?Author=Gemma+Bel-Enguix
http://www.springerlink.com/content/?Author=Gemma+Bel-Enguix
http://www.springerlink.com/content/?Author=M.+Dolores+Jim%c3%a9nez-L%c3%b3pez
http://www.springerlink.com/content/1860-949x/
http://www.springerlink.com/content/1860-949x/
http://www.springerlink.com/content/1860-949x/

David Batard et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.352-357

www.ijera.com 357 | P a g e

[6] [Manea, 2006] Manea F., Martín-Vide

C., Mitrana V.: A Universal Accepting

Hybrid Network of Evolutionary Processors,

Electronic Notes in Theoretical Computer

Science,2006, Vol. 135, 15-23.

[7] [Martín-Vide, 2003] Martin-Vide, C.,
Mitrana, V., Perez-Jimenez, M., & Sancho-

Caparrini, F., Hybrid networks of

evolutionary processors. In: Proc. of

GECCO 2003, LNCS 2723, Springer Verlag,

Berlin, 2003.

[8] [Păun,1998] Păun, Gh.,Rozenberg, G.,

&Salomaa, A., DNA Computing. New

ComputingParadigms, Berlin,

Springer,1998.

[9] [Rosal, 2008] Rosal, E., Nuñez, R.,

Casteñeda, C., Ortega, A. Simulating NEPs

in a cluster with jNEP.Proceedings of
ICCCC, 2008.

Authors' Information

 David Batard – University of Informatics
Sciences, Assistant professor in Department of

Research Management, La Habana-, Cuba;

Major Fields of Scientific Research: Natural

computing, Science Measurements, Intelligent

systems.

 Víctor Martínez – Natural Computing

Group of Universidad Politécnica de Madrid. - Dpto.

Arquitectura y Tecnología de Computadores de la

Escuela Universitaria de Informática, Ctra. de

Valencia, km. 7, 28031 Madrid (Spain);

