
Subitha. M. B Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.276-280

www.ijera.com 276 | P a g e

An Effective VHDL Implementation of IEEE 754 Floating Point

Unit using CLA and Rad-4 Modified Booth Encoder Multiplier

Subitha. M. B.
Assistant Professor, SNGCET Payyanur,Kerala.

ABSTRACT
Most of the signal processing algorithms using floating point arithmetic, which requires millions of operations

per second to be performed. For such stringent requirement design of fast, precise and efficient circuit is
needed. This article present an IEEE 754 floating point unit using carry look ahead adder and radix-4 modified

Booth encoder multiplier algorithm and the design is compared in terms of speed , area and power consumption.

The adder used here will increase the speed and the multiplier is used to reduce power consumption, area and

number of partial product get generated. The floating point unit design deals with the detection of exceptions

and trapped overflow and underflow exceptions as an integral part of the rounding unit. This work is used to

reduce area, power consumption and speed up the operations with more accurate results. The basic

methodology and approach are implemented in VHDL (Very Large Scale Integration Hardware Description

Language).

Keywords-FP multiplier, MBE.

I. INTRODUCTION
Multiplication is one of the basic functions

used in digital signal processing (DSP). It requires

more hardware resources and processing time than

addition and subtraction. In fact, 8.72% of all

instructions in a typical processing unit are

multiplier. In computers, a typical central processing

unit devotes a considerable amount of processing

time in implementing arithmetic operations,

particularly multiplication operations. Most high
performance digital signal processing systems rely on

hardware multiplication to achieve high data

throughput. Multiplication is an important

fundamental arithmetic operation. Multiplication-

based operations such as Multiply and Accumulate

(MAC) are currently implemented in many Digital

Signal Processing (DSP) applications such as

convolution, Fast Fourier Transform (FFT), filtering

and in microprocessors in its arithmetic and logic

unit. Since multiplication dominates the execution

time of most DSP algorithms, so there is a need of

high speed multiplier. Currently, multiplication time
is still that dominant factor in determining the

instruction cycle time of a DSP chip. The multiplier

is a fairly large block of a computing system. The

amount of circuitry involved is directly proportional

to square of its resolution i.e., a multiplier of size of n

bits has O(n2) gates. In the past, many novel ideas for

multipliers have been proposed to achieve high

performance. The demand for high speed processing

has been increasing as a result of expanding computer

and signal processing applications. Higher

throughput arithmetic operations are important to

achieve the desired performance in many real-time
signal and image processing applications. One of the

key arithmetic operations in such applications is

multiplication and the development of a multiplier

circuit has been a subject of interest over decades.

Reducing the time delay and power consumption are

very essential requirements for many applications.

This article presents a modified booth

encoder multiplier architecture. Multiplier

architectures fall generally into two categories i.e.,

“tree” multipliers and “array” multipliers. Tree

multipliers add as many partial products in parallel as

possible and therefore, are very high performance
architectures. Unfortunately, tree multipliers are very

irregular, hard to layout and hence large. Array

multipliers, on the other hand, are very regular, small

in size, but suffer in latency and propagation delay.

Due to array organization, determining the

propagation delay of array multiplier is not straight

forward. Multiplier based on Modified Booth

algorithm and Wallace addition is one of the fast and

low power multiplier. The speed of modified Booth

encoder multiplier can further be increased by

pipelining.

II. THE IEEE-754 STANDARD

FORMATS
IEEE 754 standard is a technical standard

established by IEEE and the most widely used

standard for floating-point computation, followed

by many hardware (CPU and FPU) and software
implementations. Single-precision floating-point

format is a computer number format that occupies 32

RESEARCH ARTICLE OPEN ACCESS

Subitha. M. B Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.276-280

www.ijera.com 277 | P a g e

bits in a computer memory and represents a wide

dynamic range of values by using a floating point. In

IEEE 754-2008, the 32-bit with base 2 format is

officially referred to as single precision or binary 32.

It was called single in IEEE 754-1985. The IEEE 754

standard specifies a single precision number as
having sign bit which is of 1 bit length, an exponent

of width 8 bits and a significant precision of 24

bits out of which 23 bits are explicitly stored and

1 bit is implicit 1.Sign bit determines the sign of the

number where 0 denotes a positive number and 1

denotes a negative number. It is the sign of the

mantissa as well. Exponent is an 8 bit signed integer

from 128 to 127 (2's Complement) or can be an 8 bit

unsigned integer from 0 to 255 which is the accepted

biased form in IEEE 754 single precision definition.

In this case an exponent with value 127 represents

actual zero. The true mantissa includes 23 fraction
bits to the right of the binary point and an implicit

leading bit (to the left of the binary point) with value

1 unless the exponent is stored with all zeros. Thus

only 23 fraction bits of the mantissa appear in the

memory format but the total precision is 24 bits.

The IEEE Standard for Binary Floating Point

Arithmetic ANSI/IEEE Std754-2008 is used.

Numbers in this format are composed of the

following three fields:

1-bit sign, S: A value of „1‟ indicates that

the number is negative, and a „0‟ indicates a positive
number.

Bias-127 exponent, e = E + bias: This gives us an

exponent range from Emin = -126 to Emax =127.

Mantissa, M: A twenty three bit fraction, a bit is

added to the fraction to form what is called the

significand. If the exponent is greater than 0 and

smaller than 255, and there is 1 in the MSB of the

significand then the number is said to be a

normalized number.

III. FLOATING POINT

MULTIPLICATION ALGORITHM
Multiplying two numbers in floating point

format is done by

1-adding the exponent of the two numbers then

subtracting the bias from their result,

2-multiplying the significand of the two numbers,

and
3-calculating the sign by XORing the sign of the two

numbers. In order to represent the multiplication

result as a normalized number there should be 1 in

the MSB of the result (leading one).

To multiply two floating point numbers the

following is done:

1. Multiplying the significand(1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e.(E1 + E2 - Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the MSB

of the result‟s significand.

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

 Figure 1 shows the multiplier structure;

exponent‟s addition, significand multiplication, and

result‟s sign calculation are independent and are done

in parallel. The significand multiplication is done on
two 24 bit numbers and results in a 48 bit product,

which we will call the intermediate product (IP). The

IP is represented as (47 down to 0) and the decimal

point is located between bits 46 and 45 in the IP. The

following sections detail each block of the floating

point multiplier.

IV. HARDWARE OF FP MULTIPLIER

Fig1: Block diagram of floating point multiplier

1 Sign bit calculation

Multiplying two numbers results in a

negative sign number if one of the multiplied

numbers is of a negative value. By the aid of a truth

table it find that this can be obtained by XORing the

sign of two inputs.

2 Unsigned adder / subtractor (for exponent

addition)

To reduce the delay caused by the effect

of carry propagation in the ripple carry adder, we

attempt to evaluate the carry-out for each stage (same

as carry-in to next stage) concurrently with the

computation of the sum bit. The two Boolean

functions for the sum and carry are as follows:

 Sum = Ai⨁ Bi⨁Ci

 Cout =Ai. Bi +(Ai ⨁ Bi)Ci
Let Gi = Ai · Bi be the carry generate function and

Pi = (Ai ⨁ Bi) be the carry propagate function, Then

we can rewrite the carry function as follows:

Ci+1 = Gi + Pi · Ci

Thus, for 4-bit adder, we can compute the carry for

all the stages as shown below:

C1 = G0 + P0 · C0

C2 =G1+ P1·C1 = G1 + P1 · G0 + P1 · P0 · C0

C3= G2+P2·G1 + P2·P1·G0 +P2 · P1 · P0 · C0

C4=G3+P3·G2+P3·P2·G1+P3·P2·P1·G0+P3·P2.P1.
P. C0

In general, we can write:

 The sum function: SUMi = Ai Bi ⨁ Ci = Pi ⨁

Ci

Subitha. M. B Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.276-280

www.ijera.com 278 | P a g e

 The carry function: Carry=Gi+Pi.Ci

Carry Look Ahead Adder can produce carries faster

due to parallel generation of the carry bits by

using additional circuitry.

3 Multiplier for unsigned data
Multiplication involves the generation of

partial products, one for each digit in the multiplier,

as in figure 2. These partial products are then

summed to produce the final product. The

multiplication of two n-bit binary integers results in a

product of up to 2n bits in length.

 Multiplier Multiplicand

Fig2:Block diagram of low power modified booth

multiplier

The Modified booth algorithm (MBA) or

Modified booth encoding (MBE) was proposed by

O.L Macsorley. The recording method is widely used

to generate partial products for implementation of

large parallel multipliers, which adopts the parallel

encoding scheme. One of the solutions of realizing

high speed multipliers is to enhance parallelism,

which helps to reduce subsequent stages. The original

booth algorithm (radix 2) had 2 drawbacks:

 The number of add subtract operations and the

number of shift operations become variable and
become inconvenient for designing parallel

multipliers.

 The algorithm becomes inefficient when there

are isolated 1‟s.

These problems can be overcome by

modified booth algorithm. MBA process three bits at

a time during recoding. Recoding the multiplier in

higher radix is a powerful way to speed up standard

booth multiplication algorithm. In each cycle a

greater number of bits can be inspected and

eliminated therefore, total number of cycles required
to obtain products get reduced. Number of bits

inspected in radix r is given by n= 1+log2r. Algorithm

for Modified booth is given below. In each cycle of

radix-4 algorithm, 3 bits are inspected and two are

eliminated. Procedure for implementing radix-4

algorithm is as follows,

 Append a zero to the right of LSB.

 Extend the sign bit 1 position if necessary to

ensure that n is even.
 According to the value of each vector, find each

partial product.

Y

2i

+1

Y

2i

Y

2i

-1

Recoded

Digit

Operand

Multiplication

0 0 0 0 0*Multiplicand

0 0 1 +1 +1*Multiplicand

0 1 0 +1 +1*Multiplicand

0 1 1 +2 +2*Multiplicand

1 0 0 -2 -2*Multiplicand

1 0 1 -1 -1*Multiplicand

1 1 0 -1 -1*Multiplicand

1 1 1 0 0*Multiplicand

Table 1: Modified Booth Algorithm

Radix-4 encoding reduces the total number

of multiplier digits by a factor of two, which means

in this case the number of multiplier digits will

reduce from 16 to 8. Booth‟s recoding method does

not propagate the carry into subsequent stages. This

algorithm groups the original multiplier into groups

of 3consecutive digits where the outer most digit in

each group is shared with the outer most digit of the
adjacent group. Each of these group of three binary

digits then corresponds to one of the numbers from

the set {+2,+1,0,-1,-2}. Each recoder produces a 3-bit

output where the 1st bit represents the number 1 and

the 2nd bit represent number 2. The 3rd and final bit

indicates whether the number in the 1st or 2nd bit is

negative.

4 Normalizer
The result of the significand multiplication

(intermediate product) must be normalized to have a

leading „1‟ just to the left of the decimal point (i.e., in

the bit 46 in the intermediate product). Since the

inputs are normalized numbers then the intermediate

product has the leading one at bit 46 or 47.

1-If the leading one is at bit 46 (i.e., to the left of the

decimal point) then the intermediate product is

already a normalized number and no shift is needed.

2- If the leading one is at bit 47 then the intermediate

product is shifted to the right and the exponent is
incremented by 1.The shift operation is done using

combinational shift logic made by multiplexers.

5 Underflow/overflow detection

Overflow/underflow means that the result‟s

exponent is too large/small to be represented in the

exponent field. The exponent of the result must be 8

bits in size, and must be between 1 and 254 otherwise

the value is not a normalized one. An overflow may

occur while adding the two exponents or during

Subitha. M. B Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.276-280

www.ijera.com 279 | P a g e

normalization. Overflow due to exponent addition

may be compensated during subtraction of the bias;

resulting in a normal output value (normal operation).

An underflow may occur while subtracting the bias to

form the intermediate exponent. If the intermediate

exponent < 0 then it‟s an underflow that can never
be compensated; if the intermediate exponent= 0 then

it‟s an underflow that may be compensated during

normalization by adding 1 to it. When an overflow

occurs an overflow flag signal goes high and the

result turns to ±Infinity .When an underflow occurs

an underflow flag signal goes high and the result

turns to ±Zero.

6 Pipelining the multiplier
In order to enhance the performance of the

multiplier, three pipelining stages are used to divide

the critical path thus increasing the maximum
operating frequency of the multiplier. The pipelining

stages are imbedded at the following locations:

1.In the middle of the significand multiplier, and in

the middle of the exponent adder (before the

bias subtraction).

2.After the significand multiplier, and after the

exponent adder.

3.At the floating point multiplier outputs (sign,

exponent and mantissa bits).Figure 3 shows the

pipelining stages as dotted lines.

Three pipelining stages mean that there is latency in
the output by three clocks.

Fig3: Floating point multiplier with pipelined

stages

V. COMPARISONS AND VHDL

SIMULATION
First the VHDL simulation of two

multipliers is considered. The VHDL code for both

multipliers, using a fast carry look-ahead adder are

generated. The multiplier uses 24-bit values. The

worst case was applied to the two multipliers, where

the gate delay is assumed to be 5ns. The array

multiplier has a delay of 28.713 ns with a total of

23.58 mW power consumption. The FP multiplier

using modified booth encoder multiplier has provided
a delay of 26.990ns with 23.6 mW of power

consumption. The whole multiplier was tested against

the Xilinx floating point multiplier core generated by

Xilinx coregen. Xilinx coregen was customized to

have two flags to indicate overflow and underflow ,

and to have a maximum latency of three cycles.

Xilinx core implements the “round to nearest “

rounding mode. A test-bench is used to generate the

stimulus and applies it to the implemented floating

point multiplier and to the Xilinx core then compares

the result .The floating point multiplier was also
checked using precision synthesis tool targeted to

XC3S1500-5FG456 Spartan-3 device.

VI. CONCLUSION AND FUTURE

WORK
The Floating point unit is designed. The

design is done in such a way that the floating point
unit can be effectively interfaced with any processor

that is either 32 bit or 64 bit. The architectures that

are used in the design are selected based on careful

analysis considering the three parameters, speed, area

and power consumption. The FP unit may extended

to quadruple precision format for more advanced and

scientific computations. As an attempt to develop,

IEEE 754 compatible floating point unit algorithm

and architecture level optimization techniques for low

power high-speed multiplier design, techniques

presented in this article. There are several future
research directions are possible as follows:

One possible direction is radix higher-than-4

recoding. Only radix-4 recoding is considered in this

article as it is a simple and popular choice. Higher-

radix recoding further reduces the number of PPs and

thus has the potential of power saving. In order to

enhance the performance, higher order compressors

like 7:2, 9:2 can be used to accumulate the partial

products. Deep level pipeline architecture can be used

for speed improvements. Multiplication intensive

applications, such as DSP or graphics, could benefit

significantly from several high performance
multipliers on the same chip. A single very high

throughput multiplier, or several multipliers working

in parallel on the same chip, could open up new

possibilities such as single chip video signal

processors.

REFERENCES
[1] Amine Bermark, Guixuan Liang and

Qingzheng, “A High-speed 32-bit Signed/
Unsigned Pipelined Multiplier”, Department

of Electronics and Computer Engineering,

Honkong University of Science and

Technology, Hong Kong, China.

[2] Cang-YuanGuo, Jiun-Ping Wang and

Shiann-Rong Kuang, Member IEEE

“Modified Booth Multipliers with Regular

Partial Product Array”, IEEE Transactions

on Circuits and Systems (2009).

[3] Carl Hamacher, Zvonko Vranesic and

Safwat Zaky, “Computer Organization”,
Fifth edition.

[4] Chris Babb, Jeff Blank, Ivan Castellanos and

John Moskal, “Floating Point Multiplier”,

ECE 587.

Subitha. M. B Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.276-280

www.ijera.com 280 | P a g e

[5] Michael Doan and Mounir Bohsali,

“Rectangular Styled Wallace Tree

Multiplier”.

[6] Pouya Asadi, and Keivan Navi, “A new low

power 32×32- bit multiplier”, World

Applied Sciences Journal 2 (4): 341-347,
2007

[7] Purushottam D. Chidgupkar, and Mangesh

T. Karad, “The implementation of

algorithms in digital signal processing”,

Global J. of Engineering Education, vol.8,

no.2 © 2004 UICEE Published in Australia.

[8] Michael Andrew Lia, “Arithmetic units for

high performance processors”, Thesis for

degree of Master of Science, University of

California, 2002.

[9] Soojin Kim, and Kyeongsoon Cho,

“Design of high-speed modified Booth
multipliers operating at GHz ranges”, World

Academy of Science, Engineering and

Technology, 2010.

[10] Rabey, Nikolic, and Chandrasekhran,

“Digital Integrated Circuits: A Design

Perspective”, 2nd Edition, Prentice Hall, pp.

586-594, 2003.

[11] Roy, Kaushik, Yeo, and Kiat-Seng, “Low

voltage Low-power VLSI Subsystems”,

McGraw-Hill, pp.124-141.

[12] S S Manvi,L Rajesh /V Joshi and Prashant.
“An FPGA based Implementation of

Floating-point Multiplier “International

Conference on Computing and Control

Engineering (ICCCE 2012), 12 & 13 April,

2012 .

Biographies
SUBITHA M B received the B.TECH. degree in

Electronics & Communication Engineering from the
CUSAT University Cochin Kerala, in 2009, and the

M.E. degree in Electronics & Communication

Engineering from the ANNA University Chennai ,

Tamil Nadu, in 2013.Currently working as an

assistant Professor of Electronics & Communication

Engineering at Kannur University Kerala. Teaching

and research areas include floating point unit, control

systems, and embedded system design.

