
R. Senthilkumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.339-342

www.ijera.com 339 | P a g e

Enhancement of Information Retrieval in Distributed Systems

R.Senthilkumar
1
, Dr. M. Ramakrishnan

2

Research Scholar
1
, Professor & Head in IT 2

Anna university
1
, Velammal Engineering College2

Abstract:
The distributed system enables multiple, simultaneous connections between clients and Inquery servers. The

different components of the system communicate using a local area network. Each component may reside on a

different host and operates independently of the others. In this section, we describe the functionality and

interaction between the clients, the connection server, and the Inquery servers. The clients are lightweight

processes that provide a user interface to the retrieval system. Clients interact with the distributed IR system by

connecting to the connection server. The clients initiate all work in the system, but they perform very little

computation. The clients can issue the entire range of IR commands but, in this paper, we focus on inquery,

document retrieval commands and query evaluation measurements. A client sends query commands to the

connection server.

Keywords : Simulation model, Query retrieval measurements, Document retrieval measurements, Distributed

retrieval.

I. Introduction

A query command consists of a set of words

or phrases (terms). The command either specifies the

list of Inquery servers to search or the client allows the

connection server to determine the appropriate

collections to search. Clients may also retrieve

complete documents by sending a document retrieval

command to the connection server. The command

consists of a document identifier and collection

identifier. In response, the connection server returns

the complete text of the document from the appropriate

Inquery server. A client issues a command and waits
for the connection server to return the results before it

issues another command. Users issue queries and

document commands. The clients and Inquery servers

communicate via the connection server. The

connection server is a lightweight process that keeps

track of all the Inquery servers, outstanding client

requests, and organizes responses from Inquery

servers. The connection server continuously polls for

incoming messages from clients and Inquery servers.

The connection server handles outstanding requests

from multiple clients. A client sends a command to the
connection server which forwards it to the appropriate

Inquery servers. When the connection server receives

an answer from an Inquery server, it forwards the next

command on the corresponding queue to the Inquery

server. The connection server maintains intermediate

results for commands specifying multiple Inquery

servers. When Inquery servers return results, the

connection server merges them with other results.

After all the Inquery servers involved in a command

return results, the connection server sends a final result

to the client. Only query and summary commands may

specify multiple Inquery servers. For a query

command, each Inquery server sends its top n

responses back to the connection server. The

connection server maintains a sorted list of the overall
top n entries until all the Inquery servers respond. The

connection server merges new results with the existing

sorted list. The Inquery server uses the Inquery

retrieval engine to provide IR services such as query

evaluation and document retrieval. Inquery is a

probabilistic retrieval model that is based upon a

Bayesian inference network .Inquery accepts natural

language or structured queries. Internally, the system

stores text collections using an inverted file

II. Simulation Model
We present a simulation model for exploring

distributed IR system architectures. Simulation

techniques provide an effective and flexible platform

for analyzing large and complex distributed systems.

We can quickly change the system configuration, run

experiments, and analyze results without making

numerous changes to large amounts of code.

Furthermore, simulation models allow us to easily

create very 6 large systems and examine their
performance in a controlled environment fig.1. Our

simulation model is simple, yet contains enough details

to accurately represent the important features of the

system. We model the clients, Inquery servers, and

connection servers as different processes. Processes

simulate the activities of the real system by requesting

services from resources. The simulator is driven by

empirical timing measurements obtained from our

prototype. Our technique for designing an environment

for studying distributed information retrieval

architectures [2]. A distributed object-oriented

database system while our work focuses on IR systems

RESEARCH ARTICLE OPEN ACCESS

R. Senthilkumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.339-342

www.ijera.com 340 | P a g e

using simple command. To accurately model an IR

system, we analyze the prototype of the distributed

Inquery system.

III. Query Evaluation Measurements

The simulator uses a simple, yet accurate

model to represent query evaluation time. Based upon

our measurements on Inquery using our query sets,

evaluation time is very strongly related to the number

of terms per query and the frequency of each of the

terms. Our query evaluation model is a function of the

number of terms per query and the frequency of the

individual query terms plus a small overhead where n

is the number of terms in the query and term I is the

term[2] ,[3]. We model eval term time as an increasing
linear function of the term frequency.

IV. Document Retrieval Measurements
We measure Inquery to determine the amount

of time it takes to retrieve a document. For our text

collections, the retrieval time is variable and there is

not a strong correlation between document size and

retrieval time. The low correlation is due to the size of

the documents in our text collections which are not
very large so retrieval occurs very quickly. In our

collections, the average size of a document in the

TIPSTER 1, Congressional Record, and the CACM is

2.3 KB, 11.7 KB, and 0.5 KB, respectively. The

simulator represents the document retrieval time for an

Inquery server as a constant value, 0.31seconds, which

is the average document retrieval time for 2000

randomly selected documents from the TIPSTER 1

collection. The connection server time consists of two

values, the processing time for handling a message and

the time to merge results. We obtain the message

handling time by measuring the prototype connection
server. When the connection server receives a message

from either a client or Inquery server, the simulator

uses a constant value, 0.1 CPU seconds, to represent

the message processing time. The time to merge query

results depends upon the number of answers an

Inquery server returns.

We represent network time as sender

overhead, receiver overhead, and network latency. The

sender and receiver overhead is the CPU processing

time for adding and removing a message from the

network. The network latency is the amount of time
the message spends on the network itself. These times

depend upon the size of the message and the

bandwidth of the network.

V. Distributed Retrieval
In a multi-server distributed text retrieval

system, there are several independent mono-servers, or

librarians. Each is responsible for some component of

the collection, for which it maintains an index,
evaluates queries, and fetches documents. Separate

from the librarians are one or more receptionists,

which interact with the users of the system and

communicate user requests to the librarians. Each

receptionist may be resident on the same physical

machine as one or more librarians, or may be quite

separate. In the models of computation we consider,

the receptionists may have available global

information about each librarian, such as the total

number of documents or perhaps a partial (or even full)
copy of its index information. A receptionist is

essential to ranked query evaluation because it is

necessary to collate the results of ranking each sub

collection.

In this model, queries evaluation is as follows.

1. A user lodges a query with a receptionist or users

[3], which examines any global information it has

access to and passes the query, with perhaps some

of the global information, to a selected set of

librarians.

2. Each selected librarian evaluates the query and,

making use of any transmitted global information
and its own local information, determines a

ranking for the local collection a list of document

identifiers and similarity scores.

3. Each ranking is returned to the receptionist, which

waits for all the nominated librarians to respond

and then merges their rankings to obtain a global

collection wide ranking and identify the top k

documents. During the merging process the

receptionist may again make use of global

information.

4. Each selected librarian is given a list of document
identifiers within its domain and is requested to

return the text of the corresponding documents to

the receptionist for display to the user. As an

optional initial step, the receptionist may converse

with the librarians to establish parameters. In this

generic description of the model we have specified

neither how the rankings are merged nor the

internal structure of the librarians and

receptionists.

Fig1: Architecture

Local Global

QUERY

DB

IR

Top K

Ranking

Evaluation

Rank list

1, 2...n

Overlay

Networ

k

CPU

Scheduling

LIB, LIB2……………………………………………..LIBn

S

el

ec

ti

o

n

Recipient
s

R. Senthilkumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.339-342

www.ijera.com 341 | P a g e

To evaluate performance we need to consider

three factors. One is effectiveness. Another is response

time the delay between issuing the query and return of

answers, which depends on the amount of processing

involved, the volume of network track, and the number

of handshaking steps used. The last factor is use of
resources CPU time at the receptionist and librarians,

volume of data needed by librarians and transmitted

over the network, and disk space required by the

receptionist. Response time and resource usage are

linked, but only loosely. In particular, response time

measures the minimum delay a user will experience,

even on a lightly loaded system, whereas resource use

is an indication of the all queries throughput possible

with the system when it is operating at capacity, with

multiple users and queries competing for resources[4].

A key facility that we strived for was transparency; it

should be possible for any set of collections to be
queried as a single database. We require that each of

the sub collections can be accessed without recourse to

any central information and that any sub collection can

be a logical component of databases managed by

several divergent receptionists.

In Central Nothing (CN) system the only

global information maintained by the receptionist is a

list of librarians. When a query is entered every

librarian is given the query and prepares a ranking of

its k best" documents, as determined by its index and

its values for parameters ft and N. When these lists
have all been returned the receptionist merges them,

accepting at face value all supplied similarity value sit

has no basis for per turbing either the numeric values

or the ordering. For S sub collections the result is a list

of k S similarities. The top k are then extracted, and a

document request list sent to each librarian. Some of

the librarians may not be required in this second phase.

The main advantage of CN operation is that no global

information is required; the receptionist is free to

choose any subset of librarians. The disadvantage is

that much of the power of a ranked query is potentially

lost. For example, a term might be common in one sub
collection and be assigned a minimal weight, but in the

context of the collection as a whole that term might be

rare, and documents from the sub collection important

thus the ranking will be poor. It might also be that

effectiveness is dramatically compromised by the use

of sub collection weights. Finally, it is possible that

unnecessary calculation is performed the receptionist

has no basis for excluding any sub collection, and so

every sub collection processes the query in full. In

principle the receptionist could pass the query terms to

the librarians and the librarians then return k
documents immediately, without the intermediate step

of passing back document identifiers and similarities,

much as for Boolean queries. Transmission of k S

rather than k documents would severely degrade

performance.

In a Central Vocabulary (or CV)[1] system

the global information stored by the receptionist is the

vocabularies of the sub collections, which allows the

receptionist to determine for each term a collection-

wide weight. This should allow better ranking, but the

preprocessing stage eliminates the spur-of the-moment

choice of sub collections possible in a CN scheme, and

storage is required for the collection-wide vocabulary.

Query processing is similar to that in a CN system,
with the crucial difference that each query term

transmitted to the librarians is accompanied by a

weight to be used. In our implementation, the

librarians still calculate a k-ranking, but the similarity

scores computed by the various librarians are exactly

the same as for the mono-server alternative. The

formation of a global vocabulary means that

collections can be completely avoided if they contain

none or few of the query terms.

In a Central Index (CI) system, the

receptionist or users has full access to the indexes of

the sub collections, so it can perform all the index
processing and request from each librarian the

documents required to make a global ranking of length

k. In this case the preprocessing involves merging the

sub collection vocabularies and indexes, and the need

for storage space on the part of the receptionist is

relatively large. To save some of the central index

space the receptionist can collect adjacent documents

into groups and then index the groups as if they were

single documents space is saved because the number

of groups containing each term is less than the number

of documents, reducing index size. Compared with a
CV system[8], the advantage is that each librarian must

consult only a fraction of its index. The potential

disadvantage is that highly relevant documents that are

grouped with non-relevant documents may not be

retrieved. The performance questions we sought to

answer in our full implementation were the size of the

central index, the cost of processing the central index,

the extent to which the librarians could be protected

from redundant computation, and how overall costs

compare to other approaches.

VI. Conclusions
We have discussed three alternative

methodologies for practical distributed information

retrieval, each based on a common architecture in

which sub collections are managed independently by

librarians and queries are brokered to librarians by

Users. The methodologies are differentiated by the

kind of data that must be held by the receptionist,

varying from no more than a list of valid sub

collections (central nothing) to a merged vocabulary
(central vocabulary) to a full index of stored data

(central index).

References
[1]. Bailey and Hawking, A parallel architecture

for query processing over a terabyte of text.

Technical Report TR-CS-The Australian

National University.

[2]. Bell. C, A. Moat, I.H. Witten, and J. Zobel.
The MG retrieval system: compressing for

R. Senthilkumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.339-342

www.ijera.com 342 | P a g e

space and speed. Communications of the

ACM, April 2005.

[3]. Brumfield, J. A., Miller, J. L., and Chou, H.-

T. Performance modeling of distributed

object-oriented database systems

 [4]. B. Cahoon and K.S. McKinley. Performance
evaluation of a distributed architecture for

information retrieval. In H.-Development in

Information Retrieval, Zurich, Switzerland.

[5]. Callan J.P. ., Z. Lu, and W.B. Croft.

Searching distributed collections with

inference networks. In E.A. Fox, P.

Ingwerson, and R. Fidel, editors, Proc. ACM-

SIGIR International Conference on Research

and Development in Information Retrieval,

Seattle, Washington.

[6] N. Craswell, “Methods for Distributed

Information Retrieval,” Intl. Conf. (INACT)
Proce..

[7]. Harman, D.W. The First Text REtrieval Conf.

Information Processing and Management,

July-Aug. 1999.

[8] D. Hawking and P. Thistlewaite, “Methods

for Information Server Selection,” ACM

Trans. Information Systems (TOIS),

[9] R.M. Losee and L.A.H. Paris, “Measuring

Search Engine Quality and Query Difficulty:

Ranking with Target and Freestyle,” J. Am.

Soc. for Information Science, , 1999.

