
 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2007 | P a g e

Detecting Intrusions in Multitier Web Applications

Nita Prakash Saware
1
, Manish Umale

2
, Nidhi Maheswarkar

3

1, 2 (Department of Computer Engineering Lokmanya Tilak College of Engineering Koparkhairane, Mumbai,
3(Department of Computer Engineering, Dhyanganga College of Engineering Narhe, Pune

ABSTRACT
Network attacks are increased in number

and severity over the past few years, intrusion

detection system (IDS) is increasingly becoming a

critical component to secure the network.

Intrusion detection is the process of monitoring

and analyzing the events occurring in a computer

system in order to detect signs of security

problems. Intrusion Detection Systems has the

additional job of triggering alarms toward this

security problem and some of it automated in the

role of triggering or doing an action on behalf of

the network administrator. The goal of intrusion

detection system (IDS) is to provide another layer

of defense against malicious (or unauthorized)

uses of computer systems by sensing a misuse or a

breach of a security policy and alerting operators

to an ongoing attack.

 In this paper, we have illustrated

difficulties to implement IDS in multitier

architecture. Since it is difficult to implement

multiple IDS, We have introduced a new protocol-

Double Guard. Double Guard, is an IDS system

that models the network behavior of user sessions

across both the front-end web server and the

back-end database. It monitors both the web and

database request and identifies the attacks like

SQL injection attack which independent IDS

cannot do. Double Guard, is an IDS system that

models the network behavior of user sessions

across both the front-end web server and the

back-end database. It monitors both web and

database request and identifies the attacks like

SQL injection attack which an independent IDS

cannot do. The limitations of multitier IDS are its

training sessions and functionality coverage

problem. We have implemented Double Guard

using an Apache web server with MySQL and

lightweight virtualization. It uses the concept of

causal mapping and assigns each client session to

container. Each container is associated with an

independent container ID and hence it enhances

the security. The concept of container is a

lightweight virtualization concept that provides a

means of tracking the information flow from the

web server to the database server for each session.

For each client an virtual web server is created.

Keywords - Intrusion Detection System, Anomaly

Detection, Web Server, Attacks, SQLIA,

Classification of SQLIA.

I. INTRODUCTION
With the tremendous growth of internet and

interconnections among computer systems, network

security is becoming a major challenge. Security is

the process of detecting and preventing to your

system or/and computer from unauthorized users.

Detection helps you to determine whether or not

someone attempted to break into your system and if

they were successful what they may have done.
Whereas prevention measures help you to stop or

block unauthorized users, from accessing any part of

your system.

There are various software available for

security but they lack some degree of intelligence

when it comes to observing, recognizing and

identifying attack signatures that may be present in

traffic or in case if there is a backdoor or hole in the

infrastructure and that‟s where intrusion detection

comes in. IDS categorized into mainly in three types

on the basis of kind of activities, system, traffic or
behavior they monitor which is host-based, network-

based and application-based. Here we are focusing on

network intrusion detection system. A network

Intrusion Detection System can be classified into two

types: anomaly detection and misuse detection.

Anomaly detection first requires the IDS to define

and characterize the correct and acceptable static

form and dynamic behavior of the system, which can

then be used to detect abnormal changes or

anomalous behaviors. The boundary between

acceptable and anomalous forms of stored code and
data is precisely definable. Behavior models are built

by performing a statistical analysis on historical data

or by using rule-based approaches to specify behavior

patterns. An anomaly detector then compares actual

usage patterns against established models to identify

abnormal events. Our detection approach belongs to

anomaly detection, and we depend on a training

phase to build the correct model.

In this paper, we have showed the

difficulties to implement IDS in multitier

architecture. Since it is difficult to implement

multiple IDS, We have introduced a new protocol-
Double guard. A multi-tier architecture (often

referred to as n-tier architecture) is a client–server

architecture in which presentation, application

processing, and data management functions are

logically separated. The most widespread use of

multi-tier architecture is the three-tier architecture.

Three-tier architectures typically comprise

http://en.wikipedia.org/wiki/Client%E2%80%93server_architecture
http://en.wikipedia.org/wiki/Client%E2%80%93server_architecture

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2008 | P a g e

a presentation tier, a business or data access tier, and

a data tier

Double Guard, is an IDS system that models

the network behavior of user sessions across both the

front-end web server and the back-end database. It

monitors both the web and database request and

identifies the attacks like SQL injection attack which
independent IDS cannot do. The limitation of

multitier IDS is its training sessions and functionality

coverage problem. We have implemented Double

Guard using an Apache web server with MySQL and

lightweight virtualization. It uses the concept of

causal mapping and assigns each client session to

container. Each container is associated with an

independent container ID and hence it enhances the

security. The concept of container is a lightweight

virtualization concept that provides a means of

tracking the information flow from the web server to

the database server for each session. For each client a
virtual web server is created.

This paper emphasizes on various aspects of SQL

Inspection. Section II shows prevention techniques

and operations in the previous work done in this

field. Section III contains proposed solution using

tokenization approach as well as conclusion part of

this paper and future research directions to prevent

SQLIA.

II. BACKGROUND AND RELATED WORK

The attacker‟s objective for using the

injection technique is lies in gaining control over the

application database. In a web based application

environment, most of the web based applications,

social web sites, banking websites, online shopping

websites works on the principle of single entry point

authentication which requires user identity and

password. A user is identified by the system based on

his identity.
This process of validation based on user

name and password, is referred as authentication.

Web architecture illustrated in Fig 1.showes general

entry point authentication process. In general client

send a HTTP request to the web server and web

server in turn send it to the database layer. Database

end contains relational tables so queries will be

proceeding and result will be send to the web server.

So entire process is database driven and each

database contains many tables that are why SQLIA

can be easily possible at this level.

SQL Injection is a basic attack used for
mainly two intentions: first to gain unauthorized

access to a database and second to retrieve

information from database. Function based SQL

Injection attacks are most important to notice because

these attacks do not require knowledge of the

application and can be easily automated [6].

Oracle has generally aware well against

SQL Injection attacks as there is are multiple SQL

statements that support (SQL server and Postages

SQL), a no. of executive statements (SQL servers)

and no. of INTO OUTFILE functions (MYSQL) [7].

Also use of blind variables in Oracle environments

for performance reasons provides strong protections

against SQL Injection attack.

There are two types of SQLIA detection:

Static approach: This approach is also known as

pre-generating approach. Programmers follow some

guidelines for SQLIA detection during web

application development. An effective validity

checking mechanism for the input variable data is
also requires for the pre-generated method of

detecting SQLIA.

Dynamic Approach: This approach is also known as

post-generated approach. Post-generated technique

are useful for analysis of dynamic or runtime SQL

query, generated with user input data by a web

application. Detection techniques under this post-

generated category executes before posting a query to

the database server [2, 7].

Classification of SQLIA: SQLIA can be classified

into five categories:

 Bypass Authentication

 Unauthorized Knowledge of Database

 Unauthorized Remote Execution of Procedure

 Injected Additional Query

 Injected Union Query

Bypass Authentication: It is already discussed in

Section I. Researchers have proved that query

injection can‟t be applied without using space, single

quotes or double dashes (--). In bypass

authentication, intruder passes the query in such a
way which is syntactically true and access the

unauthorized data [8]. For example:

SELECT SALARY_INFO from employee where

username=‟ or 1=1 - - „and password=”;

This SQL statement will be passed because

1=1is always true and - - which is used for

Figure 1.Web Architecture

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2009 | P a g e

comments, when used before any statement, the

statement is ignored.

So the result of this query allows intruder to access

into user with its privileges in the database [3].

Unauthorized Knowledge of Database: In this type

of attack, intruder injects a query which causes a

syntax, or logical error into the database. The result
of incorrect query is shown in the form of error

message generated by the database and in many

database error messages, it contains some

information regarding database and intruder can use

these details. This type of SQLIA is as follows:

SELECT SLARY_INFO from employee where

username = „rahul‟ and password =convert(select

host from host);

This query is logically and syntactically incorrect.

The error message can display some information

regarding database. Even some error messages

display the table name also.

Unauthorized Remote Execution of Procedure:
SQLIA of this type performs a task and executes the

procedures for which they are not authorized. The

intruder can access the system and perform remote

execution of procedure by injecting queries.

For example:

SELECT SALARY_INFO from employee where

username=‟‟; SHUTDOWN; and password =‟‟;

In above query, only SHUTDOWN operation is

performed which shuts down the database [2].

Injected Additional Query: When an additional
query is injected with main query and if main query

generates Null value, even though the second query

will take place and the additional query will harm the

database. For example:

SELECT SALARY_INFO from employee where

username=‟rahul‟ and password=‟‟; drop table user‟;

First query generates Null because the space is not

present between „and‟ and password, but the system

executes the second query and if the given table

present in database, it will be dropped.

Injected Union Query: In this type of attack, the

intruder injects a query which contains set operators.
In these queries, the main query generates Null value

as a result but attached set operators data from

database. For example:

SELECT SALARY_INFO from employee where

username=‟‟ and password=‟‟ UNION SELECT

SALARY_INFO from employee where

emp_id=‟10125‟;

In above query, the first part of query generated Null

value but it allows the intruder to access the salary

information of a user having id 10125.

Major Elements of SQLIA:
It is shown in various research papers that

SQLIA can‟t be performed without using space,

single quotes and/or double dashes. These are the

major elements of SQLIA. SQLIA is occurred when

input from a user includes SQL keywords, so that the

dynamically generated SQL query changes the

intended function of the SQL query in the

application.

 When user input types a number, there is no need to

use single quotes in the query. In this case SQL

Injection is injected by using space. This query can

be done on original query.

Original Query: SELECT * from employee where
emp_id=10125;

The injection query can be of this form using space:

SELECT * from employee where emp_id=10125 or

1=1;

The injection query shown below is a query

which uses single quotes:

SELECT*from employee where

emp_name=‟rahul‟or1=1;

In this case if an employee with name rahul is present

in database, information is retrieved. But if the name

is not present, even then the query is executed

becausethestatement1=1 is always true.
The injection query may contain double dashes (--)

SELECT * from employee where

emp_name=‟rahul‟;--„and SALARY_INFO>25000;

SQLIA is a prominent topic and lots of research

work has been done for the detection and prevention

of SQLIA. In [3] the author proposes the TransSQL

model. In this model author proposes a model for

SQLIA prevention.

TransSQL is server side application so, it does not

changes legacy of web application. This model uses

the idea of database duplication and run time
monitoring. The proposed model is fully automated

and the result shows the effectiveness of system.

TransSQL propose to use two data bases, one is

original relational database and another (LDAP) is

copy of the first one, But data is arranged in

hierarchical form. When a query is paused by the

user, the system checks if the query contains the

injection or not. The queries inserted in both original

database and LDAP. If result of both databases is

same, it shows the input query is free from injection,

but if results are different, it means, the query

contains injection. So the system shows the result as
Null.

The major shortcoming of this models that it

is not applicable for injection queries which contain

instances, alias, UNION ad UNIONALL [11]. In [9],

tokenization method is propose, which is efficient but

as well as query with injection. It is not possible for

all queries that their origin al query is a ready stored.

In [2], the author proposes rule-based detection

technique, which is based on classification task. For

a particular query, rule dictionary is generated and

query is replaced with these rules. If another query is
present, the rules are applied in new entry and using

classification approach, identify that new query

contains the SQL injection or not.[2] proposes, two

levels of authentication: SQL authentication and

XML authentication, and every query is passed

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2010 | P a g e

though both systems for checking and preventing

against SQLIA.

III. PROPOSED MODEL

In the title propose Double Guard which is

used to detect attacks in multitier web services. In

Double Guard, the new container-based web server

architecture enables user to separate the different

information flows by each session. This provides a
means of tracking the information flow from the web

server to the database server for each session. This

approach also does not require for user to analyze the

source code or know the application logic. Double

Guard container architecture is based on OpenVZ and

lightweight virtualization. Virtualization indicates

that each client uses its own virtual web server i.e.

each client is processed by a different web server.

Thus, highly secure system is provided as each client

process is taken as separate session.

This system uses lightweight process
containers, referred to as “containers,” as ephemeral,

disposable servers for client sessions. It is possible to

initialize thousands of containers on a single physical

machine, and these virtualized containers can be

discarded, reverted, or quickly reinitialized to serve

new sessions. A single physical web server runs

many containers, each one an exact copy of the

original web server. This approach dynamically

generates new containers and recycles used ones. As

a result, a single physical server can run continuously

and serve all web requests. However, from a logical

perspective, each session is assigned to a dedicated
web server and isolated from other sessions.

Components of proposed system:

SQL Attack Module:

 In this module, we have analyzed the four

attacks that generally takes place. These attacks are

Hijack Future Session Attack, Privilege Escalation

Attack, and Injection Attack Direct DB Attack. In

Privilege Escalation Attack, the attacker login as a

normal user and triggers admin queries so as to
obtain an administrator‟s data. Hijack Future Session

Attack is class of attacks is mainly aimed at the web

server side. An attacker usually takes over the web

server and therefore hijacks all subsequent legitimate

user sessions to launch Attacks. SQL injections do

not require compromising the web server. Attackers

can use existing vulnerabilities in the web server

logic to inject the data or string content that contains

the exploits and then use the web server to relay these

exploits to attack the back-end database.

In a Direct DB attack, an attacker can

bypass the web server or firewalls and connect
directly to the database. Here we have shown how the

attack takes place. Initially the attacker passes a

query and login. It gets all the data in the database

and retrieves it. If the same query he/she types in the

backend sql server, can retrieve all information about

the Admin database. So this way, it is shown that

how an attack takes place in a system.

Prevention Module:

 After the server is activated, each client is
initiated to use the service. Each client has its own

web server i.e. multiple virtual web servers are

created in a single system using same service. So

each client access through a virtual web server, in

this way we can create multiple instance of server.

Hence client can access a service through the web

server which indicates the basic concept of Double

guard architecture. Once client is initiated, it tries to

login to use the service. Here we depict the

prevention provided against the attacker. The four

attacks has been identified and shown how to

overcome it. Here only authorized user can login and
use the blog. If an attacker login, he/she is identified

and blocked. No further process can be done by them.

Due to the use of multiple web server sometimes

attacker get confused about the original server and

instance of the server.

Blog Creation Module:

In this module, we have showed both Static

and dynamic website .Initially the clients logon to his

blog. After identifying him as an authenticated user,

he can visit the blog. The Home page is an dynamic
site as it can be edited and changed. The client can

add his profile name or do any changes to his blog.

After you click preview, you can see the static site as

all contents are static. Changes cannot be made in

that site. In the blog you can type the content you

want to post and do post. It is like all blog pages

where user can post his blog. After all work has done

the user can logout from the site which guarantee his

security.

Traffic Capture Analysis Module:

This module shows the traffic analysis
captured between the client and web server and also

between the server and database. It provides the

overall information regarding the total packet sent,

length of the packet and time of receiving of packets.

It provides details about the destination IP, source IP

and captured time of packet. It also give information

about the Ethernet frames, the protocol used i.e.

TCPIP etc and details about HTTP protocol. It also

provide graphical display of various OSI layers like

Network layer, Application layer etc. That is it

provide visual scenario of the usage levels of each
layer of OSI layer. Using this intruder can be

detected as packet size and its all information is

available.

Intrusion Detection Module:

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2011 | P a g e

 In this module, Intruder is detected and his

activities have been noted. Generally, using the

information about the capture time of each packet,

last sent packet and its length can be identified. So

analyzing this overall information an intruder can be

detected. Usually an intruder login and does all his

activities. This is stored in the database and can be
used to detect the abnormal usage. Subsequent

request can be noted and an intruder can be

identified. Based on the usage, an Network layer is

depicted. It shows the graphical usage pattern.

Advantages:

 Double guard provides high security since the

usage of session for each subsequent web request.

A session is dedicated to container which refer to

the disposable server and a container ID is

provided for each client.

 If any one session is attacked by intruder, others
remain unaffected. It is very useful to identify

attacks like session-hijacking, SQL injection attack

etc.

 It not only provides security but also provides

isolated information flow.

 It does not depend on time basis and hence provide

a complete secure system. It provides an alert

system which operates on multiple feeds of input.

 It does not require any input validation as it looks

for the structure of request not on the input

parameter.

SQLIA is a server type of web vulnerability,

which impacts badly on web applications. In this

section, a novel model for SQLIA prevention is

proposed. As mentioned in previous section, several

models are proposed for prevention of SQLIA, but

they are not applicable for all type of injection

attacks. SQLIA prevention via double authentication

through tokenization is an approach to control

SQLIA. In this paper we propose a new model names

as Double Guard. In this model the system will
identify the input. The input may be of two types it

may be a request for certain service or information

and it may be accepted or rejected by the system, and

another one is Query which is generated to find out

some specific information if query is syntactically

correct it will display information, even then none of

that type of information store in database it will

display this information also the system store.

In this system we have implemented a

prototype, Double guard which is used to detect

attacks in a multitier architecture. This is container-

based web architecture that not only fosters the
profiling of causal mapping, but it also provides an

isolation that prevents future session-hijacking.

This is implemented using light weight

virtualization environment that ran many copies of

the web server instances in different containers so

that each one was isolated from the rest. Each user‟s

web session is assigned to a dedicated container and

an isolated virtual computing environment is created.

For websites that do not permit content modification

from users, there is a direct causal relationship

between the requests received by the front-end web

server and those generated for the database back end.

//Algorithm for Double Guard

Step 1: Identify the input type of HTTP request
whether it is a query or a request.

Step 2: Store the input in hash table as per their type

AQ for query and for request AR.

Step 3: The key for hash table entry will be set as the

input itself.

Step 4: Forward AQ and AR to virtual server to

validate.

Step 5: If attack identified then virtual system
automatically terminate the HTTP request.

Step 6: Else HTTP request is forwarded to the

original server.

Step 7: Display information.

Step 8: Exit.

For modeling a static website, we have used

Static Model Building Algorithm. This algorithm

takes the input of training data set and builds the

mapping model for static websites.

For each unique HTTP request and database

query, the algorithm assigns a hash table entry, the

key of the entry is the request or query itself, and the

value of the hash entry is AR for the request or AQ

for the query, respectively. The algorithm generates

the mapping model by considering all three mapping

patterns i.e. Deterministic Mapping, Empty Query

Set, No Matched Request pattern. Figure 3 (a) shows
the proposed architecture and 3 (b) shows snapshots

of Double guard by using above 7 essential steps.

Figure.2 Algorithm for Double Guard

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2012 | P a g e

IV. CHALLENGES

Intrusion detection systems aim at detecting

attacks against computer systems and networks or in

general, against information systems. Building IDS is

a complex task of knowledge engineering that

requires an elaborate infrastructure. There are various

challenges that IDS faced today and which need to

Figure.3 (a) Proposed Architecture

Figure.3 (b) Proposed Model Snapshots

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2013 | P a g e

concentrate while building IDS. The most common

are:

Denial-of-service attack:

Denial-of-service attacks are common and

fashionable these days. In denial-of-service attack,

attacker tries to prevent legitimate users from using a
service or shutting down a service owing to some

implementation vulnerability crashing the machine.

But today a new class of denial-of-service attacks has

appeared based on the generation of normal traffic.

An attacker subverts a number of machine then they

install a distributed denial-of-service tool on all these

machines, pointing it towards a single target.

All these machines will start sending

repeated requests to the target, which often collapses

under the load. The problem is that Intrusion-

detection cannot able to distinguishes them from real

or/and normal traffic.

Identification of the origin of attack:

Then the next problem with the Intrusion-

detection product is the identification of the origin of

attack. Because there are many software‟s/toolkits

available on the internet which include facilities for

disguising the user‟s identity such as IP spoofing etc

and TCP/IP does not allow reliable identification of

the source of packet which makes Intrusion detection

system very difficult to identify the source of attack.

Domain Name System:

The Domain Name System (DNS) is a

protocol used to associate machine names with IP

addresses. When a machine wants to reach another

one of which it knows only the name, it performs a

DNS search by requesting the IP address

corresponding to the name. This request goes to a

local DNS server. If the local DNS server does not

know the association, it in turns asks other servers,

“secondary DNS servers”, with more general

knowledge, up to the 13 root servers that have the

entire map of the Internet and can answer DNS
queries.

To avoid referring constantly to the root

servers, the secondary servers keep a cache of the

associations between hostnames and addresses. When

a request can be answered by data in the cache, the

secondary DNS server does not go further up the

chain. The DNS protocol also has a means to update

the cache, which can be exploited to poison the cache

of a secondary DNS server by associating a different

IP address with the same name. This will effectively

redirect all requests to a server to another machine
under the control of the attacker.

V. CONCLUSION

In this paper, we have presented an intrusion

detection system that builds models of normal

behavior for multitier web applications from both

front-end web (HTTP) requests and back-end

database (SQL) queries. In the previous approach we

have used independent IDS to provide alerts unlike

that now we have used, Double Guard which forms

container-based IDS with multiple input streams to

produce alerts. We have shown that such correlation
of input streams provides a better characterization of

the system for anomaly detection because the

intrusion sensor has a more precise normality model

that detects a wider range of threats.

We achieved this by isolating the flow of

information from each web server session with a

lightweight virtualization. Furthermore, we

quantified the detection accuracy of our approach

when we attempted to model static and dynamic web

requests with the back-end file system and database

queries. We have built a well-correlated model for

static websites, which our experiments proved to be
effective at detecting different types of attacks. It also

showed that this held true for dynamic requests

where both retrieval of information and updates to

the back-end database occur using the web server

front end.

When we deployed our prototype on a

system that employed Apache web server, a blog

application, and a MySQL back end, Double Guard

was able to identify a wide range of attacks with

minimal false positives which depended on the size

and coverage of the training sessions we used. In this
project we use TDT4 method to provide effective

summarization methods to extract the core parts of

detected topics, as well as graphic representation

methods to depict the relationships between the core

parts. Applied together, the two techniques, called

topic anatomy, can summarize essential information

about a topic in a structured manner. In future we can

retrieve information from tscan by using our voice

instead of typing text. The user can search through

voice; the system will recognize this voice and

provide essential information about a topic.

REFERENCES

[1] K. Bai, H. Wang, and P. Liu, “Towards Database

Firewalls,” Proc. Ann. IFIP WG 11.3 Working

Conf. Data and Applications Security (DBSec

‟05), 2005.

[2] B.I.A. Barry and H.A. Chan, “Syntax, and

Semantics-Base Signature Database f or Hybrid

Intrusion Detection Systems,” Security and

Comm. Networks, vol. 2, no. 6, pp. 457-475,

2009.

[3] D. Bates, A. Barth, and C. Jackson, “Regular

Expressions Considered Harmful in Client-Side

XSS Filters,” Proc. 19th Int‟l Conf. World Wide
Web, 2010.

 Nita Prakash Saware, Manish Umale, Nidhi Maheswarkar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.2007-2014

2014 | P a g e

[4] M. Christodorescu and S. Jha, “Static Analysis

of Executables to Detect Malicious Patterns,”

Proc. Conf. USENIX Security Symp.,2003.

[5] M. Cova, D. Balzarotti, V. Felmetsger, and G.

Vigna, “Swaddler: An Approach for the

Anomaly-Based Detection of State Violations in

Web Applications,” Proc. Int‟l Symp. Recent
Advances in Intrusion Detection (RAID ‟07),

2007.

[6] H. Debar, M. Dacier, and A. Wespi, “Towards a

Taxonomy of Intrusion- Detection Systems,”

Computer Networks, vol. 31, no. 9,pp. 805-822,

1999.

[7] Y. Hu and B. Panda, “A Data Mining Approach

for Database Intrusion Detection,” Proc. ACM

Symp. Applied Computing (SAC), H. Haddad,

A. Omicini, R.L. Wainwright, and L.M.

Liebrock, eds., 2004.

[8] R. Ezumalai, G. Aghila, “Combinatorial
Approach for Preventing SQL Injection

Attacks”, 2009 IEEE International Advance

Computing Conference (IACC 2009) Patiala,

India, 6-7 March 2009.

 [9] Asha. N, M. Varun Kumar, Vaidhyanathan. G

of Anomaly Based Character Distribution

Models in th,”Preventing SQL Injection

Attacks”, International Journal of Computer

Applications (0975 – 8887) Volume 52– No.13,

August 2012

[10] Mehdi Kiani, Andrew Clark and George ,
“Evaluation e Detection of SQL Injection

Attacks”.The Third International Conference on

Availability, Reliability and Security,0-7695-3102-

4/08, 2008 IEEE.

[11] V.Shanmughaneethi, C.EmilinShyni and

Dr.S.Swamynathan, “SBSQLID: Securing Web

Applications with Service Based SQL Injection

Detection” 2009 International Conference on

Advancesin Computing, Control, and

Telecommunication Technologies, 978-0-7695-

3915-7/09, 2009 IEEE

[12] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka,
Hiyoshi Kohoku-ku, Yokohama, Miho

Hishiyama, Yu Takahama, Kaigan Minato-ku,

“Sania: Syntactic and Semantic Analysis for

Automated Testing against SQL Injection” 23rd

Annual Computer Security Applications

Conference, 2007, 1063-9527/07, 2007 IEEE

[13] Prof (Dr.) Sushila, MadanSupriyaMadan,

“Shielding Against SQL Injection Attacks

Using ADMIRE Model”, 2009 First

International Conference on Computational

Intelligence, Communication Systems and
Networks, 978-0-7695-3743-6/09 2009 IEEE

[14] A S Yeole, B BMeshram, “Analysis of

Different Technique for Detection of SQL

Injection”, International Conference and

Workshop on Emerging Trends in Technology

(ICWET 2011) – TCET, Mumbai, India,

ICWET‟11, February 25–26, 2011, Mumbai,

Maharashtra, India. 2011 ACM.

[15] Ke Wei, M. Muthuprasanna, Suraj Kothari,

“Preventing SQL Injection Attacks in Stored

Procedures”.Proceedings of the 2006 Australian

Software Engineering Conference

(ASWEC‟06).
[16] Debasish Das, Utpal Sharma, D. K.

Bhattacharyya, “Rule based Detection of SQL

Injection Attack”, International Journal of

Computer Applications (0975 – 8887) Volume

43– No.19, April 2012.

[17] NTAGW ABIRA Lambert, KANG Song Lin,

“Use of Query Tokenization to detect and

prevent SQL Injection Attacks”, 978-1-4244-

5540-9/10/2010 IEEE.

[18] Kai-Xiang Zhang, Chia-Jun Lin, Shih-Jen

Chen, Yanling Hwang, Hao-Lun Huang, and

Fu-Hau Hsu, “TransSQL: A Translation and
Validation-based Solution for SQL-Injection

Attacks”, First International Conference on

Robot, Vision and Signal Processing, IEEE,

2011.

