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ABSTRACT 
In this paper we focus on the BCJR 

algorithm, and its prior estimate of the channel 

state information (CSI), In case of uncertainties 

during the estimation, overconfident posterior 

probability tends to mislead the performance of 

soft decoders. Our approach takes into 

consideration not only the uncertainty due to the 

noise in the channel, but also the uncertainty in 

the CSI estimate. Thus, we resort to a Bayesian 

approach for the computation of the APP. Hence, 

we also put forward an approximation for each 

symbol’s posterior, using the expectation 

propagation algorithm, which is optimal from the 

Kullback- Leibler divergence. View pointed yields 

an equalization with a complexity identical to the 

BCJR algorithm. This algorithm has the same 

complexity as the BCJR, exhibiting lower bit 

error rate at the out of the channel decoder than 

the standard BCJR that considers maximum 

likelihood (ML) to estimate the CSI. We also use a 

graphical model representation of the full 

posteriori which the proposed approximation can 

be readily understood. This proposed method 

exhibits a much better performance compared to 

the ML-BCJR when a LDPC decoder, which 

needs the exact posterior for each symbol to detect 

the incoming word and it is sensitive to a 

mismatch in those posterior estimates, for 

example, for QPSK modulation and a channel 

with three taps, we can expect gains over 0.5db 

with same computational complexity as the ML 

receiver. 

 

Keywords: IR filters, expectation propagation, 

LDPC coding, ML-BCJR equalization, QPSK 
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I. INTRODUTION 
Communication channels can be 

characterized by a linear finite impulsive response 

that either represents the dispersive nature of a 

physical media or the multiple paths of wireless 

communications [1]. This representation causes inter-

symbol interference (ISI) at the receiver end can 

impair the digital communication. The channel state  

information(CSI) is typically using pilots (a 

preamble) and a maximum likelihood (Ml) estimator. 

These preamble are typically start to reduce the  

 

transmission of non informative symbols, yielding in 

accurate CSI estimates. In the following we will refer 

to the BCJR equalizer with ML estimation of the 

channel as ML-BCJR. The ML-BCJR is the 

approximation to the app for each symbol because it 

does not include the uncertainty in the estimate. In 

accuracies in the APP estimates degrade the 

performance of modern channel LDPC decoders. 

Such as turo or low density parity checks 

codes[2][3].The channel decoder may fail to the 

correct transmitted codeword or may even fail to 

converge at all. 

In a previous work, we have show that 

accurate posterior probability estimates increase the 

performance of LDPC decoder[4],although that work 

focuses on nonlinear channel estimation. In the 

framework of turbo-receivers[5], some approaches 

can be found in the literature that incorporate there 

uncertainties in the iterative process of equalization 

and decoding. We find a proposal to estimate some 

parameters in a OFDM system to later include them 

in the decoding. For nonlinear channels we have 

shown in[4] that accurate APP estimates increase the 

performance of LDPC decoders. We propose a 

simple yet accurate approximation to the Bayesian 

solution that allows to recovers the Markova 

property. In this novels solution, the Bayesian 

framework is embedded into the BCJR algorithm. 

The difference between the bit error rate (BER) of 

the ML-BCJR and the Bayesian BCJR equalizer is 

not the significant, although it slightly favors the BE. 

The advent of turbo processing, some Bayesian 

approaches have been proposed to embed and 

consider the uncertainties in the whole iterative 

process of equalization and decoding. We propose a 

Bayesian equalizer(BE),which integrates the 

uncertainty in the CSI to produce more accurate a 

posterior probability estimates. Hence, our approach 

given a direct estimation without iterating between 

the APP estimation and LDPC decoder, as we do not 

only provide a point estimate but a probability 

estimate.  

We experimentally show that at the output 

of the LDPC decoder the Bayesian BCJR equalizer 

considerably improves the performance of the ML-

BCJR equalizer, When we measure the probability of 

error. These gains are more significant for high signal 

to noise rations channel with long impulsive 
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responses and/or short training sequences, we 

consider the performance of both LDPC codes 

[3][6]and BER-optimal BCJR algorithm as 

equalizer[7]. Other techniques ensure  

near Shannon limit results. Furthermore, modern 

machine learning techniques and inference in graphs 

afford the lack of hug  computational complexity of 

these algorithms yielding to efficient and near-

optimal algorithms to equalize [11] and decode [12], 

[13]. The LDPC decoder very much benefits from 

this approach, exhibiting gains of 1dB with respect to 

the ML-BCJR solution. The proposes equalizer does 

not have an analytical description and cannot be 

computes in linear-time in the number of symbols as 

the BCJR algorithm, thus we also propose an 

approximation to the Bayesian solution. , but its able 

to retain most of the gain of the full Bayesian 

approach.  

The paper is organized as fallows. In second 

term we describe the structure of the general 

communication system proposed in third term. The 

LDPC decoder presented in the fourth term. Thus, 

experimental results of fifth term shows the 

performance of our method. Finally, in sixth term is 

the results obtained are summarized and future work 

about our proposal is presented. 

    

II. BCJR ALGORITHM 
                                                      

           

 

 

                     

 

 

 

 

           

Block Diagram 

 

2.1. FUNCTION MODEL. 

We consider the discrete-time channel 

communication system in fig 1. The channel H(z) is 

completely specified bye the channel state 

information(CSI). i.e               
  , Where L 

is the length of the channel. The  ‘h’ is the model 

value of the channel. As independent, unit-variance 

Gaussians(UVG) and zero mean (Rayleigh fading). 

The transmitted block of K message 

bits,               
   is encoded with a rate 

R= K/N and to obtain the codeword b =[b1, b2,….., 

bN] that is transmitted over the channel by using the 

modulator block. In that we are using the QPSk 

modulator. 

     
                                (1) 

 Where    
                    ,     

                 

and    is the additive white Gaussian noise(AWGN) 

with variance   
 . Thus, the received sequence is 

               ]. 

  Startlingly We transmit a preamble with η is the 

bits,       
   

     
  that are be used to estimate the 

unknown channel at the receiver, then we transmit 

the codeword b. The maximum likelihood is 

considerable for the task os estimation. 

   
           

  

  
                                          (2) 

The channel coefficients are estimation with the 

preamble. And We apply the BCJR algorithm for to 

obtain the a posterior probability (APP) estimation 

for the each transmitted symbols. 

P(  =b/x,   
 )     i =1…..N                                   (3) 

Finally We decode the received word by using the 

LDPC decoder to a maximum a posterior (MPA) 

estimates for M. 

 

2.2.ML-BCJR Algorithm 

The ML BCJR algorithm      
 

 
    

    

It is the bais of the praction implementation of 

CSI.Hence, the CSI, the BCJR consider the a 

posterior probability (APP) estimates. These 

probability are computed as[8] 

            
  = 

                  
   

       
         

     (4) 

Where    and      is the states in the equivalent 

trellis at time I and i+1, and    is the set of all 

possible transition from      to        by the 

input       The numerator in[9] can be expressed 

as: 

                
          

   )= P(   
    

     ) 

P(                  
 ) 

P(    
          

 ) 

 

Where the vector X is divided in three different sets: 

     Before instant of received samples are i,   
    

     After instant of received samples are i,     
   and 

the received sample at instant i,   . 
In the second term,   

     does not provide any 

information gives     . And third term all the 

information about the receiver samples and the 

evolution in the trellis is contained in the last state 

        
The BCJR algorithm are the probabilities of 

the three terms that the computes its forward and 

backward recursions. 

I term   P(       
      

  ) =   (a)                     (6) 

II term P(                  
 ) =   (a,b)       (7)

      (7) 

III term P(    
            

 ) =    (b)              (8) 

Where by  Markovity some variables are 

extracted from both probabilities. In the first term, 

the transition from                   can be 

rewritten in terms of the set    of transmitted bits, 

                
                                  

                 TRANSMITTER 

 Channel  

encoder 
 QPSK 

modulator 
                

              CHANNEL 

 H(Z)  
+ 

                
  

                                                          

                         RECIVER                   

 Bayesian 

equalizer 
 LDPC 

decoder 
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and assuming a channel with additive white Gaussian 

noise (AWGN) it follows that:  

P(                     
 )= P(         

 ) ~ Ñ 

(  
     

  )                                                                (9) 

The probabilities [6] and [8] are computed at each 

stage through the forward recursion  

    (b) =           
   
   (a)                                (10) 

                       =            
     

 ) 

And backward recursion 

  (a)=             
   
   (b)                             (11) 

=     
          

 ) 

Where Q are the states a(or b) at time i(or i+1) that, 

for any value of     time i+1 (or i) in state b(or a) We 

assume both recursion start from know states. 

 

III. BAYESIAN EQUALIZATION 
3.1 ML-BCJR EQUALIZATION  

We consider the BCJR, assuming a ML 

estimation, The half of the time gives overconfident 

predictions. This criterion does not assume the 

uncertainties in the CSI. If the training sequence is 

long enough this might be the case, but it does not 

need to be in most case of interest, where we need to 

keep this training sequence as short as possible.   

We compute the posterior possibility as: P(   
     )=                             (12) 

 Where             is the APP computed by the 

BCJR algorithm for a given h and p(h/D) 

Is the CSI posterior. 

 

  
 

 
  

        
   

  
 

  
  

    
       

   
   

        
   

                        (13) 

   Is the posterior probability for 

CSI, given the Gaussian noise and Rayleigh fading. 

The result of the BCJR algorithm assuming a ML 

estimation is quit similar to the    

P(        )=                     . In 

that uncertainty in the CSI, the performance of the 

ML-BCJR is misled due to in accuracies in the 

estimation. The BE in [10] considers the information 

of both variance and mean of the posterior of h, and 

the uncertainty in the estimation of the CSI, for the 

improving much accurate APP. 

 

A. COMPUTATION OF THE SOLUTION  

To compute P            we consider 

the following steps 

 Measure the posterior of the channel: 

  
 

 
  

      
  
 

  
    

        
                                 (14) 

The numerator is the product of the likelihood 

  
  
 

  
     and the prior of h. In the proposed system, 

both are Gaussians distributed as 

           ~ Ñ ((        
 ,I)            (15) 

 

P(h) ~  Ñ (0,  ) 

The numerator in[5] is the product of 

complex valued Gaussian that leads to a Gaussian 

posterior: 

Whose mean and covariance matrix are   

    = (  
            

  )       
   

     =(  
            

  ) 

But we can interchange the integral by the 

marginalization respect to      in the BCJR 

algorithm. As follows  

P(     ) = 
 

 
                                                                    

                                                                     (16) 

The posterior consider the produced random 

samples: 

The vector of mean and covariance matrix, We 

exactly sample to obtain G random samples. 

 

B. CALCULATE THE BCJR ALGORITHM 
The transmitted of the each bit from the 

posterior probability for the G different samples of 

P(h/D)[7]. 

The G is the different values of 

p(               ) average the posterior 

probability of each transmitted bit over all possible 

cases of h; 

P(      ) = 
 

 
             

       (17) 

This solution is time demanding, because we have to 

measure the G time BCJR algorithm. The resulting 

algorithm The ABE presents the same complexity of 

the ML-BCJR and it is able to incorporate the 

uncertainties in the CSI estimation 

 

3.2 APPROXIMATE BAYESIAN EQUALIZER: 

The  ML-BCJR algorithm as an 

approximation to the BE, in which the Gaussian 

density in [7] is replaced by 

 

P(      ~Ñ(        
  )           (18) 

 

and since the covariance matrix is diagonal the 

forward-backward recursion can be used to compute  

           in linear time.  

 

P(       ~ Ñ (        ) 

The ABE does not consider statistical dependence 

and assumes for each local computation of the 

forward-backward algorithm that p(h|D) is 

independent for each received symbol.  

The corresponding graphical model is included in Fig 

II.  

It exhibits hidden Markov model structure 

equivalent to the BCJR equalizer. In this graphical 

model, we find an inter pretention for [19], in which 

we assume that the channel changes in each 

transmission according to the CSI posterior, instead 

of using the same realization for all the symbols. 

 

                          In Fig.[7] , we have plotted the 

inverse of the covariance matrix in[19] for 1000 
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BPSK symbols transmitted through a channel with 

L=6, N=15 training symbols, and an Eb/N0 6 dB. We 

plot the inverse covariance, because its zero off-

diagonal terms represent conditional independent 

components in a Markov random field. 

                        In this figure, we notice that the main 

diagonal dominates the inverse cross-covariance 

terms. Those off-diagonal terms present similar 

values and decay equally fast towards zero as the 

training sequence increases.  

The proposed ABE is a better 

approximation to the BE than the ML-BCJR 

equalizer in two ways. First, it uses the posterior 

mean instead of the ML estimate. Second, the 

variance for each sample has two components: one 

due to the noise (the only one considered by the ML-

BCJR equalizer) and the other due to the CSI 

estimation error.  

  The approximation loses the correlation 

between the symbols, but these correlations are not 

so significant in the SNR ranges of interest and they 

disappear as the training sequence increases. If we 

were to improve the ABE, there are two natural 

extensions. Although none of them should provide a 

significant gain and we have-not explored them 

further, because the inverse covariance matrix (see 

Fig. 3) is almost diagonal. We can either use a low-

rank approximation for the inverse covariance matrix 

or a tree-structure for the EP approximation. 

The low-rank approximation will 

concentrate most of its energy in the main diagonal, 

as the ABE does, and the remaining Eigen values 

will add little to the approximation unless a 

significant proportion are added increasing the 

complexity substantially. The Tree-Enwall also 

suffer from the same limitation and the additional 

complexity will not significantly improve the 

performance. 

  
Fig.  We plot in the inverse covariance matrix in 

(14) for 1000 BPSK symbols 

Transmitted through a channel with 6 taps. We have 

used 15 training symbols and Eb/N0= 6 dB. 

 

IV. LDPC DECODER 
An LDPC code is a liner block code and 

through has a parity-check matrix. What 

distinguishes an LDPC code from conventional linear 

codes is that parity check matrix which is sparse, i.e 

the number of non zero entries is much smaller than 

the total number of entries can be found for it. LDPC 

codes can be extended to GF(q) by considering a set 

of non zero weights        GF(q) for the edges of G. 

the parity-check matrix in this case is formed by the 

set of weights. In other words          . In the 

remainder of this thesis, we assume that the codes are 

binary unless otherwise stated. 

LDPC codes, decreases on their structure, 

can be classified as being regular codes have variable 

nodes of a fixed  degree and check nodes of a fixed 

degree. Promoting the variable node degree of a 

regular code by 

                                  . 

           It follows that 

E=r.         
Therefore the code rate R can be computed as  

R: =
 

 
   

   

 
  = 1 - 

  

  
 

    If the rows of H are linearly independent, R=1 - 
  

  
  

The quantity 
   

 
  is referred to as the design rate(), 

but usually possible linear dependencies among the 

rows of H are ignored and the design rate and the 

actual rate are assumed to be equal. Now consider the 

ensemble of regular LDPC codes with variable 

degree   , check degree                    If n is 

large enough, the average behavior of almost all 

instances of this ensemble concentrates around the 

expected behaviors(). 

       Given the degree distribution of an LDPC code 

its number of edges E, its is easy to see that the 

number of variables nodes    is, 

   = E  
  

   = E        
 

 
 

The number of check nodes r is,  

r = E  
  

    =E        
 

 
 

 Therefore the design rate of the code will be  

R = 1 -  
 

  
  

 
  
  

 

                    Or equivalently  

R = 1 -  
       
 
 

       
 
 

 

We try to formulate the performance of the 

code family in terms of its degree distribution in an 

easy from to allow for maximum flexibility in the 

design stage, and at the same time we avoid too much 

simplification to keep our predicted results does to 

the actual results. 
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V. SIMULATION 
5.1 SIMULATION RESULTS: 

We have use the Monte carlo to obtained the 

results of the [7], Thus we proposed Bayesian ML-

BCJR equalization. To improve the performance of 

the APP technique, We compare of the bit error rate 

curve with the ones of the ML-BCJR, before and 

after the LDPC decoder. 

   In all the experiments we consider the following 

scenario. 

 The data sequence of 500 random bits are 

encoded with a general LDPC code (3,6) of rate 

½. 

 We set a halt condition of 100 wrong decode bits 

to avoid unnecessary computations. 

 Up to     frames of 1000 bits are transmitted 

over the channel. 

 Every frame of test bits, and its associated 

training sequence, is sent over the same channel, 

whose taps are Rayleigh distributed. We 

consider that the channel coherence time is 

greater than the duration of the frame, i.e the 

channel does not charge during this time. Further 

more, in our experiments we take the same value 

for the taps of the channel during all transmitted 

frames. 

 

5.2 Performance After Equalization and 

Decoding: 

The BER curves before and after the LDPC 

decoder for the BE, the ABE and ML-BCJR 

equalizer shown in fig [7]. The codeword is BPSK 

modulated and the symbols are transmitted through 

a^ taps channel. n=15 and n=40 is the length of the 

training sequence. 

 The difference between BER curves before the 

LDPC decoder is negligible it will be observed in fig 

, since at this point we can only measure the app 

estimate of the 50%. We obtain a significant gain, 

when we measure the BER after the LDPC decoder, 

because the LDPC decoder benefits from accurate 

APP estimates to correctly decode the transmitted 

codeword, i.e the BP uses the APP for each 

individual bit. 

 
Fig.  BER performance for BE (solid lines), the 

ABE (dotted lines) animal-BCJR equalizer 

(dashed lines), for a channel with 6 taps before the 

decoder with n= 15, before the decoder with n=40, 

after the decoder within=15, and after the decoder 

with =40. 

 

We consider in section-2 monte carlo 

sampling to obtain the APP estimates of the Bayesian 

equalizer (4). In section-3 the approximation 

Bayesian equalizer (ABE) it is an approximation to 

the exact result of  ML-BCJR are the same 

complexity. 

 

5.3 Results for Different Modulations and Lengths 

of the Channel: 

In fig. , we compare the performance in 

terms of WER for the ABE versus the ML-BCJR 

equalizer, for two different QPSK modulations, 

different lengths of the training sequence and a 

channel with L=3.The WER curve with a perfect 

knowledge of the CSI is also included to set a lower 

bound of performance for the system. For shorter 

training sequences, we need higher SNR to 

compensate for poorer channel estimations. In this 

scenario the Bayesian equalizer exhibits an 

improvement compared to the ML-BCJR. In Fig. 

(a)[7], we have a gain close to 0.3 dB at anEb/N0= 7 

dB for n= 10 training samples. This gain tends to 

cancel as we increase the number of training samples, 

i.e., by reducing the net throughput. Compared to 

Fig.  with L= 6 taps, we observe that, for L= 3 taps, 

we have a better performance and less room for 

improvement, given a training sequence length. A 

higher modulation order translates into more states in 

the forward and backward recursions. Therefore, in 

case of uncertainties in the estimated CSI, the 

number of inaccurate operations grows and we can 

expect higher degradation of the equalizer 

performance, which finally yields into more 

inaccurate APP estimations. Thus, if we increase the 

order of the modulation, we can expect a greater gain 

for the proposed Bayesian equalizer. To illustrate this 

point, in Fig. 5(b), we include the WER curves for 

the ABE and the ML-BCJR equalizer after the LDPC 

decoder, assuming a 16-QAM modulation, L=3 and 

different lengths of the training sequence. We can 

observe in Fig. 5(b)[7] a gain over 0.5dB for an 

Eb/N0= 9 dB and n=10. In all the curves, the gain of 

the Bayesian equalizer increases compared to the 

previous results for a QPSK modulation. 
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Fig.  WER performance for the ABE (solid lines) 

and ML-BCJR equalizer(dashed lines) after the 

LDPC decoder, for a channel with 3 taps, QPSK 

in (a)and 16-QAM in (b) modulation and different 

lengths of the training sequence= 5,n=10,n=15 and 

n= 25. In dashed–dotted line, the BCJR with 

perfect CSI. 

 

VI. CONCLUSIONS AND FUTURE 

WORK 
The ML-BCJR equalizer, that use the ML 

estimates of the channel state information(CSI), 

provide the same number of over and under confident 

posterior probability of each transmitted symbol. 

specifically when the channel is hard to estimate, 

these overconfident prediction can assign a value 

near to one to a wrong estimated bit, which degrades 

the performance of the decoder due to these bits are 

harder to flip. The generative model introduced in 

this paper, where the posterior probability density 

function of the estimated CSI is included, is a more 

principled solution. If we are to just estimate the 

encoded transmitted symbols, the discriminative 

model is a good choice. However, if the estimation of 

the APP is needed, i.e., the decoder very much 

benefits from this information, the discriminative 

solution exhibits poor results whenever the CSI is 

badly estimated. On the contrary, the Bayesian 

approach exploits the full statistical model to provide 

better APP estimates. We show in the experimental 

section that these estimations are useful if a LDPC 

encoding is used. Other soft-decoders may take 

advantage of this solution as well. We measure the 

quality of the APP estimates using an LDPC decoder, 

the standard channel codes in today’s 

communications systems, since the LDPC decoder 

needs the exact APP to perform. 

    optimally. We also propose an approximate 

Bayesian equalizer that can keep most of the gain of 

the Bayesian equalizer at the same computational 

cost as the ML-BCJR equalizer. This gain is 

remarkable in scenarios with short training 

sequences, long channels and multilevel 

constellations. We have illustrated these results for 

LDPC codes and they can be carried over to other 

coding schemes that need accurate APP ,such as 

turbo codes 
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