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ABSTRACT 
Time enters the Schrodinger equation as 

an external parameter, and not a dynamical 

variable. It is not a standard quantum mechanical 

observable.This survey explores various attempts 

made in order to treat time as a dynamical 

variable(observable) and hence measure it. 

 

I. Introduction 
The role of time is a source of confusion and 

controversy in quantum mechanics [1]. In the 

Schrodinger equation time represents a classical 

external parameter, not a dynamical variable. The 

time measured in experiments, however, does not 

correspond to an external parameter, it is actually an 

intrinsic property of the system under consideration, 

which represents the duration of a physical process; 

the life time of unstable particles is a well-known 

example. Quantum mechanics was initially 

formulated as a theory of quantum micro-systems 

interacting with classical macro systems [2]. 

Quantum mechanics allows the calculation of 

dynamical variables ofsystems at specified instants in 

time using the Schrodinger equation [3]. The theory 

also deals with probability distributions of 

measurable quantities at definite instants in time [4]. 

The time of an event does not correspond to a 

standard observable in quantum mechanics [5].  

Asking the question of when a given 

situation occurs, time is no longer an external 

parameter. Time, in such a situation, becomes 

dynamical. However, such a time observable does not 

have the properties of a "standard" quantum 

mechanical observable. This research is dedicated to 

exploring various attempts made in order to treat time 

as a dynamical variable (observable). All attempts 

use essentially one of two approaches, namely those 

of direct and indirect measurement of time. Direct 

approaches use theoretical toy model experiments 

while indirect approaches are of mathematical nature.  

To determine the time of arrival or the 

tunneling time, the measurement of the required 

quantities must always be done, directly or indirectly. 

The notion of measurement emerges from 

interpretations of quantum mechanics, however the 

time problem arises in all of them. The interaction of 

a quantum Microsystems with a classical macro 

system is described in terms of quantum 

measurements [2]. As time is treated as an external 

parameter in standard quantum theory, quantum 

observation theory talks about observations made at 

given instants in time [3]. The system in standard 

quantum theory interacts with a measuring device  

 

through the timedependent interaction Hamiltonian. 

Quantum mechanics is actually designed to answer 

the question "where is a particle at time t?" In 

standard quantum mechanics, The probability 

corresponds to a measurement result of a particle 

being at a given location at one specific time. The 

above mentioned micro-system is taken to be in a 

superposition of states of its variables. Suppose the 

macro-system interacts with one of the micro-

system's variables, then the macro-system only sees 

one of the many possible values of the variable [2]. 

The interaction itself projects the state of the micro-

system into a state with the given value. In terms of 

wave-functions, the interaction (act of measurement) 

causes the wave-function of the Microsystems (a 

superposition of states) to "collapse" into one state 

with a specific value (eigenvalue). Dirac mentioned 

that the superposition is one of two most important 

concepts in quantum mechanics; the other one is 

Schrodinger equation [6]. 

Even though several alternative 

interpretations have been devised (Bohm, many- 

worlds, etc.), they all have one problem in common: 

how can the exact time at which a measurement 

occurs be determined? Rovelli [2] illustrates how the 

problem of time arises in each interpretation. If a 

system is viewed as having a wave-function which 

collapses during a measurement, is the collapse 

immediate? If a system is viewed in terms of values 

of its dynamical variables which become definite 

when observed, how to determine exactly when this 

occurs in an experiment? If a system's wave-function 

is taken a branch, when does this occur? If a wave-

function does not branch and the observer selects one 

of its components and sticks with the choice, when 

does the selection occur? If there exist probabilities 

for sequences of events to happen, when does such an 

event occur? The above questions indicate the 

universality and challenging concept of time. We 

review some attempts to set up the time operators. 

Last but not least the, problem of time in quantum 

gravity is outlined, where time, if it is a fundamental 

variable, must also be a dynamical variable. Quantum 

gravity has the interesting feature that the 

philosophical question of what time actually is raised. 

If one would know what time is fundamentally, then 

perhaps the problems encounterin determining time 

in quantum mechanics could be solved, as one would 

then know what one is actually looking for. In what 

follow, we only highlight the subjects, and to 

understand more each part needs to be explored in 

details. Another approach to the time problem is the 



 H. Arabshahi and A.  Haji Mohammad ifariman / International Journal of Engineering 

Research and Applications (IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.1620-1624 

1621 | P a g e  

decoherent histories approach to quantum mechanics 

[7,8, 9, 10]. This formalism makes use of the fact that 

what one considers to be a closed quantum, is never 

completely closed, as there always  

the physical quantity corresponding to the time 

operator.  

of canonically conjugate variables, the second 

variable experiences a shift in value. This shift cannot 

be calculated exactly without interfering with the 

measurement of the first variable  

 

II. The Relation of the Uncertainty Principle 

to a Time Operator 
Bohr also realized that the two uncertainty 

principles (9) and (7) can be interpreted in two 

different ways the first is as limitations on the 

accuracy of a measurement and  the second is as 

statistical laws referring to a large sequence of  The 

difficulty in giving meaning to the relation (7) is due 

to the quantity . In the way it is interpreted above, 

the uncertainty relation (7) implies the existence of a 

self-adjointoperator; canonically conjugate to the 

Hamiltonian , which itself is self-adjoint. Ifthis time 

operator  exists, then the quantity t can be 

interpreted in the same way as x' or px ,and the 

uncertainty principle can be applied to the physical 

observableCorresponding to T. To obtain the 

uncertainty relation for energy and time, the 

commutator of the Hamiltonian and the time operator 

is assumed to be of the form:  

[ , ]=i                                   (11) 

The form of (11) is such that  and  are 

canonically conjugate to each other. It also implies 

that both operators have a continuous spectrum. This 

in turn means that neither of the two can be a 

Hamiltonian, as such an operator is defined to have a 

semi- bounded spectrum. From this line of reasoning 

the supposed time operator  cannot exist. This 

problem is encountered when one uses (11) to derive 

the uncertainty relation (7) in the same way as (9) is 

derived from [ ] = i  [14]. 

 

III. Attempts to construct a Time Operator 
Standard quantum theory, as proposed by 

Pauli [21], requires that measurable. Quantities 

(observables) are represented by self-adjoint 

operators, which act on the Hilbert space of physical 

states [4]. The probability distribution of the 

measurement outcomes of an observable are obtained 

as "an orthogonal spectral decomposition of the 

corresponding self-adjoint operator" [4]. The indirect 

measurement of time basically is the quest of finding 

a self-adjoint operator whose Eigen states are 

orthogonal. As the time operator is one of the 

canonically conjugate pair of time and energy, the 

time operator must be defined in such a way as to 

preserve the semi bounded spectrum of the 

Hamiltonian. Pauli pointed out [2 L] that the 

existence of a self-adjoint time operator is 

incompatible with the semi-bounded character of the 

Hamiltonian spectrum. By using a different argument 

based on the time-translation property of the arrival 

time concept, Allclock has found the same negative 

conclusion [22-24]. The negative conclusion can also 

be traced back to the semi-infinite nature of the 

Hamiltonian spectrum. 

Kijowski [25] tried different approaches to find a 

time operator. He chose to (interpret the uncertainty 

relation (11) in a statistical way. 

Grot, Rovelli and Tate [26] construct a time of arrival 

operator as the solution to the problem of calculating 

the probability for the TOA of a particle at a given 

point. They argue, using the principle of 

superposition, that a time operator T can be defined, 

whose probability density can be calculated from the 

spectral decomposition of the wave-function l.   (x) 

into Eigen states of  (in the usual way). They found 

an uncertainty relation which approaches (11) to 

arbitrary accuracy. Oppenheim, Reznik and Unruh 

[27] follow the method by Grot at al. They used 

coherent states to create a positive operator valued 

measure (POVM).            The standard method to 

find an operator is by using the correspondence 

principle, which states that the corresponding 

classical equations are quantized using specific 

quantization rules. Taking the Hamiltonian of a 

classical system H(p,q) where p and q are canonical 

variables (H,T), where H is the Hamiltonian and T is 

its conjugate variable. These variable satisfy 

Hamilton's equation:  

                                   (12) 

where T is the interval of time and the curly brackets 

denote a Poisson bracket. This relation can be 

translated to quantum mechanics through canonical 

quantization. This is a procedure where classical 

expressions remain valid in the quantum picture by 

effectively substituting Poisson brackets by 

commutatores:  

                                 (13) 

In the Heisenberg picture Hand T are hence 

interpreted as self-adjoint operators. Further it seems 

natural to require that the time operator satisfies an 

eigenvalue equation in the usual way: 

                                (14) 

  In all of physic, except in General Relativity, 

Physical systems are supposed to be situated in a 

three-dimensional Euclidean space. The points of this 

space will be given by Cartesian coordinated r = 

(x,y,z). Together with the time parameter t they from 

the coordinates of a continuous space - time 

background. The (3 + 1) dimensional space-time 

must be distinguished from the 2N- dimensional 

phase space of the space of the system, and space-

time coordinates (r,t) must be distinguished from the 
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dynamical variables (qkPk) characterizing material 

systems in space-time.  

A point particle is a material system having 

a mass, a velocity, an acceleration, while r is the 

coordinate of a fixed point of empty space. It is 

assumed that three- Dimensional space is isotropic 

(rotation symmetric) and homogeneous (translation 

symmetric) and that there is translation symmetry in 

time. In special relativity the space-time symmetry is 

enlarged by Lorentz transformations which mix x and 

t, transforming them as the components of a four-

vector.  

 The generators of translation in spaceand 

time are the total momentum P and the total energy 

H, respectively. The generator of space rotations is 

the total angular momentum J. 

It is worth noting that the universal time coordinate t 

should not be mixed with dynamical position 

variables. The important question to ask is: Do 

physical systems exist that have a dynamical variable 

which resembles the time coordinate t in the same - 

way as the position variable q of a point particle 

resembles the space coordinate x ? The answer is yes! 

Such systems are clocks. A clock stands, ideally, in 

the same simple relation to the universal time 

coordinate t as a point particle stands to the universal 

space coordinate x. We may generally define an ideal 

clock as a physical system which has a dynamical 

variable which behaves under time translations in the 

same way as the time coordinate t. Such a variable, 

which we shall call a "clockvariable" or, more 

generally, a "time-variable", may be a pointer 

position or an angle or even a momentum. Just as a 

position-variable indicates the position of a system in 

space, a clock-variable indicates the 'position' of a 

system in time t. In quantum mechanics the situation 

is essentially not different. The theory supposes a 

fixed, unquantized space-time background, the points 

of which are given by c-number coordinates x, t. The 

space time symmetry transformations are expressed 

in terms of these coordinates.  

Dynamical variables of physical systems, on 

the other hand, are quantized: they are replaced by 

self-adjoint operators on Hilbert space. All formulas 

of the preceding section remain valid if the poisson-

brakets are replaced by commutators according to  

{,}  

So, the idea, that t can be seen as the canonical 

variable conjugate to the Hamiltonian, leads one to 

expect t to obey the canonical commutation relation 

[t,H]= i . But iftis the universal time operator it 

should have continuous eigenvalues running from - 

 to +  and, from this, the same would follow for 

the eigenvalues of any H. But we know that discrete 

eigenvalues of H may occur. From this Pauli 

concluded [21]: ... that the introduction of an operator 

t is basically forbidden and the time must necessary 

be considered as an ordinary number ("c-number") ... 

"Thus, the 'unsolvable' problem of time in quantum 

mechanics has arisen. Note that it is crucial for this 

argument that t is supposed to be a universal 

operator, valid for all systems: according to Pauli the 

introduction of such an operator is basically 

forbidden because some systems have discrete energy 

eigenvalues. From our previous discussion it should 

be clear that the universal time coordinate t is the 

partner of the space coordinates x. Neither the space 

coordinates nor is the time coordinate quantized in 

standard quantum mechanics. So, the above problem 

simply doesn't exist! If one is to look for a time 

operator in quantum mechanics one should not try to 

quantize the universal time coordinate but consider 

time-like (in the literal sense) dynamical variable of 

specific physical system, i.e. clocks. Since a 

clockvariable is an ordinary dynamical variable 

quantization should not, in principle, be especially 

problematic. One must, however, be prepared to 

encounter the well-known quantum effects mentioned 

above: a dynamical system may have a continuous 

timevariable, or a discrete one or no time-variable at 

all. Recently, some efforts have. been performed to 

overcome Pauli's argument [28]. The proposed time 

operator is canonically conjugate to i  rather than 

to H, therefore Pauli's therefore Pauli's theorem no 

longer applies. It is argued that "the reasons for 

choosing time as a parameter lie not so much in 

ontology as in methodology and epistemology. The 

time operator idea needs to be more explored in an 

accurate way.  

 

VI.Conclusion and further comments 
This survey explores various ways of 

defining time in standard quantum mechanics and 

some different ways of measuring it. The approaches 

of measuring time yield a whole spectrum of results 

along with a range with a range of difficulties 

encountered. All methods yield results which have a 

strict limit on their accuracy and. Generality. This 

reflects the quantum nature of the problem.  

The main difficulty in defining a quantum 

time operator lies in non-existence, in general, of a 

self-adjoint operator conjugate to the Hamiltonian, a 

problem which can be traced back to the semi-

bounded nature of the energy spectrum. In turn, the 

lack of a self-adjoint time operator implies the lack of 

a properly and unambiguously defined probability 

distribution of arrival time. There are two 

possibilities to overcome the problem. If one decides 

that any proper time operator must be strictly 

conjugate to the Hamiltonian, then one has to 

perform the search for a self-adjoint operator. If, on 

the contrary, one imposes self-adjoint property as a 

desirable requirement for any observable, then one 

necessarily has to give up the requirement that such 

an operator be conjugate to the Hamiltonian. The two 

main equations of motion, the Schrodinger and 

wheeler- Dewitt equation reflect two different 
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presupposed natures of time: in the schrodinger 

equation, time corresponds to an external parameter 

and in the wheeler-Dewitt equation thereis no time. 

This research explores the concept of trying to tum a 

time parameter into an observable, a dynamical 

variable. Why was time in quantum mechanics 

represented by a parameter in the first place? A 

possible answer is that it is due to our perception. It is 

meaningful, for us, to talk about events happening at 

a certain time. This lets us put events into a 

chronological order in our minds. We do not think 

about an event happening to us. Another question is, 

why does one want time to be an observable? One 

major reason is our notion of change: we seem to 

perceive that time changes. Another motivation for 

the study of time in quantum mechanics is the 

problem of time in quantum gravity. Quantum 

cosmology represents an analogy to closed quantum 

systems, as both cosmology and closed quantum 

systems are describing the same type of situation, the 

difference being the size scale. . Saunders states: 

"quantum cosmology is the most clear-cut and 

important failing of the Copenhagen interpretation" 

[31]. Perhaps the lack of understanding of time in 

quantum gravity is due to a fundamental reason, 

based on the two quantum gravity components: 

quantum mechanics and general relativity. The 

problem does not lie in general relativity however, so 

it must be rooted in the formulation of quantum 

mechanics.  

 Quantum theory of measurement is based on 

measurements occurring at given instants of time. A 

measurement corresponds to a classical event. Dirac 

said "the aim of quantum mechanics was to account 

for the observables: behavior in the simplest possible 

ways" [6]. Kant [32] held Newtonian absolute space 

and space- time for an "idea of reason". Saunders 

states" In particular, we need a global time 

coordinate' which enters in to the fundamental 

equations; it is no good if this involves ad hoc or ill-

defined approximations, available at only certain 

length scales or cosmological epochs" [33]. His idea 

of a universal definition of time sounds very 

appealing. Does this universal concept of time 

require the reformulation of quantum mechanics? 

Tunneling time might .also be a candidate to shed 

some light on to the mystery of time. Quantum 

mechanical tunneling is "one of the most mysterious 

phenomena of quantum mechapics" and at the same 

time it is one of the basic and important processes in 

Nature, party responsible for our existence [34]. The 

question of the duration of a tunneling process is an 

open problem. Experiments to record the tunneling 

time were motivated by the many different theories 

trying to describe this phenomenon. Questions arise 

such as, "is tunneling instantaneous?","is it 

subluminal or superluminal (faster than the speed of 

light)?"Chiao published a paper with experimental 

evidence that tunneling is superluminal [34]. If this is 

true, what implications does superluminal tunneling 

have on our understanding of the nature of time? 

What does it mean to say that something happens 

faster than instantaneously?  

Does time undergo a change in nature when it 

"enters" a classical forbidden region? If so, what is it 

and what does it change to?  

In quantum gravity, the evolution of the gravitational 

field does not correspond to evolution in physical 

time. The internal time on a manifold i~ not ':l:~ 

absolute quantity. Barbour [35] claims that an instant 

in time corresponds to a configuration and Deutsch, 

in his interpretation of quantum mechanics, claims 

that a change in time corresponds to a change in his 

interpretation of quantum mechanics, claims that a 

change in time corresponds to a change in the number 

of Deutsch worlds [37]. Is it possible that the notion 

of absolute time be a hint towards timelessness? If 

time does not exist then the various different 

formulations of the nature of time only appear 

through our perception and we cannot follow these 

back to a universal truth. Perhaps there does exist a 

universal concept of time, which is far too abstract to 

grasp. Whatever time may be, the time discussed in 

this overview raise various questions, which perhaps 

are trying to point us into .a certain direction. Trying 

to answer questions about the concepts of the time of 

arrival, the time-energy uncertainty relation, 

tunneling time and time in quantum gravity show us 

that perhaps nothing is more important than to first of 

all understand the basic building block-time-without 

which no structure can be perfectly built. The 

problem of time still stands to be resolved, the quest 

for this research still continues.  
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