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Abstract 
In a traditional keyword-search system 

over XML data, a user composes a keyword query, 

submits it to the system, and retrieves relevant 

answers. In the case where the user has limited 

knowledge about the data, often the user feels “left 

in the dark” when issuing queries, and has to use a 

try-and-see approach for finding information. In 

this paper, we study fuzzy type-ahead search in 

XML data, a new information-access paradigm in 

which the system searches XML data on the fly as 

the user types in query keywords. It allows users to 

explore data as they type, even in the presence of 

minor errors of their keywords. Our proposed 

method has the following features: 1) Search as you 

type: It extends Auto complete by supporting queries 

with multiple keywords in XML data. 2) Fuzzy: It 

can find high-quality answers that have keywords 

matching query keywords approximately. 3) 

Efficient: Our effective index structures and 

searching algorithms can achieve a very high 

interactive speed. We study research challenges in 

this new search framework. We propose effective 

index structures and top-k algorithms to achieve a 

high interactive speed. We examine effective 

ranking functions and early termination techniques 

to progressively identify the top-k relevant answers. 

We have implemented our method on real data sets, 

and the experimental results show that our method 

achieves high search efficiency and result quality. 

 

Index Terms—XML, keyword search, type-ahead 

search, fuzzy search. 

 

I. Introduction 
Traditional methods use query languages 

such as XPath and XQuery to query XML data. 

These methods are powerful but unfriendly to non-

expert users. First, these query languages are hard to 

comprehend for non database users. For example, 

XQuery is fairly complicated to grasp. Second, these 

languages require the queries to be posed against the 

underlying, sometimes complex, database schemas. 

Fortunately, keyword search is proposed as an 

alternative means for querying XML data, which is 

simple and yet familiar to most Internet users as it 

only requires the input of keywords. Keyword search 

is a widely accepted search paradigm for querying 

document systems and the World Wide Web. 

Recently, the database research community has been 

studying challenges related to keyword search in  

 

XML data One important advantage of keyword 

search is that it enables users to search information 

without knowing a complex query language such as 

XPath or XQuery, or having prior knowledge about 

the structure of the underlying data. In a traditional 

keyword-search system over XML data, a user 

composes a query, submits it to the system, and 

retrieves relevant answers from XML data. This 

information-access paradigm requires the user to 

have certain knowledge about the structure and 

content of the underlying data repository. In the case 

where the user has limited knowledge about the data, 

often the user feels “left in the dark” when issuing 

queries, and has to use a try-and-see approach for 

finding information. He tries a few possible 

keywords, goes through the returned results, modifies 

the keywords, and reissues a new query. He needs to 

repeat this step multiple times to find the information, 

if lucky enough. This search interface is neither 

efficient nor user friendly. 

Many systems are introducing various 

features to solve this problem. One of the commonly 

used methods is Auto complete, which predicts a 

word or phrase that the user may type in based on the 

partial string the user has typed. More and more 

websites support this feature. As an example, almost 

all the major search engines nowadays automatically 

suggest possible keyword queries as a user types in 

partial keywords. Both Google Finance 

(http://finance.google.com/) and Yahoo! Finance 

(http://finance.yahoo.com/) support searching for 

stock information interactively as users type in 

keywords. One limitation of Auto complete is that the 

system treats a query with multiple keywords as a 

single string; thus, it does not allow these keywords 

to appear at different places. For instance, consider 

the search box on Apple.com, which allows Auto 

complete search on Apple products. Although a 

keyword query “iphone” can find a record “iphone 

has some great new features,” a query with keywords 

“iphone features” cannot find this record, because 

these two keywords appear at different places in the 

answer. To address this problem, Bast and Weber 

proposed complete search in textual documents, 

which can find relevant answers by allowing query 

keywords appear at any places in the answer. 

However, Complete-Search does not support 

approximate search that is it cannot allow minor 

errors between query keywords and answers. 

Recently, we studied fuzzy type-ahead search in 
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textual documents. It allows users to explore data as 

they type, even in the presence of minor errors of 

their input keywords. 

 
Fig. 1: An XML document. 

  

Type-ahead search can provide users instant 

feedback as users type in keywords, and it does not 

require users to type in complete keywords. Type-

ahead search can help users browse the data, save 

users typing effort, and efficiently find the 

information. We also studied type-ahead search in 

relational databases. However, existing methods 

cannot search XML data in a type-ahead search 

manner, and it is not trivial to extend existing  

techniques to support fuzzy type-ahead search in 

XML data. This is because XML contains parent-

child relationships, and we need to identify relevant 

XML sub trees that capture such structural 

relationships from XML data to answer keyword 

queries, instead of single documents. In this paper, 

we propose TASX (pronounced “task”), a fuzzy type-

ahead search method in XML data. TASX searches 

the XML data on the fly as users type in query 

keywords, even in the presence of minor errors of 

their keywords. TASX provides a friendly interface 

for users to explore XML data, and can significantly 

save users typing effort. In this paper, we study 

research challenges that arise naturally in this 

computing paradigm. The main challenge is search 

efficiency. Each query with multiple keywords needs 

to be answered efficiently. To make search really 

interactive, for each keystroke on the client browser, 

from the time the user presses the key to the time the 

results computed from the server are displayed on the 

browser, the delay should be as small as possible. An 

interactive speed requires this delay should be within 

milliseconds. Notice that this time includes the 

network transfer delay, execution time on the server, 

and the time for the browser to execute its Java- 

Script. This low-running-time requirement is 

especially challenging when the backend repository 

has a large amount of data. To achieve our goal, we 

propose effective index structures and algorithms to 

answer keyword queries in XML data. We examine 

effective ranking functions and early termination 

techniques to progressively identify top-k answers. 

To the best of our knowledge, this is the first paper to 

study fuzzy type-ahead search in XML data. To 

summarize, we make the following contributions: . 

We formalize the problem of fuzzy type-ahead search 

in XML data. . We propose effective index structures 

and efficient algorithms to achieve a high interactive 

speed for fuzzy type-ahead search in XML data 

[2][3]. 

. We develop ranking functions and early termination 

techniques to progressively and efficiently identify 

the top-k relevant answers. We have conducted an 

extensive experimental study. The   results show that 

our method achieves high search efficiency and result 

quality. 

 

II. Problem Formulation of Fuzzy Type-

Ahead Search In XML Data 
We first introduce how TASX works for 

queries with multiple keywords in XML data, by 

allowing minor errors of query keywords and 

inconsistencies in the data itself. Assume there is an 

underlying XML document that resides on a server. 

A user accesses and searches the data through a web 

browser. Each keystroke that the user types invoke a 

query, which includes the current string the user has 

typed in. The browser sends the query to the server, 

which computes and returns to the user the best 

answers ranked by their relevancy to the query [6]. 

The server first tokenizes the query string 

into several keywords using delimiters such as the 

space character. The keywords are assumed as partial 

keywords, as the user may have not finished typing 

the complete keywords. For the partial keywords, we 

would like to know the possible words the user 

intends to type. However, given the limited 

information, we can only identify a set of complete 

words in the data set which have similar prefixes with 

the partial keywords. This set of complete words is 

called the predicted words. We use edit distance to 

quantify the similarity between two words. The edit 

distance between two words s1 and s2, denoted by 

ed(s1,s2), is the minimum number of edit operations 

(i.e., insertion, deletion, and substitution) of single 

characters needed to transform the first one to the 

second.  

 

III .LCA-Based Fuzzy Type-Ahead Search 
This section proposes an LCA-based fuzzy 

type-ahead search method. We use the semantics of 

ELCA [55] to identify relevant answers on top of 

predicted words. 
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Fig. 2. The trie on top of words in Fig. 1 (a part of 

words). 

3.1 Index Structures: 

We use a trie structure to index the words in 

the underlying XML data. Each word w corresponds 

to a unique path from the root of the trie to a leaf 

node. Each node on the path has a label of a character 

in w. For each leaf node, we store an inverted list of 

IDs of XML elements that contain the word of the 

leaf node. For instance, consider the XML document 

in Fig. 1. The trie structure for the tokenized words is 

shown in Fig. 2. The word “mich” has a node ID of 

10. Its inverted list includes XML elements 18 and 

26. 

 

 3.2 Answering Queries with a Single Keyword: 

We first study how to answer a query with a 

single keyword using the trie structure. Each 

keystroke that a user types invokes a query of the 

current string, and the client browser sends the query 

string to the server. 

We first consider the case of exact search. 

One naive way to process such a query on the server 

is to answer the query from scratch as follows: we 

first find the trie node corresponding to this keyword 

by traversing the trie from the root. Then, we locate 

the leaf descendants of this node, and retrieve the 

corresponding predicted words and the predicted 

XML elements on the inverted lists. For example, 

suppose a user types in query string “mich” letter by 

letter. When the user types in the character “m,” the 

client sends the query “m” to the server. The server 

finds the trie node corresponding to this keyword 

(node 5). Then, it locates the leaf descendants of node 

5 (nodes 9 and 10), and retrieves the corresponding 

predicted words (“mices” and “mich”) and the 

predicted XML elements (elements 14, 18, and 26). 

When the user types in the character “i,” the client 

sends a query string “mi” to the server. The server 

answers the query from scratch as follows: it first 

finds node 6 for this string, then locates the leaf 

descendants of node 6 (nodes 9 and 10). It retrieves 

the corresponding predicted words (“mices” and 

“mich”). Other queries invoked by keystrokes are 

processed in a similar way. One limitation of this 

method is that it involves a lot of recomputation 

without using the results of earlier queries [10].  

We can use a caching-based method to 

incrementally find the trie node for the input 

keyword. We maintain a session for each user. Each 

session keeps the keywords that the user has typed in 

the past and the corresponding trie node. We use a 

hash table to maintain such information. When a 

session times out, the kept information will be 

deleted. The goal of keeping the information is to use 

it answer subsequent queries incrementally.  

In general, the user may modify the previous 

query string arbitrarily, or copy and paste a 

completely different string. In this case, for the new 

query string, among all the keywords typed by the 

user, we identify the cached keyword that has the 

longest prefix with the new query. Then, we use this 

prefix to incrementally answer the new query, by 

inserting the characters after the longest prefix of the 

new query one by one.  

 

3.3 Answering Queries with Multiple Keywords: 

Now, we consider how to do fuzzy type-

ahead search in the case of a query with multiple 

keywords. For a keystroke that invokes a query, we 

first tokenize the query string into keywords 

k1,k2....kl. For each keyword ki (1≤i≤l), we compute 

its corresponding active nodes, and for each such 

active node, we retrieve its leaf descendants and 

corresponding inverted lists. Then, we compute union 

list Uki for every ki. Finally, we compute the 

predicted answers on top of lists Uk1, Uk2  . . . Ukl .We 

use the semantics of ELCA to compute the 

corresponding answers. We use the binary-search-

based method to compute ELCAs. 

 

IV .Progressive And Effective Top-K Fuzzy 

Type-Ahead Search 
The LCA-based fuzzy type-ahead search 

algorithm in XML data has two main limitations. 

First, they use the “AND” semantics between input 

keywords of a query, and ignore the answers that 

contain some of the query keywords (but not all the 

keywords). For example, suppose a user types in a 

keyword query “DB IR Tom” on the XML document 

in Fig. 1. The ELCAs to the query are nodes 15 and 

5. Although node 12 does not have leaf nodes 

corresponding to all the three keywords, it might still 

be more relevant than node 5 that contains many 

irrelevant papers. Second, in order to compute the 

best results to a query, existing methods need find 

candidates first before ranking them, and this 

approach is not efficient for computing the best 

answers. A more efficient algorithm might be able to 

find the best answers without generating all 

candidates. To address these limitations, we develop 

novel ranking techniques and efficient search 
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algorithms. In our approach, each node on the XML 

tree could be potentially relevant to a keyword query, 

and we use a ranking function to decide the best 

answers to the query. For each leaf node in the trie, 

we index not only the content nodes for the keyword 

of the leaf node, but also those quasi-content nodes 

whose descendants contain the keyword. For 

instance, consider the XML document in Fig. 1. For 

the keyword “DB,” we index nodes 13, 16, 12, 15, 9, 

2, 8, 1, and 5 for this keyword as shown in Fig. 3.  

 
Fig. 3. The extended trie on top of words in Fig. 1 (a 

part of words). 

 

 For the keyword “IR,” we index nodes 6, 16, 

24, 5, 15, 23, 2, 20, and 1. For the keyword “Tom,” 

we index nodes 14, 17, 12, 15, 9, 2, 8, 1, and 5. The 

nodes are sorted by their relevance to the keyword. 

Fig. 3 gives the extended trie structure. For instance, 

assume a user types in a keyword query “DB IR 

Tom.” We use the extended trie structure to find 

nodes 15 and 12 as the top-2 relevant nodes. We 

propose minimal-cost trees (MCTs) to construct the 

answers rooted at nodes 15 and 12. We develop 

effective ranking techniques to rank XML elements 

on the inverted lists in the extended trie structure. We 

can employ threshold-based algorithms to 

progressively and efficiently identify the top-k 

relevant answers. Moreover, our approach 

automatically supports the “OR” semantics.  

 

4.1 Minimal-Cost Tree: 

In this section, we introduce a new 

framework to find relevant answers to a keyword 

query over an XML document. In the framework, 

each node on the XML tree is potentially relevant to 

the query with different scores. For each node, we 

define its corresponding answer to the query as its 

subtree with paths to nodes that include the query 

keywords. This subtree is called the “minimal-cost 

tree” for this node. Different nodes correspond to 

different answers to the query, and we will study how 

to quantify the relevance of each answer to the query 

for ranking .Given a keyword query, each node n in 

the XML document is potentially relevant to the 

query. We introduce the notion of minimal-cost tree 

rooted at node n to define the answer to the query. 

 

4.2 Ranking Minimal-Cost Trees: 

In this section, we discuss how to rank a 

minimal-cost tree. We first introduce a ranking 

function for exact search and then extend the ranking 

function to support fuzzy search  

 

4.2.1 Ranking for Exact Search. 

To rank a minimal-cost tree, we first 

evaluate the relevance between the root node and 

each input keyword, and then combine these 

relevance scores for every input keyword as the 

overall score of the minimal-cost tree. We propose 

two ranking functions to compute the relevance score 

between the root note n to an input keyword ki. The 

first one considers the case that n contains ki. The 

second one considers the case that n does not contain 

ki but has a descendant containing ki. Our first 

ranking method models each node n as a document 

that includes the terms contained in the tag name or 

text values (#PCDATA) of n. We can then use the 

idea of TF/IDF in IR literature to score the relevance 

of node n to a keyword.  

However, if n does not contain ki, the first 

ranking function cannot quantify the relevancy 

between node n and keyword ki. To address this 

issue, we extend the first ranking function and 

propose the second ranking function. Given a 

keyword kj, a quasi-content node n for kj, suppose p 

is the pivotal node for n and kj. The distance between 

n and p can indicate how relevant the node n is to 

keyword kj. The smaller the distance between n and 

p, the larger relevancy score between n and kj should 

be. Based on this observation, we proposed the 

second ranking function to compute the relevance 

between n and kj as follows: 

 
Where P is the set of pivotal nodes for n and 

kj, α is a damping factor between 0 and 1, and Δ(n,p) 

denotes the distance between node n and node p. As 

the distance between n and p increases, n becomes 

less relevant to kj. As a trade off, our experiments 

suggested that a good value for α is 0.8, and our 

method achieves the best performance at this point. 

This is because it will degrade the importance of 

ancestor nodes for a smaller α and thus may miss 

meaningful and relevant results; on the contrary, it 

will involve some duplicates and less important 

results for a larger α.  
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V. Conclusion 
In this paper, we studied the problem of 

fuzzy type-ahead search in XML data. We proposed 

effective index structures, efficient algorithms, and 

novel optimization techniques to progressively and 

efficiently identify the top-k answers. We examined 

the LCA-based method to interactively identify the 

predicted answers. We have developed a minimal-

cost-tree-based search method to efficiently and 

progressively identify the most relevant answers. We 

proposed a heap-based method to avoid constructing 

union lists on the fly. We devised a forward-index 

structure to further improve search performance. We 

have implemented our method, and the experimental 

results show that our method achieves high search 

efficiency and result quality. 
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