
 Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 4, Jul-Aug 2013, pp.1032-1036

1032 | P a g e

Parallelization of Cryptographic Algorithm & Key Identification

Using Genetic Algorithm Approach

Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N
School of computer science & Engineering, VIT University, Vellore-632014, Tamilnadu, India

Abstract

Now days, the amount of transfer of data

over large network is increasing day by day. As

there is increase in data transfer, simultaneously

there are security threats that are arising with it.

In this paper we are proposing cryptographic

systems that make use of genetic algorithm to

securely transfer the data over large network.

This approach helps us to provide high

achievability to transfer data securely. The

techniques that we are using for encryption &

decryption are based on genetic algorithm which

will help us to efficiently encrypt the data which is

resistible for any kind of external attacks. Then

we will parallelize it using Open Mp language

which accelerates the transformation of data to

achieve high security. Then analyze the

performance for both code serial and parallel

execution.

Keywords: The genetic algorithm, Linear

generation Equation, Genetic operator, Open MP

I. Introduction
We know that, Cryptography is the study of

encrypting the information & producing

incomprehensible data which is unreadable by the

third person who is accessing data without prior

permission of sender or receiver. Now a day various

application like the social networking, business

applications, E-commerce, in military or satellite

communication etc need lot of data transmission over

large data network. Here is the main concern for

privacy comes into picture. As the above said areas

are very much vulnerable to attacks many researchers

are working on it. We already have many algorithms

for encrypting & decrypting the data. Encryption is a

process of transferring simple text into cipher text

and decryption is a process transferring cipher text

into simple text which is readable and generate a key

which is a shared between processes of cryptography

[9]. Encryption and decryption are opposite to each

other for transforming data. The genetic algorithm

that we are using takes combination of features of

cryptography and genetic operator. The genetic

operators that we are using are crossover & mutation.

In crossover we combine two strings to get the new

better string. The mutation is the process of changing

any bit from the given set of bits. So here we can use

the concept of Open Mp to parallelize the code. The

generation of random number can also be parallelized

so we will always get different randomized number

from different-different threads. Here we are using

the concept of symmetric key.

Fig.1 Symmetric key encryption & decryption

In the cryptography there are two types by

which we can encrypt and decrypt the text i.e.

symmetric and asymmetric key. The cryptographic

system in which sender & receiver use the same key

for encryption & decryption data is called symmetric

key cryptography [1]. The Cryptographic system in

which sender and receiver use the different key for

encryption & decryption data is called asymmetric

key cryptography. As we know the data to be transfer

is very large we need very efficient & fast algorithm

to encrypt or decrypt it [9]. The parallelization of

genetic algorithm yields better performance that will

be very useful for transferring large data securely

using this parallelized code. Now we will discuss all

the issues in detail.

II. Linear generator Equation

Firstly here we a creation a sequence of

random number by using Congruential method then

next generation number random number with the help

of Crossover and Mutation which is a operator for

genetic algorithm.

Xn+1 = (a * Xn + C) mod m; (1)

Xn= a randomly generated value initially it is

assume.

a= multiplier which randomly generated

c= increment which randomly generated

 m= modulus (0<m<10)

Message in

Plain text

Message in
ciphertext

Message in

Plain text

Message in
ciphertext

Encryptio

n
decrypti

on

Insecure network

 Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 4, Jul-Aug 2013, pp.1032-1036

1033 | P a g e

III. Generic Operators:
From the three operators of genetic

algorithm i.e. CROSSOVER, SELECTION and

MUTATION [6] here we will be using only two

operators i.e. Crossover and Selection for our

purpose.

A. Crossover

It is a genetic operator which is used to join

two strings to get an efficient string. In this process

we take more than one parent process and generate a

child solution for that process [2] this crossover

genetic operator generate random number which

perform in parallel.

There a three types of crossover [6]:

 Trade of uniform crossover

 one site Crossover

 Cut and splice

In this paper we will be concentrating on

one site Crossover. This method is selected because

of its advantage over traditional methods that we can

easily exchange information through it very

effectively as per our requirements.

We know that the data while transferring is

converted into bits and then sent over the network so

our next method i.e. MUTATION changes any bit

randomly from the set of bit to achieve high security.

As the bits are changed its very difficult for intruder

to withdraw the information from it. As we are going

to parallelise the code the different thread will play

very vital role in changing the bits.

IV. CRYPTOGRAPHY: GENETIC

ALGORITHM APPROACH
3.1. Algorithm

3.1.1 Generation Linear Equation of First order

using Random Number [7]

In this we use Linear Equation for

generating first order variables [5]. Initially we will

consider four random variable a, c, m. Xn. Now as per

our formula of generating linear equation we will

substitute this assumed 4 values to calculate next

value. After that iteratively we will put the value of

Xn+1 that is generated from the previous calculation.

This iterative process will terminate only when it will

complete the iterations equal to the length of the

message. Here we can see that the initial parameters

are unchanged throughout the process. A good

randomization function must be used to get better

initial values [6].

3.1.2 Crossovers and Mutation:

After the above defined process we have

some random numbers generated that are equal to the

length of message. Now this numbers are converted

into binary formats and length of each binary number

is equated by padding some zeros at the beginning of

that number[4]. Now here we will be using the

crossover operation of genetic algorithm in which we

will swap some bits of one string with the other

string. At this stage two numbers are differently

changed from their initial values to the new values.

Let’s illustrate it with an example.

Consider two numbers of 8 bit,

187 10111100 10000100

132 10000100 10111100

As of now we have just performed crossover now we

will deal with mutation. Mutation is the process of

changing the bit from the available set [3]. Here is the

main function of mutation operator to change the bit

any the selection of bit which is to be changed is

done probabilistically so security increases. Finally

after performing Crossover & mutation for several

iterations we will get series of randomized number

that we will again convert into decimal format for our

further use.

Now the numbers which we will get finally

will be in decimal format, so we will select the

smallest number from it & the specific digit that is

mutually decided between two parties will be

subtracted from the ASCII value of our text message

and the number which we will get after that is sent

over the network along with the key.

3.2. For Example

3.2.1 Encryption

In this method the simple text converted into cipher

text, using above algorithm

 Let, message is ABCDEFGHIJ its length is

10.

 Now applying linear Congruential equation,

we will get the generated numbers that are

similar in length of text message i.e.10.

Let, numbers are: 106, 239, 538, 1211, 2725, 6132,

13798, 31046, 69854 and 157172. Now, Select two

numbers from a group that starting (106,239), (538,

1211), (2725, 6132), (13798, 31046), (69854,

157172).

Then apply crossover and mutation iteratively:

106= 0000000001101010

239=0000000011101111

After performing crossover

0000000101101010 =362

0000000111101111=495

Now we identify that some binary digits

have been changed. Performing mutation

0000000110001010 =394

0000000100001111= 271

After applying mutation, numbers are (394, 271).

Now we easily identified how group pair is

changed from (106,239) to (394,271). However we

find that both crossover and mutation increases

security and after performing some iteration the

whole data become secure.

Now after first iteration of crossover and

mutation number will be obtained

(394, 271, 1018, 1371, 2885, 5652, 13318, 30886,

35215, 39069)

 Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 4, Jul-Aug 2013, pp.1032-1036

1034 | P a g e

Now took a smallest number i.e. 271 and subtract

second right digit from ASCII values of each

character of message.

Input

Data

Ascii

Values

Generated

number

Number

to be

subtracted

Cipher

text

A 65 394 9 56

B 66 271 7 59

C 67 1018 1 66

D 68 1371 7 61

E 69 2885 8 61

F 70 5652 5 65

G 71 13318 1 70

H 72 30886 8 64

I 73 35215 1 72

J 74 39069 6 68

Table 1 Encryption procedure

The encrypted message is > @CA=@D@GJ

The Cipher text :{ 56,59,66,61,61,65,70,64,72,68

{key of {a, c, m, Xn }}

3.2.2 Decryption

At a user side we get a whole encrypted data

along with key {a, c, m, Xn}. As we know decryption

is an opposite process of encryption for that a

receiver side inverse of encryption will be perform

[8]. After that many iteration perform in decryption

as they performed in encryption using cipher key.

Cipher

text

Number to be

added

ASCII

Values

Input

Data

56 9 65 A

59 7 66 B

66 1 67 C

61 7 68 D

61 8 69 E

65 5 70 F

70 1 71 G

64 8 72 H

72 1 73 I

68 6 74 J

 Table 2 Decryption procedure

V. RESULTS
As our main aim is to parallelize the

program to get fast output according to that we tested

it for various number of file size. Here we present the

table representing the throughput and the graphical

representation with core different core processor.

A) For 2 core machine:

File Size Serial

Execution

Time

Parallel

Execution

Time

Speed Up

1MB 0.33ms 0.19ms 1.67

10MB 1.5ms 0.82ms 1.81

50 MB 11.2ms 5.6ms 2

100 MB 21.4ms 9.5ms 2.25

150MB 37.3ms 13.4ms 2.78

B) For 4 core machine:

File Size Serial

Execution

Time

Parallel

Execution

Time

Speed Up

1MB 0.33ms 0.11ms 3

10MB 1.5ms 0.48ms 3.12

50 MB 11.2ms 2.71ms 4.12

100 MB 21.4ms 3.4ms 6.3

150MB 37.3ms 4.72ms 7.89

C) For 8 core machine:

File Size Serial

Execution

Time

Parallel

Execution

Time

Speed Up

1MB 0.33ms 0.07ms 4.67

10MB 1.5ms 0.28ms 5.2

50 MB 11.2ms 1.49ms 7.51

100 MB 21.4ms 2.4ms 8.9

150MB 37.3ms 3.49ms 10.67

D) Performance Analysis:

File Size 2 Core 4 Core 8 Core

1MB 1.67 3 5.67

10MB 1.81 3.12 6.2

50 MB 2 4.12 8.51

100 MB 2.25 6.3 9.9

150MB 2.78 7.89 11.67

Table 3 Performance analysis

We can see that parallelized program with

different core processor which gives better output in

terms of time taken for execute.

 Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 4, Jul-Aug 2013, pp.1032-1036

1035 | P a g e

Fig 2 Graph showing the perfomance analysis

As we can see from the performance of our

algorithm on different-different cores we can predict

the future speed up for given large size of file.

Fig 3 speed up Curve for known file size

By looking in this graph, we say that the

speed up factor is seems to be increasing as file size

is increase in a constant growth rate. Now we are

using logarithms for transfroming this equation into

linear equation.

The linear equation is as follows,

Y = m + cX (2)

Where,

 c = constant

 m = speed up factor

Projected values

File Size 8 Core Projected

Values

1MB 5.67 5.67

10MB 6.4 6.4

50 MB 8.51 9.64

100 MB 9.9 13.69

150MB 11.67 17.7

200MB - 21.81

300MB - 29.92

400MB - 38.01

500MB - 46.13

Table 4 projected values

Fig 4 Speed up curve for projected values

Proof:

We can prove it by using mathematical

formula. Lets consider the speed up on 8 core

machine for a given size file then it will follow the

equation (2) i.e.

 Y = c + mX

Solution: We will use mathematical induction for

proving the above statement.

For 8 core machine,

Lets take initial values of X & Y

Y = 5.67 for file size of X = 1MB

Y= 6.4 for file size of X = 10MB

Putting this value in our equation,

We will get,

c = 5.58, m = 0.0811.

so now extending it to size of 100MB, 150 MB it

comes true.

For all values it will come true so we can say that this

equation holds for all given size of file.

VI. Conclusion
We can see that the genetic algorithm

operator that we have used gives better performance

as compared to other algorithm. If we write the same

alphabet in our message like ZZZZZZ still it will

generate different key and the value for each

alphabet. The number of times we iteratively repeat

the process of crossover & mutation we would be

keep getting more secure encryption. Even successful

parallelization yields better results in terms of

execution time. As we have not yet used all the

operations of genetic algorithm in future we can used

it get better security.

References

[1] Benjamin Arazi, “Vehicular

Implementations of Public Key

Cryptographic Techniques”, IEEE

TRANSACTIONS ON VEHICULAR

0

2

4

6

8

10

12

150 KB 5 MB 25 MB 50 MB 100MB

2 core

4 core

8 core

0

5

10

15

20

8 Core

0

5

10

15

20

25

30

35

40

45

50

1
M

B

1
0

M
B

5
0

 M
B

1
0

0
 M

B

1
5

0
M

B

2
0

0
M

B

3
0

0
M

B

4
0

0
M

B

5
0

0
M

B

8 Core

 Ghanshyam Gagged, Krishnakant Pandey, Shubham Asati, Jaisankar N / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 4, Jul-Aug 2013, pp.1032-1036

1036 | P a g e

TECHNOLOGY, VOL. 40, NO. 3,pp 646-

653, AUGUST 1991.

[2] Murat Kantarcioglu, Wei Jiang, Ying Liu,

and Bradley Malin, “A Cryptographic

Approach to Securely Share and Query

Genomic Sequences”, IEEE

TRANSACTIONS ON INFORMATION

TECHNOLOGY IN BIOMEDICINE, VOL.

12, NO. 5,pp 606-617, SEPTEMBER 2008

[3] Jong-Bae Park, Young-Moon Park, Jong-

Ryul Won, and Kwang Y. Lee, “An

Improved Genetic Algorithm for Generation

Expansion Planning”, IEEE

TRANSACTIONS ON POWER

SYSTEMS, VOL. 15, NO. 3, pp 916-

922,AUGUST 2000.

[4] K. F. Man, K. S. Tang, and S. Kwong,

“Genetic Algorithms: Concepts and

Applications”, IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS, VOL. 43,

NO. 5,pp 519-534, OCTOBER 1996.

[5] R. H. Torres, G. A. Oliveira, J. A. M.

Xexéo, W. A. R. Souza and R. Linden,

“Identification of Keys and Cryptographic

Algorithms Using Genetic Algorithm and

Graph Theory”, IEEE LATIN AMERICA

TRANSACTIONS, VOL. 9, NO. 2, APRIL

2011.

[6] Thang Nguyen Bui and Byung Ro Moon,

“Genetic Algorithm and Graph

Partitioning”, IEEE TRANSACTIONS ON

COMPUTERS, VOL. 45, NO. 7,pp 841-855

JULY 1996.

[7] Yao-xue zhang, Kaoru Takahashi, Nor10

Shiratori, and Shoichi Noguchi, “An

Interactive Protocol Synthesis Algorithm

Using a Global State Transition Graph”,

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 14. NO. 3,pp 394-

404, MARCH 1988.

[8] Franciszek Seredynski and Albert Y.

Zomaya, “Sequential and Parallel Cellular

Automata-Based Scheduling Algorithms”,

IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, VOL.

13, NO. 10, pp 1009-1023,OCTOBER 2002.

[9] Yi-Ta Wu, and Frank Y. Shih, “Genetic

Algorithm Based Methodology for Breaking

the Steganalytic Systems”, IEEE

TRANSACTIONS ON SYSTEMS, MAN,

AND CYBERNETICS—PART B:

CYBERNETICS, VOL. 36, NO. 1, pp 24-

31,FEBRUARY 2006.

