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ABSTRACT 
The onset of Rayleigh-Bénard convection 

in a horizontal layer of ferrofluid is investigated 

by using Galerkin weighted residuals method. 

Linear stability theory based upon normal mode 

analysis is employed to find expressions for 

Rayleigh number and critical Rayleigh number. 

The boundaries are considered to be free-free, 

rigid-free and rigid-rigid. It is also observed that 

the system is more stable in the case of rigid-rigid 

boundaries and least stable in case of free-free 

boundaries. ‘Principle of exchange of stabilities’ is 

valid and the oscillatory modes are not allowed. 

The effect of magnetic parameter on the 

stationary convection is investigated graphically 

for all types of boundary conditions. 

 

Key words: Ferrofluid, Convection, Magnetic 

thermal Rayleigh number, Galerkin method, Prandtl 
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Nomenclature 

a   wave number   

B   magnetic induction 

g  acceleration due to gravity 

H  magnetic field intensity 

k  thermal conductivity   

K1  pyomagnetic coefficient 

M  magnetization 

M1  buoyancy magnetization 

M3                       magnetic parameter 

N  magnetic thermal Rayleigh number 

n  growth rate of disturbances 

p  pressure (Pa) 

Pr    Prandtl number 

q                   fluid velocity  

R    Rayleigh number 

Rc                      critical Rayleigh number 
t  time   

T  temperature  

Ta  average temperature 

u, v, w    fluid velocity components  

(x, y, z)   space co-ordinates  
 

Greek symbols 

α  thermal expansion coefficient  

β  uniform temperature gradient 

μo   magnetic permeability 

μ   viscosity  

 

ρ   density of the fluid

  (ρc )                    heat capacity of  fluid                   
κ     thermal diffusivity  

φ'  perturbed magnetic potential 

ω   dimensional frequency  

χ  magnetic susceptibility  

Superscripts 

 '  non dimensional variables 

' '  perturbed quantity 

Subscripts 

0  lower boundary 

1              upper boundary 

H  horizontal plane 

 

I. Introduction 
Ferrofluid formed by suspending submicron 

sized particles of magnetite in a carrier medium such 

as kerosene, heptanes or water. The attractiveness of 

ferrofluids stems from the combination of a normal 

liquid behavior with sensitivity to magnetic fields. 

Ferrofluid has three main constituents: ferromagnetic 

particles such as magnetite and composite ferrite, a 

surfactant, and a base liquid such as water or oil. The 

surfactant coats the ferromagnetic particles, each of 

which has a diameter of about 10 nm. This prevents 

coagulation and keeps the particles evenly dispersed 

throughout the base liquid. Its dispersibility remains 

stable in strong magnetic fields.  

 Ferromagnetic fluid has wide ranges of 

applications in  instrumentation, lubrication, 

printing, vacuum technology, vibration damping, 

metals recovery, acoustics and medicine, its 

commercial usage includes vacuum feed through for 

semiconductor manufacturing in liquid-cooled 

loudspeakers and computer disk drives etc. Owing 

the applications of the ferrofluid its study is 

important to the researchers. A detailed account on 

the subject is given in monograph has been given by 

Rosensweig (1985). This monograph reviews 

several applications of heat transfer through 

ferrofluid. One such phenomenon is enhanced 

convective cooling having a temperature-dependent 

magnetic moment due to magnetization of the fluid. 

This magnetization, in general, is a function of the 

magnetic field, temperature, salinity and density of 

the fluid.  In our analysis, we assume that the 

magnetization is aligned with the magnetic field. 
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Convective instability of a ferromagnetic fluid for a 

fluid layer heated from below in the presence of 

uniform vertical magnetic field has been considered 

by Finlayson (1970). He explained the concept of 

thermo-mechanical interaction in ferromagnetic 

fluids. Thermoconvective stability of ferromagnetic 

fluids without considering buoyancy effects has 

been investigated by Lalas and Carmi (1971).  

Linear and nonlinear convective instability of a 

ferromagnetic fluid for a fluid layer heated from 

below under various assumptions is studied by many 

authors Shliomis (2002), Blennerhassett et.al.(1991), 

Gupta and Gupta (1979), Stiles and Kagan (1990), 

Sunil et.al. (2005, 2006), Sunil, Mahajan (2008), 

Venkatasubramanian and Kaloni (1994), Zebib 

(1996), Mahajan (2010). However, a limited effort 

has been put to investigate the instability in rigid-

rigid and rigid-free boundaries.  In this paper an 

attempt  has been made to study the linear 

convective instability of a ferromagnetic fluid for a 

fluid layer heated from below by Galerkin weighted 

residuals method for all type of boundary 

conditions.  

 

II. Mathematical Formulation of the 

Problem 
Consider an infinite, horizontal layer of an 

electrically non-conducting incompressible 

ferromagnetic fluid of thickness ‘d’, bounded by 

plane z = 0 and  z = d. Fluid layer is acted upon by 

gravity force g (0, 0, -g) and a uniform magnetic field 

k̂Hext

0H  acts outside the fluid layer. The layer is 

heated from below such that a uniform temperature 

gradient 









dz

dT
 is to be maintained. The 

temperature T at z = 0 taken to be T0 and T1 at z = d, 

(T0 > T1) as shown in Fig.1. 

 

Fig.1 Geometrical configuration of the problem 
 

The mathematical governing equations 

under Boussinesq approximation for the above model 

(Finlayson (1970), Resenweig (1997), and Mahajan 

(2010) are:  

0. q ,                                                                   (1) 

 HMqg
q

 .p
dt

d
0

2

00  , (2)

    TkT.qC
dt

dT
C 2

f0f0    ,           (3)    

Maxwell’s equations, in magnetostatic limit:

0. B , 0 H ,   .MHB 0           (4) 

The magnetization has the relationship 

    1100 TTKHHM
H


H

M .      (5) 

The density equation of state is taken as 

  aTT1   .                                        (6) 

Here ρ, ρ0, q, t, p, μ, μ0, H, B, C0, T, M, K1,  

and α are the fluid density, reference density, 

velocity, time, pressure, dynamic viscosity (constant), 

magnetic permeability, magnetic field, magnetic 

induction, specific heat at constant pressure, 

temperature, magnetization, thermal conductivity and 

thermal expansion coefficient, Ta is the average 

temperature given by 






 


2

TT
T 10

a , HH ,

MM and  a00 T,HMM  . The magnetic 

susceptibility and pyomagnetic coefficient are 

defined by 

aT,HH

M

















  

and 

aT,H

1
T

M
K

















 

respectively. 

Since the fluid under consideration is 

confined between two horizontal planes z = 0 and z = 
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d, on these two planes certain boundary conditions 

must be satisfied.  We assume the temperature is 

constant at z = 0, z = d, thus boundary conditions 

[Chandrasekhar (1961), Kuznetsov and Nield (2010)] 

are  

0zat      0D,TT  0,
z

w
d 

z

w
 0,w 02

2

1 








 ,

  
           

dzat     0D  , TT  0,
z

w
d 

z

w
 0,w 12

2

2 








 .      (7)

 

The parameters λ1 and   λ2 each take the 

value 0 for the case of a rigid boundary and ∞ for a 

free boundary. 

2.1 Basic Solutions 

The basic state is assumed to be a quiescent 

state and is given by                                       

    0w,v,uqw,v,uq b 
 , 

 zpp b
 ,

  ab TzzTT 
,

  
k̂

1

TTK
HH ab1

b 











  ,      

 
k̂

1

TTK
MM ab2

b 











   , 

extHMH   .                                              (8) 

2.2   The Perturbation Equations 

We shall analyze the stability of the basic state by 

introducing the following perturbations: 

qqq b
 ,   pzpp b  ,    zTT b  , 

  HzHH b     MzMM b

                

 (9) 

where q′(u,v,w), δp, θ, H′(H'1,H'2,H'3) and 

M′(M'1,M'2,M'3)  are perturbations in velocity, 

pressure, temperature, magnetic field and 

magnetization. These perturbations are assumed to be 

small and then the linearized perturbation equations 

are  

0. q ,                                                                (10) 

  






















 k̂Kk̂

z
1

1

K
k̂gp

t
1

11
0

2 
 q

q

     

                                                                                                   (11) 

w
t

2 



,                                       (12) 

z
K

zH

M

H

M
1 12

1

2

0

0

1

2

0

0
































              

                                                                               

(13) 

  where   and   1H  is the perturbed 

magnetic potential and 
 

f00cρ

k
κ   is  thermal 

diffusivity of the fluid.   

And boundary conditions are  

0zat       0D ,TT  0,
z

w
d 

z

w
 0,w 02

2

1 








 ,

  
  

dzat       0D,TT  0,
z

w
d 

z

w
 0,w 12

2

2 










                    

                                                                               

(14)
 

We introduce non-dimensional variables as  

,
d

z,y,x
)z,y,x( 







 
 ,

d


 qq

,t
d

κ
t

2
 ,p

κ

d
p

2




 ,
d




 
12

1

1
dK

1





  . 

There after dropping the dashes ( '' ) for simplicity. 

Equations (10)-(14), in non dimensional form can be 

written as  

0. q ,                                                                (15) 

  k̂
z

RMk̂M1Rp
tPr

1 1
11

2









q

q
,                                                                                                

                                                                               (16) 

w
t

2 



,                                             (17) 

 
zz

1MM
2

1

2

31

2

3










.                    (18)

 where non-dimensional parameters are: 

ρκ

μ
P r  is Prandtl number; 

μκ

dgαρ
R

4

0 
  is 

Rayleigh number; 
 

   
1g

K
M 

0

2

10

1



 measure 

the ratio of magnetic to gravitational forces, 

 
  

1μκ

dK
RMN 

422

10

1



 is magnetic thermal 

Rayleigh number; 
 

  
1

H

M
1

M 
0

0

3














 measure the 

departure of linearity in the magnetic equation of 

state and values from one  00 HM  higher 

values are possible for the usual equation of state. 

The dimensionless boundary conditions are 

0zat       0Dφ   ,1T  0,
z

w
 

z

w
 0,w

2

2

1 








   

and 1zat        0Dφ    0T  0,
z

w

z

w
 0,w

2

2

 2 










                  
.                                                                              (19) 
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Operating equation (10) with curl, .curlk̂ we get 

  1

2

H1

2

H1

42 DRMM1Rww
tPr

1





.                                                                                    

                                                                                         (20) 

where ,2

H  is two-dimensional Laplacian operator 

on horizontal plane.

                                   

 
 

III. Normal Mode Analysis 
Analyzing the disturbances of normal modes 

and assume that the perturbation quantities are of the 

form  

     ntyikxikexpΦ(z)Θ(z),W(z),φ,w, yx1 
, 

(21) 

 
where, kx, ky are wave numbers in x- and y- direction 

and n is growth rate of disturbances.  

Using equation (21), equations (20) and (17) - (18) 

becomes 

    0,DΦRMaΘM1RaWaD
Pr

n
aD 1

2

1

22222 









                                                                                            (22) 

  0,ΘnaDW 22                                     (23) 

  0MaDD 3

22  .                              (24) 

where 
dz

d
D  ,  and a

2 
=  k

2
x+ k

2
y is dimensionless 

the resultant wave number. 

The boundary conditions of the problem in view of 

normal mode analysis are 
 (i) when both boundaries free 

0,1zat       0D   ,0  0,WD 0,W 2 
 
.                    

                                                                      (25a) 

 (ii) when both boundaries rigid 

0,1zat       0 D  ,0  0,DW 0,W 
 
.                                                                                               

                                                                       (25b) 

 (ii) when lower rigid and upper free boundaries 

0,zat       0D   ,0  0,DW 0,W 
 

1zat       0D   ,0  0,WD 0,W 2  .
  

                                                                              

                                                                             (25c) 

 

IV. Method of solution 
The Galerkin weighted residuals method is 

used to obtain an approximate solution to the system 

of equations (22) – (24) with the corresponding 

boundary conditions (25). In this method, the test 

functions are the same as the base (trial) functions. 

Accordingly W, Θ and Φ are taken as 





n

1p

pp

n

1p

pp

n

1p

pp DCDΦ,B ,WAW .                                                                        

                                                                                          (26) 

Where Ap, Bp and Cp are unknown coefficients, p =1, 

2, 3,...N and the base functions Wp, Θp and DΦp are 

assumed in the following form for free-free, rigid-

rigid and  rigid-free boundaries respectively: 

, z pπosCDΦ z,  πposCΘ , z  pπosCW ppp 

                                                                  (27) 

,zzD,zz,zz2zW 1pp

p

1pp

p

3p2p1p

p

 

                                                                    (28) 

     1pp

p

1pp

p

p2

p zzD,zz,z22pz1zW  

.
                                                                    (29) 

such that Wp, Θp and Φp satisfy  the corresponding 

boundary conditions. Using expression for W, Θ and 

DΦ in equations (22) – (24) and multiplying first 

equation by Wp second equation by Θp and third by 

DΦp and integrating in the limits from zero to unity, 

we obtain a set of 3N linear homogeneous equations 

in 3N unknown Ap, Bp and Cp;  p =1,2,3,...N. For 

existing of non trivial solution, the vanishing of the 

determinant of coefficients produces the 

characteristics equation of the system in term of 

Rayleigh number R. 

 

V. Linear Stability Analysis  
5.1 Solution for free boundaries:  

We confined our analysis to the one term 

Galerkin approximation; for one term Galerkin 

approximation, we take N=1, the appropriate trial 

function are given as 

, z   πcosDΦz,   πcosΘ , z   πcosW ppp     (30) 

which satisfies  boundary conditions 

0zat       0D  ,0  0,WD 0,W 2   and 

1zat       0 D  ,0  0,WD 0,W 2  .       (31) 

Using trial function (30) boundary conditions (31) we 

get the expression for Rayleigh number R as: 

    

 31

2

3

222

222222

3

22

MMaMaa

ana
Pr

n
aMa

R














.                                                                              (32) 

For neutral stability, the real part of n is zero. Hence 

we put n = iω, in equation (32), where ω is real and is 

dimensionless frequency, we get 

    

 31

2

3

222

222222

3

22

MMaMaa

aia
Pr

i
aMa

R









 




.

 

                                                                             (33) 

Equating real and imaginary parts, we get 

21 iR  ,                                                  (34) 

where  
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    

 31

2

3

222

2
22222

3

22

1
MMaMaa

Pr
aaMa

Δ









 




,                                                                              (35) 

and 

  

 31

2

3

222

22

3

22

2
MMaMaa

Pr

1
1aMa

Δ












 .    (36) 

Since R is a physical quantity, so it must be 

real. Hence, it follow from the equation (34) that 

either ω = 0 (exchange of stability, steady state) or Δ2 

= 0 (ω # 0 overstability or oscillatory onset). 

But Δ2 # 0, we must have ω = 0, which means that 

oscillatory modes are not allowed and the principle of 

exchange of stabilities is satisfied. This is the good 

agreement of the result as obtained by Finlayson 

(1970). 

 

(a) Stationary  Convection                 
Consider the case of stationary convection 

i.e., ω = 0, from equation (33), we have 

   
 31

2

3

222

3

22322

MMaMaa

Maa
R




 .           (37) 

This is the good agreement of the result as obtained 

by Finlayson (1970). 

In the absence of magnetic parameters M1=M3=0, the 

Rayleigh number R for steady onset is given by  

 
2

322

a

a
R


 .                                     (38) 

Consequently critical Rayleigh number is given by

4

27
Rc

2
 .  

This is exactly the same the result as 

obtained by Chandrasekhar (1961) in the classical 

Bénard problem.
 
     

 

5.2 Solution Rigid-Rigid Boundaries 

We confined our analysis to the one term 

Galerkin approximation; the appropriate trial function 

for rigid-rigid boundary conditions is given by 

     ,z1zD,z1z,z1zW pp

22

p 

                                                                                          (39) 

which satisfied  boundary conditions 

0zat       0D   ,0  0,DW 0,W 
 
   and 

1zat       0D   ,0  0,DW 0,W  .     (40) 

Using trial function (39) boundary 

conditions (40) we get the expression for Rayleigh 

number R as: 
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For neutral stability, the real part of n is zero. Hence 

we put n = iω, in equation (41), we get 
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                                                                             (42) 

Equating real and imaginary parts, we get 

43 iR  ,                                                 (43) 

where  
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and 
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Since R is a physical quantity, so it must be 

real. Hence, it follow from the equation (43) that 

either ω = 0 (exchange of stability, steady state) or Δ2 

= 0 (ω # 0 overstability or oscillatory onset). 

But Δ2 # 0, we must have ω = 0, which means that 

oscillatory modes are not allowed and the principle of 

exchange of stabilities is satisfied for rigid –rigid 

boundaries.  

 

(b) Stationary  Convection                 
Consider the case of stationary convection 

i.e., ω = 0, from equation (42), we have 
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In the absence of magnetic parameters 

M1=M3=0, the Rayleigh number R for steady onset is 

given by  

  10a504a24a
a27

28
R 224

2
 .    (47) 
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This is exactly the same the result as obtained by 

Chandrasekhar (1961) in the classical Bénard 

problem for rigid -rigid boundaries.
 
     

5.3 Solution Rigid-Free Boundaries 

The appropriate trial function to the one term 

Galerkin approximation for rigid-free boundary 

conditions is given by 

      z1zD,z1z,z23z1zW pp

2

p 

,                                                                                     (48) 

which satisfied  boundary condition 

0zat       0D  ,0  0,DW 0,W 
 
and  

1zat       0D   ,0  0,WD 0,W 2  .
       

(49) 

It is observed that oscillatory modes are not 

allowed and the principle of exchange of stabilities is 

satisfied for rigid -free boundaries.  

The eigenvalue equation for stationary case takes the 

form  
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In the absence of magnetic parameter M1=M3=0, the 

Rayleigh number R for stationary convection is given 

by  

  10a4536a432a19
a507

28
aR 224

2


.                                                                  (51) 

This is the good agreement of the result as 

obtained by Chandrasekhar (1961) in the classical 

Bénard problem. 

 

VI. Results and Discussion 
Expressions for Stationary convection Rayleigh 

number are given by equations (37), (46) and (50) for 

the case of free-free, rigid-rigid and rigid-free 

boundaries. It is observed that oscillatory modes not 

allowed for layer of ferrofluid heated from below. 

We have discussed the results numerically and 

graphically. The stationary convection curves in (R, 

a) plane for various values of magnetization M3 and 

fixed values of M1=1000, other parameters as shown 

in Fig. 2.  It is clear that the linear stability criteria to 

be expressed in thermal Rayleigh number, below 

which the system is stable and unstable above. It has 

been found that the Rayleigh number decrease with 

increase in the value of magnetization M3 thus 

magnetization M3 destabilizing effect on the system. 

It is also found that stability of fluid layer in most 

stable in rigid-rigid boundaries and least stable free-

free boundaries. It is also observed that oscillatory 

modes are not allowed and the principle of exchange 

of stabilities is satisfied for all type of boundary 

conditions i.e free-free, rigid-rigid and rigid -free 

boundaries.  

  

 

Fig.2 Variation of critical Rayleigh number R with wave number a for different value of magnetization M
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VII. Conclusions 
A linear analysis of thermal instability for 

ferrofluid for free-free, rigid-rigid and rigid -free 

boundaries is investigated. Galerkin-type weighted 

residuals method is used for the stability analysis. 

The behavior of magnetization on the onset of 

convection analyzed for all type of boundaries. 

Results has been depicted graphically.  

The main conclusions are as follows:  

1. For the case of stationary convection, the 

magnetization parameter destabilized the fluid 

layer for all type of boundary conditions. 

2. The ‘principle of exchange of stabilities’ is valid 

for all type of boundary conditions. 

3. The oscillatory modes are not allowed for the 

ferromagnetic fluid heated from below. 

4. It is also found that stability of fluid layer in 

most stable in rigid-rigid boundaries and least 

stable in free-free boundary conditions. 
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