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Abstract 
This paper presents an analysis for Self 

Organizing Map (SOM) using Response Surface 

Methodology (RSM) to find the optimal 

parameters to improve performance. This 

comparative explores the relationship between 

explanatory variables (numerical and categorical) 

such a competitive algorithm and learning rate 

and response variables as training time and 

quality metrics for SOM. Response surface plots 

were used to determine the interaction effects of 

main factors and optimum conditions to the 

performance in classification of partial discharge 

(PD). 

 

I. Introduction 
Cluster analysis, grouping or clustering 

have been studied to represent large amount data 

quite a long time. In principle, it is employed to 

generate some representative groups from numerous 

historical data or cases. Furthermore, it is used to 

achieve the aim of understanding the structure of 

original data distribution and even executing data 

analysis for inference. Competitive learning is an 

efficient tool for unsupervised neural networks like 

Self Organizing Maps. 

In the field of data analysis two 

methodologies frequently encountered are supervised 

and unsupervised clustering methodologies. While 

supervised methods mostly deal with training 

classifiers for known class, unsupervised clustering 

provides exploratory techniques for pattern 

recognition in data. With the large amount data being 

generated from the different systems everyday, what 

makes a system intelligent is its ability to analyze the 

data for efficient decision-making based on known or 

new cluster discovery. The partial discharge is a 

common phenomenon which occurs in insulation of 

high voltage, this definition is given in IEC 60270 

[1]. In general, the partial discharges are in 

consequence of local stress in the insulation or on the 

surface of the insulation. This phenomenon has a 

damaging effect on the equipments, for example 

transformers, power cables, switchgears, and others. 

Many investigators have studied the feasibility of  

 

selecting the different features to classify measured 

PD activities into underlying insulation defects or 

source that generate PD’s. In particular for solid 

insulation like XLPE on power cables where a 

complete breakdown seriously damages the test 

object the partial discharge measurement is a tool for 

quality assessment [2].  

Some research results in this field have been 

submitted in McGrail et al [3] where two variations 

of  SOM are discussed using examples from different 

diagnostic measurements and tests. The use of 

Kohonen mapping applied to existing and new data 

is illustrated using examples of dissolved gas 

analysis, tap-changer monitoring and insulator 

testing. In [4] and [5] were used supervised neural 

networks for recognition between different sources 

formed of cylindrical cavities, the principal 

constraint was the recognition of different sources in 

the same sample. Kim et al [6] made the comparison 

between Back Propagation Neural Network and 

Fuzzy-Neural Networks, however, is necessary to 

improve performance in the multiple discharges and 

including defects and noises. Particle Swarm 

Optimization (PSO) was used for location of PD in 

power transformers, on site application should 

improve performance [7]. In [8] the SOM was used 

for PD pattern recognition and classification without 

quality measurement and optimization of the 

structure. Fadilah Ab Aziz et al [9] worked using the 

Support Vector Machine (SVM) for feature selection 

and PD classification, concluding that SVM is not 

reliable for small dataset. Hirose et al [10] showed 

that Decision tree applied for feature extraction and 

PD classification, that the allocation rules are 

sensitive to small perturbations in the dataset 

(Instability). 

Venkatesh et al [11] proposed an exhaustive 

analysis is carried out to determine the role played by 

the free parameter (variance parameter) in 

distinguishing various classes of PD, number of 

iterations and its impact on computational cost 

during the training phase in NNs which utilize the 

clustering algorithms and the choice of the number of 

codebook vectors in classifying the patterns. 
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In [12], Agamolov shows the formalization of PD 

pulses analysis for forecasting a technical condition 

of the electrical machines and used information about 

change PD pulses in the difference transients. For it 

used a cluster algorithm, which is not demanding an 

aprioristic information about law distribution of PD 

pulses parameters for various levels of technical 

condition of an electrical machines. Also, in the 

paper it is shown the application example of offered 

PD pulses cluster analysis for data that was measured 

by means of electromagnetic sensors in turbo-

generator. It aims to represent a multidimensional 

dataset in two or three dimensions such that the 

distance matrix in the original k-dimensional feature 

space is preserved as faithfully as possible in the 

projected space. The SOM, or Kohonen Map can 

also be used for nonlinear feature extraction, in [13] 

is analyzed the performance in classification of 

partial discharge on power cables using SOM. 

Conventional methods of pattern 

recognition using neural networks and heuristic 

algorithms by maintaining other factors involved at 

unspecified constant levels does not depict the 

combined effect of all the factors. This method is 

time consuming and incapable. This calls for a 

research effort for developing, improving and 

optimizing the processing time and evaluate the 

significance of all the factors involved even in the 

presence of complex interactions between 

explanatory variables. It should be emphasized that 

the goal here is to find an optimal clustering for the 

data but to get good insight into the cluster structure 

of the data for data mining purposes. Therefore, the 

clustering algorithm using SOM must be fast, robust, 

and visually efficient after of this analysis. 

 

II. Concepts used in Partial Discharge  
They are generally divided into three 

different groups because of their different origins: 

 Corona Discharges – Occurs in gases or liquids 

caused by concentrated electric fields at any 

sharp points on the electrodes. 

 Internal Discharges – Occurs inside a cavity 

that is surrounded completely by insulation 

material; might be in the form of voids (e.g. dried 

out regions in oil impregnated paper-cables). 

 Surface Discharges – Occurs on the surface of 

an electrical insulation where the tangential field 

is high e.g. end windings of stator windings. 

The charge that a PD generates in a void 

(see Fig. 2) is called the physical charge and the 

portion of the void surface that the PD affects is 

called the discharge area. Eapplied is the applied 

electric field and qphysical is the physical charge [14]. 
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 Fig. 1. Example of damage in a polymeric power 

cable from the PD in a cavity to breakdown. 

 

The repetition rate n is given by the number 

of PD pulses recorded in a selected time interval and 

the duration of this time interval. The recorded 

pulses should be above a certain limit, depending on 

the measuring system as well as on the noise level 

during the measurement. 

 
Fig.2. Schematic picture of a partial discharge in a 

cavity 

 

The pulse repetition frequency N is the 

number of partial discharge pulses per second in the 

case of equidistant pulses. Furthermore, the phase 

angle  and the time of occurrence ti are information 

on the partial discharge pulse in relation to the phase 

angle or time of the applied voltage with period T: 

360( / )i ti T 
                  (1) 

In the measurement equipment is recorded 

the number of the detected PD with a certain 

combination of phase and charge (see Fig. 3). This 

graph shows the behavior of partial discharge in a 

void under high voltage rising. For PD diagnosis test, 

is very important to classify measured PD activities, 

since PD is a stochastic process, namely, the 

occurrence of PD depends on many factors, such as 

temperature, pressure, applied voltage and test 

duration; moreover PD signals contain noise and 

interference [15]. 
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Fig. 3. Example of a partial discharge pattern  

 

Therefore, the test engineer is responsible 

for choosing proper methods to diagnosis for the 

given problem. In order to choose the features, it is 

important to know the different source of PD, an 

alternative is though pattern recognition. This task 

can be challenging, nevertheless, features selection 

has been widely used in other field, such as data 

mining [16] and pattern recognition using neural 

networks [4]-[6]. This research only shows test on 

laboratory without environment noise source, and it 

is a condition that does not represent the conditions 

on site, Markalous [17] presented the noise levels on 

site based on previous experiences.  

The phase resolved analysis investigates the 

PD pattern in relation to the variable frequency AC 

cycle. The voltage phase angle is divided into small 

equal windows.  

The analysis aims to calculate the integrated 

parameters for each phase window and to plot them 

against the phase position (). 

 (n −) : the total number of PD pulses detected in 

each phase window plotted against the phase 

position. 

 (qa −) : the average discharge magnitude in each 

phase window plotted against the phase position 

, where qa is average discharge magnitude. 

 (qm −) : the peak discharge magnitude for each 

phase window plotted against , where qm is peak 

discharge magnitude. 

 

III. Self Organizing Map (SOM)  
3.1 Winner takes all 

The Self Organizing Map developed by 

Kohonen, is the most popular neural network models. 

The SOM algorithm [12] is based on unsupervised 

competitive learning called winner – takes – all, 

which means that the training in entirely data-driven 

and that the neurons of the map compete with each 

other.  

Supervised algorithms [4, 5], like multi-

layered perceptron, required that the target values for 

each data vector are known, but the SOM does not 

have this limitation. The SOM is a two-layer neural 

network that consists of an input layer in a line and 

an output layer constructed of neurons in a two-

dimensional grid as is shown in Figure 4. The 

neighborhood relation of neuron i, an n-dimensional 

weight vector w is associated; n is the dimension of 

input vector. At each training step, an input vector x 

is randomly selected and the Euclidean distances 

between x and w are computed. The image of the 

input vector and the SOM grid is thus defined as the 

nearest unit wik and best-matching unit (BMU) whose 

weight vector is closest to the x [18]: 

 

Output layer

Weight

Input layer

Fig. 4. Basic structure of a SOM. 
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The weight vectors in the best-matching unit and its 

neighbors on the grid are moved towards the input 

vector according the following rule (WTA): 
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,ij j ij

ij j ij

ij

w c i x w

w x w to i c

w to i c

 



  

   

 
                              (3) 

where c denote the neighborhood kernel around the 

best-matching unit and α is the learning rated and δ is 

the neighborhood function (see Fig. 5).  

The number of panels in the SOM is 

according the A x B neurons, the U-matrix 

representation is a matrix U ((2A-1) x (2B-1)) 

dimensional [19]. The selection of the distance 

criterion depends on application. In this paper, 

Euclidean distance is used because it is widely worn 

with SOM [20]. 
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Fig. 5. Flow chart of SOM. 
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It is complicated to measure the quality of 

an SOM [21]. Resolution and topology preservation 

are generally used to measure SOM quality. SOMs 

with growing topology have been proposed for 

generating topology-preserving mappings and for 

data visualization. In addition, Kantardzic [12] noted 

that typically the two performance evaluation criteria 

that can be used to measure criteria are topology 

preservation and resolution. There are many ways to 

measure these two properties. For simplicity, this 

research chooses the quantization error (qe) and the 

topographic error (te) . 

 

3.2 The frequency sensitive competitive algorithm 

To solve the “dead units” problem it has 

been introduced the so called “frequency sensitive 

competitive learning” algorithm (FSCL) [22] or 

competitive algorithm “with conscience”. The FSCL 

algorithm is an extension of k-means algorithm, 

obtained by modifying relation (2) according to the 

following one: 

   arg min 1,...,i ij x n c n i N         (4) 

where n is the inputs, N represents the centres 

numbers, the relative winning frequency i  of the 

centre ci defined as:  

1

i
i n

i

i

s

s









                                                             (7) 

where si is the number of times when the centre ci 

was declared winner in the past. So the centers that 

have won the competition during the past have a 

reduced chance to win again, proportional with their 

frequency term . After selecting out the winner, the 

FSCL algorithm updates the winner with next 

equation: 

       1i i ic n c n x n c n                      (8) 

 is the learning rate, in the same way as the k-means 

algorithm, and meanwhile adjusting the 

corresponding si with the following relation: 

   1 1i is n s n                                             (9) 

 

3.3 The rival penalized competitive learning 

algorithm 

The rival penalized competitive algorithm 

(RPCL) [22] performs appropriate clustering without 

knowing the clusters number. It determines not only 

the winning centre j but also the second winning 

center r, named rival 

   argmin , 1,...,i ir x n c n i N i j                           

                                                                             (10) 

The second winning centre will move away 

its centre from the input with a ratio -

learning rate. All the other centres vectors will not 

change. So the learning law can be synthesized in the 

following relation: 

 
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                                                                              (11) 

If the learning speed  is chosen much greater than 

, with at least one order of magnitude, the number 

of the output data classes will be automatically 

found. In other words, suppose that the number of 

classes is unknown and the centres number N is 

greater than the clusters number, than the centres 

vectors will converge towards the centroids of the 

input data classes. The RPCL will move away the 

rival, in each iteration, converging much faster than 

the k-means and the FSCL algorithms. 

 

IV. Design and Analysis of Experiments 
Design of Experiment (DOE) techniques are 

well known in industrial areas, where production 

processes, product developments and cost and time 

reductions are often optimized using the relevant 

methods and models. 

Typically, an experiment may be run for 

one or more of the following reasons [23]: 

(a) to determine the principal causes of variation in a 

measured response, (b) to find the conditions that 

give rise to a maximum or minimum response, (c) to 

compare the responses achieved at different settings 

of controllable variables, (d) to obtain a 

mathematical model in order to predict future 

responses. Response Surface Methodology (RSM) is 

a collection of mathematical and statistical 

techniques useful for analyzing the effects of several 

independent variables on the response. RSM has an 

application in the process design and optimization as 

well as the improvement of existing design [24]. This 

methodology is more practical compared to 

theoretical models as it arises from experimental 

methodology which includes interactive effects of the 

variables and, eventually, it depicts the overall 

effects of the parameters, as in this case, in the SOM 

algorithm.  

In multivariable systems, the classical 

approach of changing one variable at a time to study 

the effects on other variables for a particular 

response is time consuming. Consequently, an 

alternative strategy involving statistical approaches, 

e.g., RSM, was applied to solve for multiple 

variables in this complex system. This method of 

parametric optimization can also be combined to 

monitor the impact of factors affecting the training 

time and to quality of SOM.  
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The advantage of the RSM method is the 

minimization of the number of experiments and time 

needed. In the optimization procedure we studied the 

response of the statistically designed combinations, 

estimated the coefficients by fitting the experimental 

data to the response functions, predicted the response 

of the fitted model and checked the adequacy of the 

model. We used the D-Optimal under response 

surface methodology (RSM) to investigate 

competitive effects in the qe, te and training time.  

A D-optimal design is a computer aided 

design which contains the best subset of all possible 

experiments. Depending on a selected criterion and a 

given number of design runs, the best design is 

created by a selection process. Levels of factors are 

shown in Table 1 and Table 2. 

 

TABLE 1 EXPERIMENTAL RANGE AND 

LEVELS OF NUMERICAL VARIABLES 

Factor 
Coded levels 

-1 1 

η (eta) 1E-5 1 

 (Beta) 0.01 1 

 

TABLE 2 EXPERIMENTAL RANGE AND 

LEVELS OF CATEGORICAL VARIABLES 

 

V. Analysis of Data 
Were considered the pattern characteristic 

of univariate phase-resolved distributions as inputs, 

the magnitude of PD is the most important input as it 

shows the level of danger, for this reason the input in 

the SOM the raw data is the peak discharge 

magnitude for each phase window plotted against 

(qm − ).  Figure 6 shows the conceptual diagram 

training. In the cases analyzed, the original dataset is 

1 million of items, was used a neurons array of 

100100 cells to extract features.  

DATA
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SOM

SOM

(TRAINING)

UNSUPERVISED MODULE
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(KNOWLEDGE)

FAULT DIAGNOSIS/
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Fig. 6. The component interaction between SOM  

5.1 Regression Analysis 

Regression analysis was executed to 

determine the surface response as function of second 

order polynomial equation: 

2

0
1 1

    
  

       
k k k

i i ii i ij i j
i i i j

Y x x x x            

                                                                             (12) 

Where Y is predicted response, βi , βii , βij 

represent linear, quadratic and interaction effects. β0 

is the intercept term and xi , xj ,…, xk are the input 

which affect the output value. 

The scheme of experiments carried out in this study 

was presented in Table 3. 

In figure 7, 8 and 9 is showed an example of 

the performance and convergence of the competitive 

learning algorithms to different PD source, also in 

figure 10, 11 and 12 is presented the dataset of each 

PD source and prototype vector resulting of the 

training of SOM. 

 

TABLE 3 D-OPTIMAL DESIGN MATRIX 

Inputs Outputs 

Eta Beta Alg. Discharge 

qe te Time 
A B C D 

1 0.5 WTA External 0.86 0.99 176.5 

1E-5 0.01 WTA Surface 10.22 0.97 157.9 

1 1 FSCL External 0.96 0.98 228.9 

1 0.5 FSCL Surface 9.61 0.96 215.9 

0.25 0.25 WTA External 0.76 1 171.6 

1E-5 0.01 RPCL External 1.12E6 1 243.6 

0.5 1 WTA Surface 11.84 0.99 159.7 

0.5 1 FSCL Internal 7.84 0.98 43.9 

1 0.01 FSCL Internal 5.52 0.97 44.0 

1 0.01 RPCL Internal 7.32 0.98 47.2 

0.25 0.5 FSCL External 0.85 0.92 234.5 

0.5 1 WTA Surface 10.81 0.96 163.0 

1E-5 1 RPCL Internal 1.15E6 1 47.5 

1E-5 0.5 WTA Internal 6.39 0.97 32.9 

1E-5 1 FSCL Surface 11.41 0.96 219.1 

1E-5 0.01 RPCL External 5.82E6 1 248.4 

1 1 RPCL Surface 118.23 1 230.2 

1E-5 0.01 FSCL Internal 6.21 0.97 46.1 

0.5 0.01 WTA Internal 8.71 0.99 159.0 

1E-5 0.5 RPCL Surface 2.50E6 1 47.2 

0.5 0.01 FSCL Surface 8.68 0.98 215.0 

0.5 0.5 RPCL Internal 169.61 1 46.9 

1 1 RPCL External 50.14 1 244.1 

1E-5 0.01 FSCL Internal 6.13 0.98 44.0 

Factor Levels 

Algorithm WTA FSCL RPCL 

Discharge Internal External Surface 
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1E-5 1 WTA External 2.06 0.99 170.5 

1 1 WTA Internal 7.80 0.98 32.8 

1 1 WTA Internal 7.47 0.99 32.5 

1 1 RPCL External 57.55 1 246.5 

1 0.01 RPCL External 1.19 0.97 251.7 

0.75 0.25 RPCL Surface 119.92 1 230.0 

0.75 0.25 FSCL External 0.76 0.96 229.5 

1 0.01 WTA Surface 8.50 0.96 164.2 

 

5.1 Analysis of Variance 

 

The statistical significance of the model 

equation and the goodness of fit were evaluated by 

R
2
 and by the F-test analysis of variance (ANOVA), 

which is a statistical technique that subdivides the 

total variation in a set of data into components 

associated with specific sources of variation to test 

hypotheses on the parameters of the model. A large 

F-value indicates that most of the variation can be 

explained by a regression equation whereas a low p-

value (<0.05) indicates that the model is considered 

to be statistically significant (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Quantization and Topological error per 

Training Epoch (Surface Discharge) 
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Fig. 8. Quantization and Topological error per 

Training Epoch (Internal Discharge) 
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Fig. 9. Quantization and Topological error per 

Training Epoch (Corona Discharge) 

 

 
Fig. 10. Dataset and Prototype Vector (Surface 

Discharge) 
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Fig. 11. Dataset and Prototype Vector (Internal 

Discharge) 

 
 

Fig. 12. Dataset and Prototype Vector (Corona 

Discharge) 

 

A relationship between the response and 

input variables expressed by the following response 

surface quadratic model equations: 

 

qe = 3.38-1.67 *A+0.46 * B-1.97  * C[1]-2.02*C[2]-

4.223E-003*D[1]+0.81* 

D[2]+0.22*AB+1.67*AC[1]+ 

1.57*AC[2]+0.36*AD[1]+0.21*AD[2]-0.41*BC[1]-

0.13*BC[2]-

0.42*BD[1]+0.082*BD[2]+0.50*C[1]D[1] 

+0.46*C[2]D[1]+0.11*C[1]D[2]+0.20*C[2]D[2]     

(13) 

 

te=-0.21+1.575*A+7.729*B+1.551C[1]-0.17*C[2] 

+3.032*D[1]-1.489* D[2]+8.981*AB+8.344*AC[1] 

+9.763*AC[2]-4.087*AD[1]-

2.446*AD[2]+1.602*BC[1] 

+7.662*BC[2]-1.931*BD[1]-

1.990*BD[2]6.174*C[1]D[1] 

+6.882*C[2]D[1]-0.16*C[1]D[2]+6.520*C[2]D[2]-

0.12*A2+0.17*B2                                                   

(14) 

Time=143.71+10.73*A-8.59*B-

14.10*C[1]+10.77*C[2]-

99.70*D[1]+27.39*D[2]+1.30*AB-4.85*AC[1]-

4.85*AC[2]-15.15*AD[1]+25.15*AD[2]-

18.28*BC[1] 

+12.57*BC[2]-10.13*BD[1]+13.49*BD[2]+38.46* 

C[1]D[1]-32.99*C[2]D[1]-20.53*C[1]D[2] 

+29.06*C[2]D[2]-30.94*A2+40.27*B2                     

(15) 

The statistical significance of the model 

equation and the goodness of fit were evaluated by 

R
2
 and by the F-test analysis of variance (ANOVA), 

which is a statistical technique that subdivides the 

total variation in a set of data into components 

associated with specific sources of variation to test 

hypotheses on the parameters of the model.  

A large F-value indicates that most of the 

variation can be explained by a regression equation 

whereas a low p-value (<0.05) indicates that the 

model is considered to be statistically significant 

(Table 4). 

 

 

 

 

 

 

 

 

 

Fig. 13. The actual and predicted values of response 

of te 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The actual and predicted values of response 

of te 
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15. The actual and predicted values of response of 

time 
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The ANOVA analysis for the responses te, 

qe and training time was shown in table 4. P-value 

for the models is less than 0.05 indicates that the 

model terms are statistically significant. The actual 

and predicted values of responses were shown in 

figures 13, 14 and 15.  

 

TABLE 4 ANOVA RESULTS 

 
Sum of 

Square 
DF 

Mean 

Square 

F-

Valu

e 

P-

valu

e 

For qe 

Model 425.37 19 22.39 
45.8

2 

<0.0

01 

Residual 5.86 12 0.49   

Lack of 

fit 
0.2 1 0.2 0.72 

0.48

4 

Pure 

error 
1.37 5 0.27   

Cor 

total 
428.24 31    

R
2 
= 0.9864    

R
2
adj

 
= 0.9649    

For te 

Model 843.7 21 40.17 
143.

48 

<0.0

01 

Residual 7.86 10 0.65   

Lack of 

fit 
0.25 1 0.25 0.91 

1.24

5 

Pure 

error 
1.4 5 0.28   

Cor 

total 
850.2 31    

R
2 
= 0.9764    

R
2
adj

 
= 0.9539    

For time 

Model 2134 21 101.61 
23.8

2 

<0.0

01 

Residual 946.2 10 78.85   

Lack of 

fit 
9.5 11 0.86 

0.20

24 

0.74

2 

Pure 

error 
21.33 5 4.26   

Cor 

total 

2182.5

3 
31    

R
2 
= 0.9575    

R
2
adj

 
= 0.9286    

 

Actual values are the measured values for a 

particular experiment, whereas predicted values are 

generated by using the approximating functions. The 

values of R
2
 and adjusted R

2
 have advocated a high 

correlation between actual and predicted values. 

The qe model F-value of 45.82 and value of p 

<0.0001 indicate statistical significance of a 

quadratic model. The te model F-value of 143.48 and 

value of p <0.0001 indicate statistical significance of 

a quadratic model. The time model F-value of 23.82 

and value of p <0.0001 indicate statistical 

significance of a quadratic model. On the basis of 

this investigation, the relationship between the 

independent variables and the response can be 

explained according to the regression model. The 

goodness of the each model can be confirmed by the 

coefficient of determination R
2
 and the adjusted R

2
. 

Both values are closed to 1, which are very high and 

indicate a high correlation between the observed and 

the predicted values.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Surface plot of the combined effects of the 

qe. 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Surface plot of the combined effects of the 

te. 
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Fig. 18. Surface plot of the combined effects of the 

time. 

 

For example, value of adjusted R
2
 of 0.9864 

seggest that the total variation of  98.64% in qe is 

atributted to the independient variable and only about 

1.36% of total variation cannot be represented by the 

model. On the basis of the evaluation of ANOVA 

outputs, the statistical significance of a quadratic 

model for the response was confirmed and it can be 

concluded that the model can be used for further 

analysis of effect of process variables. 

 

5.1 Optimization by Response Surface 

Methodology 

RMS was used to estimate the effect of four 

factors at different levels, in this analysis; 3D surface 

plots were drawn by using RMS to demonstrate that 

the interactions of these factors also have a 

significant effect on the response. For example in 

figure 16 shows the treatments to minimize qe and is 

clearly identify where a minimum in the figure. 

However for responses te and time (figures 17 and 

18) is observed very interesting behavior, as it a 

saddle point, and in this context are a combined 

minimization/maximization problem of convex-

concave functional. In this case it is important to 

establish the most suitable area of operation of the 

algorithm in order to obtain the most accurate 

response.  The optimum conditions of all factors 

were found for the simultaneous eta, beta, 

competitive learning algorithms and discharge kind. 

The response surface plot at optimum condition is 

shown in figure 19. The basic idea of the desirability 

function approach is to transform a multiple response 

problem into a single response problem by means of 

mathematical transformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Desirability plot to optimize multiple 

responses. 

 

In the equation 16 is presented a desirability 

function (dj) with a range of value between 0 and 1, 

where 1 is the desired value (optimum). 

  

 

 

min

min

min

max

max

max

0

 
   

  

 

     





s

j j

j j j

j j

s

j j

j j j

j j

Y Y
if Y Y x T

T Y

Y Y
dj if T Y x Y

T Y

otherwise

      (16) 

The best solution based in the different levels of the 

SOM’s parameters is presented in Table 5. 
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TABLE 5 SOLUTIONS FOR DIFFERENT 

COMBINATIONS OF NUMERICAL AND 

CATEGORICAL FACTOR LEVELS 

INPUTS RESPONSE 

Eta Beta Alg. PD Qe Te Time Desirability 

0.9 1.0 FSCL Internal 8.0 1.0 32.9 0.9112 

1.0 1.0 WTA Internal 8.4 1.0 32.9 0.9047 

1.0 1.0 WTA Internal 8.4 1.0 32.2 0.9039 

1.0 0.3 RPCL Internal 4.2 1.0 32.9 0.9026 

1.0 0.3 RPCL Internal 5.2 1.0 32.9 0.8971 

0.0 0.9 WTA Internal 2.9 1.0 42.9 0.8951 

0.0 0.9 WTA Internal 2.9 1.0 42.0 0.8951 

0.9 0.1 FSCL Internal 7.0 1.0 32.9 0.8945 

0.9 0.1 FSCL Internal 7.0 1.0 32.9 0.8945 

0.9 0.1 FSCL Internal 6.9 1.0 32.9 0.8945 

0.9 0.1 FSCL Internal 7.0 1.0 32.9 0.8945 

0.9 0.1 FSCL Internal 7.0 1.0 32.9 0.8945 

0.8 0.1 FSCL Internal 6.9 1.0 32.9 0.8945 

1.0 0.9 RPCL Internal 12.2 1.0 32.9 0.8856 

1.0 0.7 RPCL Internal 8.4 1.0 16.8 0.8818 

0.0 0.6 WTA Surface 8.2 1.0 73.3 0.7547 

0.0 0.7 WTA Surface 8.0 1.0 74.7 0.7528 

1.0 0.7 WTA External 0.7 1.0 143.8 0.7251 

1.0 0.7 WTA External 0.7 1.0 143.8 0.7251 

1.0 0.6 WTA External 0.6 1.0 144.4 0.7232 

0.0 0.7 WTA External 1.9 1.0 151.1 0.6635 

0.0 0.7 WTA External 1.9 1.0 151.1 0.6635 

1.0 0.7 WTA Surface 14.1 1.0 136.5 0.6152 

0.0 0.3 FSCL Surface 8.7 1.0 149.8 0.5911 

0.0 0.3 FSCL Surface 8.7 1.0 150.1 0.5911 

0.0 0.2 FSCL Surface 8.4 1.0 155.0 0.5874 

0.0 0.6 FSCL Surface 10.0 0.9 155.1 0.5536 

1.0 0.4 RPCL Surface 16.7 1.0 180.3 0.5173 

1.0 0.4 RPCL Surface 17.3 1.0 180.1 0.5173 

1.0 0.3 RPCL Surface 15.3 1.0 181.2 0.5167 

1.0 0.5 FSCL External 0.5 1.0 195.9 0.4915 

1.0 0.5 FSCL External 0.5 1.0 195.9 0.4915 

1.0 0.5 FSCL External 0.5 1.0 196.2 0.4914 

1.0 0.6 FSCL External 0.5 1.0 196.2 0.4913 

1.0 0.6 FSCL External 0.5 1.0 196.5 0.4910 

1.0 0.4 FSCL Surface 10.0 1.0 208.9 0.4064 

1.0 0.4 FSCL Surface 9.9 1.0 208.9 0.4064 

1.0 0.5 RPCL External 10.8 1.0 212.8 0.3935 

1.0 0.5 RPCL External 11.0 1.0 212.7 0.3935 

1.0 0.5 RPCL External 11.2 1.0 212.7 0.3934 

VI. Conclusions 
The present investigation was carried out to 

study combined effect of the performance of SOM 

using different competitive learning algorithms to 

find the optimum conditions to classify measured  

PD activities into underlying insulation defects or 

source that generate PD’s. Two types of factors were 

successfully tested: numerical (η  and β ) and 

categorical (Competitive learning algorithm and PD 

kind). D-optimal design based on four inputs and 

three responses was used to estimate the effects in 

training time and SOM quality measures. By 

conducting the validation experiments at optimum 

treatments, it was concluded that the developed 

models could precisely fit to the models developed 

with acceptable values of percentage errors (R
2
 and 

adjusted R
2
). Optimization was carried out by RSM 

and the major findings are: Undoubtedly RSM is a 

good technique to provide optimum treatments of a 

process by studying the effect of main factors and 

their interactions on response with minimum number 

of experiments in contrast to classical method of 

changing of one variable at a time. An alternative 

modeling approach to optimize the multi-response 

system based on desirability functions has been 

presented. The approach proposed aims to identify 

the settings of factors to maximize the overall 

minimal level of satisfaction with respect to all the 

responses. The optimal treatments algorithms are 

shown in Table 5. 
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