
Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

306 | P a g e

Recognizing English Grammar Using Predictive Parser

Magdum P. G.
1
, Kodavade D. V.

2

1
 (Department of Computer Science and Engineering, RMCET (Ratnagiri), Mumbai University,
2
 (Department of Computer Science and Engineering, DKTE (Ichalkanji), Shivaji University,

ABSTRACT
We describe a Context Free Grammar

(CFG) for English language and hence we

propose a English parser based on the context

free grammar. Our approach is very much

general to apply in English Sentences and the

method is well accepted for parsing a language of

a grammar. The proposed parser is a predictive

parser and we construct the parse table for

recognizing English grammar. Using the parse

table we recognize syntactical mistakes of

English sentences when there is no entry for a

terminal in the parse table. If a natural language

can be successfully parsed then grammar

checking from this language becomes possible.

The proposed scheme is based on Top down

parsing method and we have avoided the left

recursion of the CFG using the idea of left

factoring.

Keywords- Context Free Grammar (CFG),

Predictive Parser, Parse Table, Top down and

Bottom up Parser, Left Recursion.

I. INTRODUCTION

Parsing is the process of using grammar

rules to determine whether a sentence is legal, and to

obtain its syntactical structure. Tree structure

provides two information viz. it divides the sentence

into constituents (in English, these are called

phrases) and it puts them into categories (Noun

Phrase, Verb Phrase, etc).To process any natural

language, parsing is the fundamental problem for

both machines and humans. In general, the parsing

problem includes the definition of an algorithm to

map any input sentence to its associated syntactic

tree structure[1]. A parser analyzes the sequence of

symbols presented to it based on the grammar [2].

Natural language applications namely Information

Extraction, Machine Translation, and Speech

Recognition, need to have an accurate parser[3].

Parsing natural language text is more difficult than

the computer languages such as compiler and word

processor because the grammars for natural

languages are complex, ambiguous and

infinitynumber of vocabulary. For a syntax based

grammar Checking the sentence is completely

parsed to check the correctness of it. If the syntactic

parsing fails, the text is considered incorrect. On the

other hand, for statistics based approach, Parts Of

Speech (POS) tag sequences are prepared from an

annotated corpus, and hence the frequency and the

probability[4]. The text is considered correct if the

POS-tagged text contains POS sequences with

frequencies higher than some threshold[5]. Natural

languages like English and even Hindi are rapidly

progressing as far as work done in processing by

computers is concerned.

In this paper, we proposed a context free

grammar for the English language and hence we

proposed a predictive English parser constructing a

parse table. We have adopted the top down parsing

scheme and avoided the problem of left recursion

using left factoring for the proposed grammar. We

implemented the English dictionary ms access

format using the corresponding word as tag name

and it‟s POS as value. It helps to search the

dictionary very fast. English grammar has huge

amount of forms and rules .We believe the proposed

grammar and parser can be applicable to any forms

of English sentences and can be used as grammar

checker.

A rule based English parser has been

proposed in [1] that handles semantics as well as

POS identification from English sentences and ease

the task of handling semantic issues in machine

translation. The system is based on analyzing an

input sentence and converting into a structural

representation. A parsing methodology for English

natural language sentences is proposed and shows

how phrase structure rules can be implemented by

top-down and bottom-up parsing approach to parse

simple sentences of English. A comprehensive

approach for English syntax analysis was developed

[4] where a formal language is defined as a set of

strings. Each string is a concatenation of terminal

symbols. Some other approaches such as Lexical

Functional Grammar (LFG) [4] and Context

Sensitive Grammar (CSG) [5] have also been

developed for parsing English sentences. Some

developers developed English parser using SQL to

check the correctness of sentence; but its space

complexity is inefficient. Besides it takes more time

for executing SQL command. As a result that Parser

becomes slower.

II. A PARSING SCHEME FOR

ENGLISH GRAMMAR

RECOGNITION
A predictive parser is an efficient way of

implementing recursive decent parsing by handling

the stack of activation record. The predictive parser

has an input, a stack, a parse table and output. The

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

307 | P a g e

input contains the string to be parsed or checked,

followed by a $, the right end marker. The stack

contains a sequence of grammar symbols, the parse

table is a two dimensional array M[A,n] where A is

nonterminal and n is a terminal or $ sign.

Tag name(Symbol) Examples

Determiner A, an, the

Noun bus, home

Pronoun he, she

Adjective beautiful,

Adverb slowly, fast

Verb run, keep

Auxiliary verb is ,was

Conjunction and, but

Table 1: Tag set Description for English grammar

III. ENGLISH GRAMMAR DESIGN
Once constituents have been identified, the

productions for Context Free Grammar (CFG) are

developed for English sentence structures. As

English grammar has different forms, the same

production term can be used only by reorganizing

the in the grammar.

1.1. Context Free Grammar

A context-free grammar (CFG) is a set of

recursive rewriting rules (or productions) used to

generate patterns of strings.

A CFG consists of the following components:

 A set of terminal symbols, which are the

characters of the alphabet that appear in the

strings generated by the grammar.

 A set of nonterminal symbols, which are

placeholders for patterns of terminal

symbols that can be generated by the

nonterminal symbols.

 A set of productions, which are rules for

replacing (or rewriting) nonterminal

symbols (on the left side of the production)

in a string with other nonterminal or

terminal symbols (on the right side of the

production).

 A start symbol, which is a special

nonterminal symbol that appears in the

initial string generated by the grammar.

To generate a string of terminal symbols from a

CFG, we:

 Begin with a string consisting of the start

symbol;

 Apply one of the productions with the start

symbol on the left hand size, replacing the

start symbol with the right hand side of the

production;

Repeat the process of selecting nonterminal

symbols in the string, and replacing them with the

right hand side of some corresponding production,

until all nonterminals have been replaced by

terminal symbols.

1.2. Left Factoring

The parser generated from this kind of

grammar is not efficient as it requires backtracking.

To remove the ambiguity from the grammar we have

used the idea of left factoring and reconstruct the

grammar productions. Left factoring is a grammar

transformation useful for producing a grammar

suitable for predictive parsing. The basic idea is that

when it is not clear which of the productions are to

use to expand a non terminal then it can defer to take

decision until we get an input to expand it. In

general, if we have productions of form

A → αβ1| αβ2

We left factored productions by getting the

input α and break it as follows

A→ αA′, A′ → β1| β 2

S NP.VP

NP a NP1.VP4|pronoun.NP4| the.NP6| an.NP7|

propernoun.NP3| I|noun

NP1 noun| adjective.NP2

NP2 noun

NP3 conjuction.NP5| ɛ

NP4 conjuction.NP5| noun|ɛ

NP5 noun|pronoun|propernoun

NP6 propernoun.NP4| adjective NP2

NP7 adjective1.NP2

VP verb1. vp‟| verb2.vp‟| aux31.VP3| aux32.VP6|

aux21.VP4| aux22.VP9| aux11.VP5

VP aux11.VP7|adverb.VP6| adverb.VP6

VP‟NP1.VP2| adverb.VP2| PP.NP|ɛ|pronoun

VP1 adjective.NP2

VP2 PP.NP| ɛ

VP3 verb4.VP‟| adverb.VP6| pronoun1.VP1

VP4 verb1.VP‟| be.VP6| aux11.VP7| have.VP8

VP5verb3.VP‟| been.VP6

VP6 verb4.VP‟

VP7 verb3.vp‟

VP8been.VP6

VP9be.VP6

PP preposition

 Table 2: Left factored grammar

IV. PARSER DESIGN
A parser for a grammar G is a program that

takes a string as input and produces a parse tree as

output if the string is a sentence of G or produces an

error message indicating that the sentence is not

according to the grammar G. To construct a

predictive parser for grammar G two functions

namely FIRST() and FOLLOW() are important.

These functions allow the entries of a predictive

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

308 | P a g e

parse table for G. Once the parse table has been

constructed we can verify any string whether it

satisfy the grammar G or not. The FIRST() and

FOLLOW() determines the entries in the parse table.

4.1. Rules for computing FIRST

I. If X is a terminal symbol then

FIRST(X)={X}

II. If X is a non-terminal symbol and X ɛ is

a production rule then ɛ is in first(X).

III. If X is a non-terminal symbol and X

Y1Y2...Yn is a production rule then

first(X)=first(Y1).

FIRST(S) ={noun, pronoun,a, an, the,propernoun}

FIRST(NP) ={noun, pronoun,a,an,the}

FIRST(NP1) ={ noun, pronoun,adjective}

FIRST(NP2) = { noun }

FIRST(NP3) = {conjunction,ɛ}

FIRST(NP4) ={conjunction,noun, ɛ }

FIRST(NP5) = { noun, pronoun,propernoun }

FIRST(NP6) = { propernoun,adjective }

FIRST(NP7) = {adjective1}

FIRST(VP) ={verb1,verb2,verb3,verb4, aux11,

aux12, aux21, aux22,aux31, aux32}

FIRST(VP‟) ={noun,adjective,pronoun,adverb, ɛ}

FIRST(VP1) ={preposition, adverb, ɛ }

FIRST(VP2) = { preposition,ɛ }

FIRST(VP3) = {verb4,adverb}

FIRST(VP4) ={verb1,be,aux11,have }

FIRST(VP5) = {verb3,been}

FIRST(VP6) = {verb4}

FIRST(VP7) = {verb3}

FIRST(VP8) = {been}

FIRST(VP9) = {be}

FIRST(PP) = {preposition}

Table 3: FIRST function Computation

4.2. Rules for computing FOLLOW

I. If S is the start symbol then $ is in

FOLLOW(S)

II. If A aBb is a production rule then

everything in FIRST(b) is FOLLOW(B)

except ɛ.

III. If (A aB is a production rule) or (A

aBb is a production rule and ɛ is in

 first(b)) then everything in FOLLOW(A) is

in FOLLOW(B).

FOLLOW(S) ={$}

FOLLOW(NP) ={ verb1,verb2,verb3,verb4, aux11,

aux12, aux21, aux22,aux31,aux32,adjective,adverb}

FOLLOW(NP1) ={ noun, conjunction,

verb1,verb2,verb3,verb4, aux11, aux12, aux21,

aux22,aux31, aux32,adjective,adverb }

FOLLOW(NP2) = { noun, conjunction,

verb1,verb2,verb3,verb4, aux11, aux12, aux21,

aux22,aux31, aux32,adjective,adverb }

FOLLOW(NP3) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,

aux22,aux31,aux32,adjective,adverb }

FOLLOW(NP4) ={ verb1,verb2,verb3,verb4,

aux11,aux12, aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(NP5) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(NP6) = { verb1,verb2,verb3,verb4,

+aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(NP7) = { verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP) ={verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb,$}

FOLLOW(VP‟) ={ verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,aux32,adjective,adver

b }

FOLLOW(VP1) ={ verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP2) = { verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP3) = { verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP4) ={ verb1,verb2,verb3,verb4, aux11,

aux12, aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP5) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,

aux22,aux31,aux32,adjective,adverb }

FOLLOW(VP6) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(VP7) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(VP8) = { verb1,verb2,verb3,verb4,

aux11,aux12,aux21,aux22,aux31,

aux32,adjective,adverb }

FOLLOW(VP9) = { verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

FOLLOW(PP) = { verb1,verb2,verb3,verb4, aux11,

aux12,aux21,aux22,aux31,aux32,adjective,adverb }

Table 4: FOLLOW function Computation

4.3. Algorithm to construct Predictive table
a. set Input Pointer(IP) to point to the first

word of w;

b. set X to the top stack word;

while (X!= $) begin /* stack is not empty

*/

if X is a terminal, pop the stack and

advance IP;

if X is a Nonterminal and M[X,IP] has the

production X → Y1Y2…Yk

output the production X -> YlY2 -Yk;

pop the stack;

c. push Yk, Yk-1,. . . , Yl onto the stack, with

Yl on top;

d. if X=$,Sentence is Accepted. end

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

309 | P a g e

 A an The noun i pronoun pnoun adj adject1 Adv prep conj

S
NP.

VP

NP.

VP
NP.VP NP.VP

NP.

VP
NP.VP

NP
A.NP1.

VP4
an.NP7

The.

NP6
 I

Pronoun.

NP3

NP1
The.

noun
noun adj.NP2

NP2 noun

NP3
Con.

NP5

NP4 noun
Con.

NP5

NP5 noun Pronoun pnoun

NP6
Pronoun.

NP5
 adj.NP2

NP7 Adj1.NP2

VP adj.VP6 Adv.VP4
prep.

NP1

VP’
NP1.

VP1

NP1.

VP1
 Pronoun

NP1.

VP1
 Adv.VP2

prep.

NP

VP1 adj.NP2

VP2

VP3
Pronoun.

VP1
 Adv.VP6

VP4

VP5

VP6

VP7

VP8

VP9

PP prep

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

310 | P a g e

 verb1 Verb2 Verb3 verb4 aux11 aux12 aux21 aux22 aux31 aux32 have been be $

S

NP

NP1

NP2

NP3 ε Ε Ε ε Ε ε ε ε Ε Ε Ε ε ε ε

NP4 ε Ε Ε ε Ε ε ε ε Ε Ε Ε ε ε ε

NP5

NP6

NP7

VP
verb1.

VP‟

verb2.

VP‟

aux11.

VP5

aux12.

VP7

aux21.

VP4

aux22.

VP9

aux31.

VP3

Aux32.

VP6

VP’ ε ε Ε ε Ε ε ε ε Ε Ε Ε Ε ε ε

VP1

VP2 ε ε Ε ε Ε ε ε ε Ε ε Ε Ε ε ε

VP3
verb4.

VP‟

VP4
aux11.

VP7

have.

VP8

be.

VP6

VP5
verb3.

VP‟

been.

VP6

VP6
verb4.

VP‟
 ε

VP7 verb3.VP‟

VP8 been.VP6

VP9 be.VP6

PP

Table 5: Predictive Parsing table

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

311 | P a g e

4.4 Parse Tree Generation

A parse tree for a grammar G is a tree where

the root is the start symbol for G, the interior nodes

are the non terminals of G and the leaf nodes are the

terminal symbols of G. The children of a node T

(from left to right) correspond to the symbols on the

right hand side of some production for T in G. Every

terminal string generated by a grammar has a

corresponding parse tree and every valid parse tree

represents a string generated by the grammar. We

store the parse table M using a two-dimensional

array. To read an element from a two-dimensional

array, we must identify the subscript of the

corresponding row and then identify the subscript of

the corresponding column.

Example 1: consider the on e English sentence

Ram was going to home.

Stack Input Action

$ S

Propernoun

aux32 verb4

preposition

noun$

$ VP.NP

Propernoun

aux32 verb4

preposition

noun$

S NP.VP

$ VP.

NP3.propernoun

Propernoun

aux32 verb4

preposition

noun$

NPpropernoun.

NP3

$ VP.NP3

aux32 verb4

preposition

noun$

Popped

$ VP.NP3

aux32 verb4

preposition

noun$

NP3ε

$ VP6.aux32

aux32 verb4

preposition

noun$

VP aux32.VP6

$ VP6

verb4

preposition

noun$

Popped

$ VP‟. Verb4

verb4

preposition

noun$

VP6 verb4.VP‟

$ VP‟
 preposition

noun$
Popped

$ NP.PP
preposition

noun$
VP‟PP.NP

$ NP.

Preposition

preposition

noun$
PPpreposition

$ NP.

Preposition

preposition

noun$
Popped

$ noun Noun$ NPnoun

$ $ Popped

$ $ Accepted

Table 6: Moves made by a English parser on input

Fig 1. Parse tree for English parser on input

“ram was going to home”

Example 2:

 The old man walking on the road.

Fig. 2. Parse tree for English parser on input “the old

man walking on the road”.

I. EXPERIMENTAL RESULTS
In this Section we show some input

sentences that is used for performance analysis. We

have used three types of sentences namely simple

and regular form, some nontraditional form and

Paragraphs. By nontraditional form we mean the

same meaning of another sentence having structural

similarity.

In this way many example have been

checked using this predictive parser. Also some

paragraphs have been checked. Both give the results

as follows:

Sentenc

e type

Total no of

sentences/

paragraph

s.

(N)

Valid/

invali

d

(V)

Accuracy

rate

A=(V/N)*10

0

Regular 251 197 78.48

paragrap

h
9 6 66.67

Table 7: Experimental result

Magdum P. G., Kodavade D. V. / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.306-312

312 | P a g e

II. 6. CONCLUSION
In this paper we describe a context free

grammar for English language and hence we develop

a English parser based on that grammar. Our

approach is very much general to apply in English

Sentences and the method is well accepted for

parsing a language of a grammar. The structural

representation that has been built can cover the

maximum simple, complex and compound sentences.

But there are some sentences composed of idioms

and phrases are beyond the scope of this paper. Also

mixed sentences are of out of the discussion. But

further increasing and modifying the production rule

it can be possible to remove the above limitations

.We believe the proposed method can be applied to

check most of the English grammar to parse English

language.

References
Journal Papers:

[1] K. M. Azharul Hasan, “Recognizing bangla

grammar using predictive parser”, IJCSIT,

Vol 3, No 6, Dec 2011, pp-61-73.

[2] Amba P. Kulkarni, “Design and Architecture

of „Anusaaraka‟- An Approach to

Machine Translation”, Volume 1, Q4,

April, 2003, pp-57-64.

[3] Vishal Goyal, Gurpreet Singh Lehal, Hindi

Morphological Analyzer and Generator, 978-

0-7695-

32677/08©2008IEEE,DOI10.1109/ICETET.2

008.11 pp-1154-1157.

[4] K. Saravnan, Rajani Parthisarathi, “Syntax

parser for Tamil”, tamil internet 2003, pp-

28-37.

Books:

[5] By T. Dean, J. Allen, and Y. Aloimonos,

artificial intelligence: theory and practice

[The Benjamin/Cummings Publishing

Company, 1995].

[6] A. V. Aho, R. Sethi and J. D. Ullman ,

Principles of Compiler Design [Pearson

Education, 2002].

[7] A. Cawsey, The essence of Artificial

Intelligence [Prentice Hall Europe 1998].

