
V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

298 | P a g e

Two Level Resource Discovery And Replication For Secure

Utilization In Distributed Computing Environments

V.Siva Kumar, Dr. G.Prakash Babu, Ph.D.
Dept of CSE, Intell Engineering College, JNTU, Anantapur, Andhra Pradesh, India-515001

Associate Professor, Dept of CSE, Intell Engineering College, JNTU, Anantapur, Andhra Pradesh, India-515001

Abstract
This paper presents the details of a novel

method for passive resource discovery in cluster

grid environments, where resources constantly

utilize inter node communication. This method

offers the ability to non-intrusively identify

resources that have available CPU cycles; this is

critical for lowering queue wait times in large

cluster grid networks. The benefits include: 1)

low message complexity, which facilitates low

latency in distributed networks, 2) scalability,

which provides support for very large networks,

and 3) low maintainability, since no additional

software is needed on compute resources. Using a

50-node (multicore) test bed (DETER lab), this

paper demonstrate the feasibility of the method

with experiments utilizing TCP, UDP, and ICMP

network traffic. I use a simple but powerful

technique that monitors the frequency of network

packets emitted from the Network Interface Card

(NIC) of local resources. I observed the

correlation between CPU load and the timely

response of network traffic. A highly utilized

CPU will have numerous, active processes which

require context switching. The latency associated

with numerous context switches manifests as a

delay signature within the packet transmission

process. This method detects that delay signature

to determine the utilization of network resources.

Results show that the method can consistently

and accurately identify nodes with available CPU

cycles (<70 percent CPU utilization) through

analysis of existing network traffic, including

network traffic that has passed through a switch

(non-congested). Also, institutions where there is

no existing network traffic for nodes, ICMP ping

replies can be used to ascertain this resource

information.

I. Introduction
With the advances in network technologies,

applications are all moving toward serving widely

distributed users. However, today’s Internet still

cannot guarantee quality of services and potential

congestions can result in prolonged delays and leave

unsatisfied customers. The problem can be more

severe when the accesses involve a large amount of

data. Replication techniques have been commonly

used to minimize the communication latency by

bringing the data close to the clients. Web caching is

a successful example of the technique. However,

when the data may be updated, the problem is more

complicated. The more models in the system, the

higher the update cost will be. Thus, data needs to be

carefully placed to avoid unnecessary overhead.

There have been a lot of research works

addressing the data model placement issues in

Computational Clusters [1, 4, 7, 14, 15]. Generally,

the access pattern is used to guide the placement

decision. Several considerations like static [1] and

dynamic [2, 7, 15] placement decisions and full and

partial replication schemes have also been

investigated. Partial replication take into

consideration reproduce subsets of resources and is

generally required for environments showing strong

access locality [8, 11]. Almost all the model

placement algorithms do not specifically presume

full or partial replication [5, 15]. In reality, most of

the placement decision algorithms can be applied to

both cases by managing the granularity of the

resources that are considered. But, each of these

algorithms presumes that resources are not

dependent on each other. In several applications,

each and every request/transaction may have access

to multiple resources and, so, bringing correlation

among the resources. Going by example, for a read

transaction accessing multiple resources, all of these

resources at a local site will be able to decline

communication overhead. But, in the case of only a

part of the data set that is being accessed is modeled

at a local site, then the replication will not bring

much advantage. This is because the read transaction

still requires to be forwarded in order to recover the

resources that are left out. The same is applied to an

update transaction that is accessing multiple

resources. In the case of only a part of the data set

that is being updated is modeled, a message is

required for sending the update request. So, for

getting better model allocation, it is necessary to

take into consideration the access correlation among

resources. In [12], we have dealt about the model

placement issues of correlated resources in mobile

environments considering mobile networks that are

having a star topology. Further, it presumes that

every time the base station node holds the total data

set (comprising all resources that may be required by

the mobile nodes). This is required for minimizing

the mobile unit connection time for the accesses.

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

299 | P a g e

Whenever the general Internet environment is taken

into consideration, several issues are to be

considered. The first one is that there is no need of

considering the connection time for Internet based

clients and partial replication is needed.

Moreover, a greater complex topology

requires consideration for Internet accesses. So, a

more sophisticated placement algorithm for

correlated resources should be evolved. A crucial

issue in model placement algorithms in such kind of

environment is that who executes the intensive

placement computation. Some of the placement

algorithms are centralized [6, 14] that makes the

central decision-making site to be overloaded

severely. Distributed model placement algorithms,

like [10, 15], grant each model site to make localized

decisions. They will be able to react to changes in

access patterns and naturally divide the computation.

In this paper, we construct a dynamic model

placement algorithm, which (1) takes into

consideration a tree topology network, (2) considers

the correlation among resources whenever accessed

by the same requests, and (3) gives distributed

algorithm that does localized analysis for declining

the computation cost. Moreover, our algorithm is

adaptive. It takes into consideration 2 schemes. To

get optimal solutions, a distributed branch and bound

algorithm is utilized to calculate the optimal set of

resources models to be designated on the

computational clusters. Remember that in

commercial applications, transaction access patterns

follow the “80/20” rule [3], i.e., just 20% of the

transaction types accounts for 80% of the total

amount of the transactions. Whenever the

transaction access pattern is stabled, the set of

resources associated is considerably small. Lanier

Watkins et al[] discussed a Passive Solution to the

Memory Resource Discovery Problem in

Computational Clusters. When compared to existing

models this solution is more robust secure and

scalable. The prime benefits of this model are low

message complexity, scalability, load balancing, and

low maintainability but limited their solution to deal

with resource requirements of the clusters.

 So, the optimal algorithm is obtainable in

this case. For dealing with the access patterns that

are frequently changed, we suggest resource

discovery, replication and utilization algorithms for

getting near optimal solutions, which is motivated

from the work carried out by Lanier Watkins et al[].

The remaining part of this paper is distributed as

follows. Section 2 explains our system model and

problem definition, depending on the system model

that is defined in [12]. Section 3 delves about the

transaction based cost model in a distributed

environment. Section 4 gives a distributed partial

replication algorithm (ICRDU). Section 5 deals

about a intra cluster resource replication and

utilization partial replication algorithm (ICRRU).

Section 6 is about the experimental study results and

Section 7 concludes the paper.

II. Resource allocation System Format
Studies reveal that the networks can be

disintegrated into connected autonomous systems,

which are under separate administrative control [9].

These autonomous systems are generally treated as

clusters. By this way the underlying topology of the

widely distributed system as a cluster based general

graph is modeled by us. For scaling the system, we

presume that there is a data server in each and every

cluster. In this research, we take into consideration

only the data model placement on the computational

clusters, and the model assignment inside each

cluster can be treated separately. We presume that

the actual copy of the entire set of N resources that

are to be accessed by users is put up at a primary

data server that is indicated as O. Let OD indicate

the N resources on the data server O, then,

1 2{ , ,..., }O ND d d d and | OD | = N. Whenever

applications use data saved in this primary sever,

they generally follow a shortest path tree routing to

the data source that is positioned at the primary

server O [9]. Study reveals that almost all routings

are stable in days or weeks and so the routing paths

can be looked upon as a tree topology that is rooted

at the primary server O. So, we take into

consideration replication the widely distributed

system as a tree graph, indicated as T, rooted at the

primary server O. To expedite efficient data accesses

by users in the Internet, a subset of resources in OD

are modeled on computational clusters in T.

Let xD indicate the resources on a data

server x, then xD ⊆ OD , and | xD | is the number

of modeled resources in xD . Take a set of resources

Ω, let R(Ω) indicate the resident set of Ω that is the

set of computational clusters hold Ω or a superset of

Ω, i.e. R(Ω) = {x∈T | Ω ⊆ xD }.The divided system

bolsters both read and update requests and each

request can have access to an random number of

resources in OD . For each and every data server x

in T, there are a number of clients that are connected

to it. The requests that are given by these clients can

be seen as requests from the data server x.

Presuming that clients can give both read and update

requests. Let t indicate a transaction, it can be a read

transaction or an update transaction. Let D (t)

indicate the set of resources read or updated by t, D

(t) ⊆ OD , and D (t) is designated as a transaction-

data set of t. For a transaction t accessing D (t) given

by a data server v, if D (t) ⊆ VD , then t is served

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

300 | P a g e

locally. Contra wise, t is send to the closest data

server, which can serve t.

For an update transaction t, the data server

that performs t requires to send the update to other

computational clusters through the edges in a tree

that only possess of all those computational clusters

*x in T, where D (t) ∩ *xD ≠ φ. Our aim is to

optimally allocate the models resources in OD to

computational clusters in T in such a way that

aggregate access cost is minimized for a given client

access pattern. We define a model placement that is

having the minimal cost as an optimal model

placement of OD (OptPl (OD)). Observe that

optimal placement solutions may not be unique.

Take a data set Ω, R (Ω) in an OptPl (OD) is an

optimal resident set of Ω. During this research, we

don’t take into consideration node capacity

constraint, message losses, node failures, and the

consistency maintenance issues. The communication

cost that is brought up by model placement and de-

allocation is also not taken into consideration.

III. Operation Based limited Replication

rate format
During this section, we make definition of

operation based limited replication rate formats for

correlated resources in a tree graph, depending on

the cost models that are defined in [Tum06a]. Take 2

computational clusters x and y, where data server y

is the parent data server of x. Here, we only

emphasize model allocation decisions at y and

model de-allocation decision at x. This is because

model allocation and de-allocation models and

approaches can be applied in a similar fashion to

other computational clusters in tree T. Take a set of

resources Ω, Ω ⊆ OD . If Ω is modeled to x, a read

transaction t, D (t) ⊆ Ω, can be served locally and

one message can be saved. We take into

consideration this as one unit of advantage for

modeling Ω on x. But, because of the replication of

Ω on x an update transaction t, D (t) ∩ Ω ≠ φ,

requires to be send to x. We regard this as one unit

of cost put up by modeling Ω on x.

 We define update_a (Ω, x) as the cost if Ω is

modeled from x’s parent data server (y) to x, where

update_a(Ω, x) = Σ|W(S)|, where (S ∩ Ω ≠ φ) ∧ (S ∩

xD = φ)

 We define read_a(Ω,x) as the additional

advantage if R is modeled to x, where

 Read_a(Ω, x) = Σ|Q(S)|, where (S ⊆ Ω ∪

xD) ∧ (S ∩ Ω ≠ φ)

 Now, we define cost_a(Ω, x) as the data

object access cost for modeling Ω at x from y, where

 cost_a(Ω, x) = update_a(Ω, x) – read_a(Ω, x)

Let
a

optS indicates the set which minimizes

cost_a(Ω, x),

i.e.
a

optS = arg min (cost_a(Ω, x)). The transaction

based partial replication models
a

optS to x if cost_a

(
a

optS , x) < 0.

 In ICRDU, a node x can only de-allocate a

data set Ω if and only if x is the leaf node of R(Ω)

depending on the knowledge of the model on its

child nodes, and x has held the model of Ω for since

the end of last time period. We indicate xDd as the

data set on x in such a way that x is the leaf node of

R(xDd) and x has held the model of xDd since

the end of last time period. A set of resources, Ω ⊆

Ddx, may require de-allocation from x if modeling

Ω is not going to benefit in terms of communication

cost. Let update_d(Ω, x) indicate the de-allocation

advantage for de-allocating Ω. In essence, the de-

allocation advantage of Ω comprises all update

transactions from y, accessing a subset of resources

in Ω. update_d(Ω, x) = Σ|W(S)|, where (S ⊆ Ω) ∧ (Ω

⊆ xDd) ∧ (S ≠ φ)Let read_d(Ω, x) indicate the de-

allocation cost. In essence, the de-allocation cost of

Ω comprises all read transactions that are issued by

x, accessing a subset of xDd and some resources in

Ω. read_d(Ω, x) = Σ|Q(S)|, where (S ∩ Ω ≠ φ) ∧ (S

⊆ xD) ∧ (Ω ⊆ xDd). The model de-allocation

access cost_d(Ω, x), is the dissimilarity between read

cost and update advantage for de-allocating Ω from

x.cost_d(Ω, x) = read _d(Ω, x) – update_d(Ω, x)Let
d

optS indicate the set taht minimizes cost_d(Ω, x),

i.e.
d

optS = arg min(cost_d(Ω, x)). The transaction

based partial replication de-allocates
d

optS from x if

cost_d (
a

optS , x) < 0.

IV. ICRDU Algorithm
From [13], the model placement problem in

T can be resolved by designating models in each

subtree respectively, and the placement of models on

each data server in T can also be done independently

to its neighboring computational clusters in T.

Moreover, the set of resources on v, VD , is a subset

of wD , where w is the parent data server of v in T.

The model placement on v can be treated only

dependent on w and they are not dependent on other

computational clusters. By this way, the model

placement problem can be resolved by a distributed

optimal partial replication (ICRDU) algorithm

(including ICRDUA and ICRDUD, in Fig. 1). At the

end of time period,τi, parent data server y creates

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

301 | P a g e

model allocation decision for its child data server x

by utilizing ICRDUA, depending on its knowledge

of the models on its child data server x that is got

from the end of last time period i -1.At the time of

getting the models that are allocated by y, data

server x creates model de-allocation decision for

itself by utilizing ICRDUD. In ICRDUD, data server

x can only de-allocate a set of resources Ω from x

only if x is a leaf data server of R(Ω), and it has hold

the model of resources in Ω since the end of time

periodτi-1. Let
a

optS (y, x, i) indicate the data set

calculated by ICRDUA by data server y for its child

x at the end of i . Let
d

optS (x, i) indicate the

data set calculated by ICRDUD by data server x for

itself at the end of i . See that in for averting

replication oscillation, ICRDU need that model de-

allocation decision must be made for x after x has

obtained model from its parent data server y in the

same time period i . Moreover, in ICRDUA and

ICRDUD, we require calculating the lower bound

cost for each new transaction-data

union TranListIndexS S . One easy way to calculate

the lower bound cost is read_a (superS , x) –

update_a ((TranListIndexS S), x),

where
. 1

sup

TranList Length

er i TranListIndex iS S S

 , and Si is the

data set accessed by TranList[i], TranListIndex ≤ i ≤

n.

 Min Cost: cost_a(
a

oprS (, ,),),iy x x initialized to

;

Min Cost_d: cost_d(
a

oprS (, ,),),iy x x initialized

to ;

S: the contained set during the search, initialized to

;

Lower Bound Cost(newS)& Lower Bound

Cost_d(newS):

Defined following the algorithm

Tran List: the set of distinct transactions that access

data;

Tran List Index: initialized to 0;

If(TranListIndex<TranList.Length){

TranListIndexS =TranList;

[TranlistInded].getDataObjectSet()

newS S ;TranListIndexS

 If(LowerBoundCost(newS)<MinCost)

ICRRU-A(,newS TransListIndex+1);}

 ICRRU-A (S, TranListIndex+1);}

else if(cost a(S, x)<Min Cost) {

 MinCost=cost a(S, x);

 aopt
S (, ,)iy x = S - ;McD }

if (TranListIndex<TranList.Length) {

 TranListIndexS = TranList;

 [TranListIndex].getDataObjectSet();

 newS S ;TranListIndexS

 If(LowerBoundCost_d(newS)MinCost_d){

 ICRRU-A (,newS TransListIndex+1);}

 ICRRU-A (S, TranListIndex+1);}

Else if(cost_d(S,x) MinCost_d) {

 MinCost_d=cost_d(S,x);

 aopt
S (,)ix = S; }

Fig 1: ICRDU Algorithm

 Theorem 1 Let L indicate the tree level.

ICRDU stabilizes and converges to optimal in 2L

time periods. Proof: The proof is removed because

of space limitation. Kindly refer [13] for the full

proof.

V. ICRRU Algorithm
ICRRU since the run time of OPR

algorithms develops exponentially with the number

of transactions; we construct a intra cluster resource

replication and utilization replication algorithms

ICRRU, in which the heuristic Expansion-Shrinking

algorithms (discussed in [12]) is utilized.

,a

heuS *
a

heuS **
a

heuS .S: data sets and initialized to

;

 * * YL ; a record log vector and initialized to ;

Make a copy of YL for cost computing;

 While* YL

for all data set recorded in * YL choose the

data set S such that
a

heuS S is minimal:

if (**)a

heuS S delete the record with S

from* YL .

else if cost a(S, x) < 0 && ** a

heuS S

then ;a a

heu heuS S S

else if (cost a(S, x) >= 0

&&) ()a a

heu heuS S S S

then S
a
htU = S";w S;

else if (cost_a(S, x) >= 0 && S n = (S c

 then
a

heuS remains unchanged;

if the size of
a

heuS has been increased,

 then delete the record with S from * YL , and

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

302 | P a g e

 move all records from** YL to* YL .

Else move the record with S from * YL to ** YL .

*
a

heuS =
a

heuS ;

move all records from** YL to * YL , and
a

heuS ;

Assume that*
a

heuS has been allocated

to (* *)a

x x heuD D S , and re-do log reduction

in* YL .

while* YL

for all data set recorded in* YL

choose the data set S with
a

heuS S is minimal;

if cost_a (*) cos _ (*)a a

y x heu y x heuD D S S x t a D D S S x

;a a

heu heuS S S

if the size of has been increased,

then delete the record with S from* YL

and move all records from* YL to* YL .

else move the record with S from* YL to** YL .

** * ;a a

heu y x heuS D D S

If (cost(**
a

heuS , x)<0) **
a

heuS = ; ;

a

heuS =**
a

heuS * :a

heuS

Fig 2: ICRRU algorithm for Model

allotment(ICRRU-A)

The heuristic Expansion-Shrinking

algorithms now utilize the cost functions that are

defined in Section 3. Moreover, in order to make

ICRRU stabilize, we combine the Set-Expansion and

Set-Shrinking algorithms. In both algorithms, the

data server first performs the Set-Expansion

algorithm and calculates a data set, which is a subset

of the optimal data set that is calculated by the

optimal algorithms. Now, it performs the Set-

Shrinking algorithm presuming that the data set

calculated by the Set-Expansion algorithm is already

designated to the child data server or de-allocated

from itself. Finally, we merge the data sets

calculated by the two algorithms as the final data set

to be designated from y to x or de-allocated from x.

The model allotment process of ICRRU algorithm

(ICRRU-A) and the model withhold for ICRRU

algorithm (ICRRU-W) are indicated in Fig. 2 and 3,

respectively. ICRRU is defined as given below. At

the end of time period, τi, parent data server y

creates model allocation decision for its child data

server x by performing ESRA, depending on its

knowledge of the models on its child data server x

got from the end of last time period 1i . After

getting the models from y, data server x performs

ESRD and makes model de-allocation decision for

itself. At this point, data server x can only de-

allocate a set of resources Ω from x only if x is a leaf

data server of R(Ω), and it has held the model of

resources in Ω since the end of time period 1i .

Observe that for averting replication oscillation,

ICRRU needs that model de-allocation decision

must be made for x after x has obtained model from

its parent data server y during same time period i .

Theorem 2 Let L indicates the tree level. ICRRU

stabilizes in at most 2L time periods.

Proof: The proof is removed because of space

confinement. Kindly refer [13] for the full proof.

.d

heuS * ,d

heuS ** .d

heuS S: data sets and initialized to

; ** xL temporary record log vector and

initialized to ;

Make a copy of Lx for cost computing:

while (*)xL

for all data set recorded in* xL choose

 the data set S such that
d

heuS S is minimal;

if (**)d

heuS S delete the record with S

from* xL

else if cost_d (,) 0 & & d

heuS x S S

 then ;d d

heu heuS S S

else if (COST d (,) cos _ (,)d d

heu heuS S x t a S x

 then ;d d

heu heuS S S

else if (

cost_d (,) 0&&) ()d d

heu heuS x S S S S

then
d

heuS remains unchanged,

if the size of has been increased

 then delete the record with S from* xL and

move all records from** xL to* xL

else move the record with S

from* xL to** xL

* ;d d

heu heuS S

move all records from** xL to* xL and =

;d

heuS

Assume* d

heuS has been de-allocated from x

(* *)d

x x heuD D S and re-do log reduction

in** xL

while* xL

 for all data set recorded in* BCL ,

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

303 | P a g e

 choose the data set S with
d

heuS S minimal:

if

cost_d (* ,) cos _ (* ,)d d

x heu x heuD S S x t d D S x

;d d

heu heuS S S

If the size of
d

heuS has been increased, then

delete the record with S from* xL

and move all records from** xL to* xL

else move the record with S

from* xL to** xL .

** * ;d d

heu x heuS D S

If(cost_d((** ,) 0)** ;d d

heu heuS x S

** ;d d d

heu heu heuS S S

Fig 3: ICRRU algorithm for model withhold

(ICRRU-W)

VI. Simulation Results
In the simulation, comparison of the

ICRRU algorithm with the commonly utilized

distributed frequency-based partial replication

(DFPR) scheme is done for studying its performance

and effectiveness on message saving. Observe that

the frequency based algorithm defined in [12] can

easily be acclimatized to the distributed solution,

DFPR that is fairly direct that each and every node

makes local decision depending on the access

frequency. The tree network that we chose

comprises 20 nodes with height of 6. Initially, the

root node O (that indicates cluster HMSC) hosts all

the resources in data set OD . Each and every node x

in the tree is haphazardly allocated a partial set of

the resources xD ⊆ OD . The requirement is that

xD ⊆ yD if y is an ancestor of node x in the tree

network. The metric that we take into consideration

is the product of the number of messages and the

numbers of hops these messages are send in order to

process the requests in the tree network. Going by

example, if a request that is issued locally can be

served locally, then the number of message is

counted as 0. In the case of the request being served

at its parent, then one message is taken into count.

In this simulation, we utilize one PC

platform for simulating 20 server clusters and the

period of execution for each and every experiment

spans 10 time periods. The simulated distributed

algorithm requires retaining the history logs for

every request (most of the information is not

required in a real system). Because of the excessive

I/O, the simulation process becomes very time-

consuming (observe that the time is not because of

the algorithm itself). Helping to avert prejudiced

access patterns, multiple access patterns are

produced haphazardly and the data collection

process is redone for each and every pattern. In order

to balance between the confidence level of the

experimental results and the time for the simulation

study, we select repeating the procedure 100 times

(i.e., producing 100 distinct access patterns).

Whenever the number of resources and the number

of transactions increase, the system is likely to

overload and we have to further decline the

repetition to 10 times (i.e., utilizing only 10 distinct

access patterns). The final data given in the

following subsections are the average of these trials.

6.1 Transaction Generation

We presume that the resources accessed by

most of the transactions follow various patterns.

Moreover, because of access locality, we presume

that the patterns will be stable for some time periods.

In this experimental study, we first produce a series

of transactions and scrutinize the resources they

access. The set of resources accessed by a

transaction is defined as a resource bundle. We

produce transactions till M distinct resource bundles

are identified. Observe that the resource bundles

may have overlapping resources but no two resource

bundles are identically same. For producing a

transaction, the number of resources to be accessed

by the transaction, indicated as μ, is first ascertained.

μ is surrounded by TS and follows a Zipf

distribution. More specially, the chance of a

transaction having data set size μ is proportional to

1/ SZ
,
 where SZ is the skew parameter of the Zipf

distribution [13]. Now, the μ resources are

ascertained. Let NS indicate the total number of

resources we have taken into consideration in the

experimental study.

Each and every data object is ranked. The

chance that a data object is accessed by a transaction

is proportional to1/ DZ
r (also a Zipf distribution),

where DZ is the skew parameter. Lastly, if a

transaction is read only or update is ascertained by

the ratio, R/W, in a uniform distribution. Here R is

the total number of read transactions given by MCP

and W is the aggregate number of update

transactions given by nodes other than MCP . From

the first batch of transactions produced, we get M

resource bundles and utilize them as the basis in

order to formulate an access distribution. The M

resource bundles are separated into 2 clusters,

comprising the read cluster having 1M resource

bundles for the read transactions and the write

cluster having 2M resource bundles for the update

transactions, where 1M + 2M = M and 1M / 2M

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

304 | P a g e

= R/W. For each and every cluster, 0.5 1M (or

0.5 2M) virtual resource bundles are appended and

the pre-generated 1M (or 2M) resource bundles

along with the virtual resource bundles are ranked.

The transactions are produced in the similar way as

talked about in [12]. Regarding simulation, we

presume that in a time limit T, NT transactions are

given from each data server in the tree.

In this manner, in each time period, all

computational clusters issue NT transactions that are

haphazardly produced depending on the same access

pattern. For making the model allocation decision

for a child data server, each and every data server

records the number of read transactions that are sent

from the child data server and the number of update

transactions received to the child data server. In a

similar fashion recording is also done in order to

make the model de-allocation decision for a child

data server. In case of a read transaction being issued

locally or sent from its children can be served

locally, then the transaction is recorded by the data

server records in its local log. Apart from that it also

records the update transactions spread from its

parent in the local transaction log. After the time

period, a model allocation decision is done for each

and every child data server depending on the

transaction log that is recorded for that child data

server and resources are reproduced and assigned to

the child data server if required. Now, All

computational clusters make the de-allocation

decision depending on its local transaction log.

Performance data are calculated depending on the

allocated transactions and the model set at each data

server in each time period, just before it gets another

model set from its parent. Observe that in this

simulation, the number of resources selected is small

as the amount of memory needed for recording logs

for each data server in each time period. A much

larger number of resources can be selected in case

the ICRRU is operated in a real system, as indicated

in [12].

6.2 The Stabilization

Comparison of the intra cluster resource

replication and utilization algorithm with the

distributed frequency-based algorithm is done for

observing the stability of the two algorithms. Fig. 4

gives the number of message necessary for

processing every transaction that is issued in the

system for the 2 algorithms. The number of

messages needed in the system drops very speedily

in the first 4 time periods for both algorithms. The

percentage of the number of messages declined at

the 1st time period is much greater compared to that

of the 2nd time period, which is instead greater than

that of the 3rd time period, so on and so forth. After

the completion 4th time period, the number of

messages that are required in the system remains

stable for both algorithms, less than 40% messages

are required. At any time period, the ICRRU

requires less number of messages than the ICRDU

algorithm but the difference is negligible.

Fig 4: The performance of the cost stabilization by

ICRDU and ICRRU

6.3 Scalability in terms of Resources and

Transactions proportionality

Comparison of the intra cluster resource

replication and utilization algorithm ICRRU with the

distributed frequency-based algorithm DFPR is done

and calculate the effect of NS (the number of

resources in OD) on their performance. The

parameters in this experiment are set as given here:

DZ = 0.2, SZ = 0.5, R/W = 0.9, ST = 3, NT = 50

* SN . M and NS changes from 10 to 100 (M is

adjusted in order to make sure that we have access to

almost all resources). Fig. 5 indicates the number of

messages necessary for processing all the

transactions given by the system for the two

algorithms. If SN increases, the number of

messages necessary for the two algorithms increases

as the number of transaction also increases. But, the

difference of the message necessary for the 2

algorithms will be remained in a stable way (the

number of message necessary for resource discovery

and replication with ICRRU&ICRDU is 17% of that

needed for only resource discovery[16]), even

though the variation in the number of messages

increases.

Fig 5: Scalability of resource discovery and

usage[16] and ICRRU&ICRDU

V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305

305 | P a g e

VII. Summary
In this paper, we scrutinize the dynamic

designation of correlated resources in computational

clusters. We model the topology of the network that

is formed by the computational clusters in the

distributed system as a tree. Initially we show that

model designation decisions can be done locally for

each and every model site in a tree network, using

data access knowledge of its neighbors. Now, we

develop a new replication cost model for correlated

resources in Internet environment. Depending on the

cost model and the algorithms that are used in

previous research, we have put in effort to develop a

inter cluster resource discovery and utilization

algorithm (ICRDU) for correlated data in internet

environment. ICRDU has 2 sub algorithms,

ICRDUA and ICRDUD, and it is indicated that

ICRDU stabilizes and converges in 2L time periods.

Here, L is the height of the tree.

Now, an intra cluster resource replication

and utilization algorithm (ICRRU) is now developed

for making model placement decisions in an

efficient manner. The ICRRU has 2 sub algorithms,

namely, ICRRU for model allotment and ICRRU for

model withhold, and it is indicated that ICRRU

stabilize in 2L time periods. The algorithm gets near

optimal solutions for the correlated data model and

produces significant performance gains. The

simulation results indicate that the intra cluster

resource replication and utilization allocation

algorithm outperforms the general resource

discovery and utilization schemes in a significant

way.

Reference
[1] P. Apers. Data allocation in distributed

database systems. ACM Transactions on

Database Systems Vol. 13, No. 3

(Sept.).1988.

[2] A. Bestavros and C. Cunha. Server-initiated

document dissemination for the WWW.

IEEE Data Engeneering Bulletin 19, 3

(Sept.), 3–11. 1996.

[3] S. Ceri, S. B. Navathe, and G. Wiederhold.

Distribution design of logical database

schemas. IEEE Transactions on Software

Engineering, Vol. SE-9, No. 4. 1983.

[4] D. Dowdy and D. Foster. Comparative

models of the file assignment problem.

Computing Surveys, 14(2), 1982.

[5] Y. Huang, P. Sistla, and O. Wolfson. Data

replication for mobile computers. In

Proceeding of 1994 ACM SIGMOD, May

1994.

[6] K. Kalpakis, K. Dasgupta, and O. Wolfson.

Optimal placement of models in trees with

read, write, and storage costs. IEEE

Transactions on Parallel and Computational

Clusters. Vol 12, No. 6. 2001.

[7] D. Kossmann. The state of the art in

distributed query processing. ACM

Computing Surveys (CSUR). Volume 32,

Issue 4. December 2000.

[8] Z. Lu and K. S. McKinley. Partial

collection replication versus cache for

information retrieval systems. In

Proceedings of the ACM International

Conference on Research and Development

in Information Retrieval, Athens, Greece,

July 2000.

[9] V. Paxson, End-to-End Routing Behavior

in the Internet, IEEE/ACM Transactions

Networking, 5(5) (1997) 601-615.

[10] J. Sidell, P. Aoki, A. Sah, C. Staelin, M.

Stonebrakeer, and A. Yu. Data replication

in Mariposa. In Proceedings IEEE

Conference on Data Engineering (New

Orleans, LA, Feb.), 485–494. 1996.

[11] A. Sousa, F Pedone, R Oliveira, and F

Moura. Partial replication in the database

state machine. In Proceedings of the IEEE

International Symposium on Network

computing and Applications. 2001.

[12] M. Tu, P. Li, L. Xiao I. Yen, and F.

Bastani. Model placement algorithms for

mobile transaction systems. IEEE

Transactions on Knowledge and Data

Engineering. Vol. 18, No. 7. 2006.

[13] M. Tu. A data management framework for

secure and dependable data grid.

Ph.DDissertation, UT Dallas.

http://www.utdallas.edu/~tumh2000/ref/Th

esis-Tu.pdf. July 2006.

[14] O. Wolfson and A. Milo. The multicast

policy and its relationship to modeled data

placement. ACM Trans. Database Systems.

Vol.16, No.1. 1991

[15] O. Wolfson, S. Jajodia and Y. Huang. An

adaptive data replication algorithm. ACM

Transactions on database systems. Vol22.

No.2 pages 255-314. 1997.

[16] Lanier Watkins, William H. Robinson,

Raheem A. Beyah: A Passive Solution to

the Memory Resource Discovery Problem

in Computational Clusters. IEEE

Transactions on Network and Service

Management 7(4): 218-230 (2010)

http://www.utdallas.edu/~tumh2000/ref/Thesis-Tu.pdf.%20July%202006
http://www.utdallas.edu/~tumh2000/ref/Thesis-Tu.pdf.%20July%202006

