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Abstract 
This paper presents the details of a novel 

method for passive resource discovery in cluster 

grid environments, where resources constantly 

utilize inter node communication. This method 

offers the ability to non-intrusively identify 

resources that have available CPU cycles; this is 

critical for lowering queue wait times in large 

cluster grid networks. The benefits include: 1) 

low message complexity, which facilitates low 

latency in distributed networks, 2) scalability, 

which provides support for very large networks, 

and 3) low maintainability, since no additional 

software is needed on compute resources. Using a 

50-node (multicore) test bed (DETER lab), this 

paper demonstrate the feasibility of the method 

with experiments utilizing TCP, UDP, and ICMP 

network traffic. I use a simple but powerful 

technique that monitors the frequency of network 

packets emitted from the Network Interface Card 

(NIC) of local resources. I observed the 

correlation between CPU load and the timely 

response of network traffic. A highly utilized 

CPU will have numerous, active processes which 

require context switching. The latency associated 

with numerous context switches manifests as a 

delay signature within the packet transmission 

process. This method detects that delay signature 

to determine the utilization of network resources. 

Results show that the method can consistently 

and accurately identify nodes with available CPU 

cycles (<70 percent CPU utilization) through 

analysis of existing network traffic, including 

network traffic that has passed through a switch 

(non-congested). Also, institutions where there is 

no existing network traffic for nodes, ICMP ping 

replies can be used to ascertain this resource 

information. 

 

I. Introduction 
With the advances in network technologies, 

applications are all moving toward serving widely 

distributed users. However, today’s Internet still 

cannot guarantee quality of services and potential 

congestions can result in prolonged delays and leave 

unsatisfied customers. The problem can be more 

severe when the accesses involve a large amount of 

data. Replication techniques have been commonly 

used to minimize the communication latency by  

 

 

bringing the data close to the clients. Web caching is 

a successful example of the technique. However, 

when the data may be updated, the problem is more 

complicated. The more models in the system, the 

higher the update cost will be. Thus, data needs to be 

carefully placed to avoid unnecessary overhead.  

There have been a lot of research works 

addressing the data model placement issues in 

Computational Clusters [1, 4, 7, 14, 15]. Generally, 

the access pattern is used to guide the placement 

decision. Several considerations like static [1] and 

dynamic [2, 7, 15] placement decisions and full and 

partial replication schemes have also been 

investigated. Partial replication take into 

consideration reproduce subsets of resources and is 

generally required for environments showing strong 

access locality [8, 11]. Almost all the model 

placement algorithms do not specifically presume 

full or partial replication [5, 15]. In reality, most of 

the placement decision algorithms can be applied to 

both cases by managing the granularity of the 

resources that are considered. But, each of these 

algorithms presumes that resources are not 

dependent on each other. In several applications, 

each and every request/transaction may have access 

to multiple resources and, so, bringing correlation 

among the resources. Going by example, for a read 

transaction accessing multiple resources, all of these 

resources at a local site will be able to decline 

communication overhead. But, in the case of only a 

part of the data set that is being accessed is modeled 

at a local site, then the replication will not bring 

much advantage. This is because the read transaction 

still requires to be forwarded in order to recover the 

resources that are left out. The same is applied to an 

update transaction that is accessing multiple 

resources. In the case of only a part of the data set 

that is being updated is modeled, a message is 

required for sending the update request. So, for 

getting better model allocation, it is necessary to 

take into consideration the access correlation among 

resources. In [12], we have dealt about the model 

placement issues of correlated resources in mobile 

environments considering mobile networks that are 

having a star topology. Further, it presumes that 

every time the base station node holds the total data 

set (comprising all resources that may be required by 

the mobile nodes). This is required for minimizing 

the mobile unit connection time for the accesses. 
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Whenever the general Internet environment is taken 

into consideration, several issues are to be 

considered. The first one is that there is no need of 

considering the connection time for Internet based 

clients and partial replication is needed.  

Moreover, a greater complex topology 

requires consideration for Internet accesses. So, a 

more sophisticated placement algorithm for 

correlated resources should be evolved. A crucial 

issue in model placement algorithms in such kind of 

environment is that who executes the intensive 

placement computation. Some of the placement 

algorithms are centralized [6, 14] that makes the 

central decision-making site to be overloaded 

severely. Distributed model placement algorithms, 

like [10, 15], grant each model site to make localized 

decisions. They will be able to react to changes in 

access patterns and naturally divide the computation. 

In this paper, we construct a dynamic model 

placement algorithm, which (1) takes into 

consideration a tree topology network, (2) considers 

the correlation among resources whenever accessed 

by the same requests, and (3) gives distributed 

algorithm that does localized analysis for declining 

the computation cost. Moreover, our algorithm is 

adaptive. It takes into consideration 2 schemes. To 

get optimal solutions, a distributed branch and bound 

algorithm is utilized to calculate the optimal set of 

resources models to be designated on the 

computational clusters. Remember that in 

commercial applications, transaction access patterns 

follow the “80/20” rule [3], i.e., just 20% of the 

transaction types accounts for 80% of the total 

amount of the transactions. Whenever the 

transaction access pattern is stabled, the set of 

resources associated is considerably small. Lanier 

Watkins et al[] discussed a Passive Solution to the 

Memory Resource Discovery Problem in 

Computational Clusters. When compared to existing 

models this solution is more robust secure and 

scalable. The prime benefits of this model are low 

message complexity, scalability, load balancing, and 

low maintainability but limited their solution to deal 

with resource requirements of the clusters. 

                So, the optimal algorithm is obtainable in 

this case. For dealing with the access patterns that 

are frequently changed, we suggest resource 

discovery, replication and utilization algorithms for 

getting near optimal solutions, which is motivated 

from the work carried out by Lanier Watkins et al[]. 

The remaining part of this paper is distributed as 

follows. Section 2 explains our system model and 

problem definition, depending on the system model 

that is defined in [12]. Section 3 delves about the 

transaction based cost model in a distributed 

environment. Section 4 gives a distributed partial 

replication algorithm (ICRDU). Section 5 deals 

about a intra cluster resource replication and 

utilization partial replication algorithm (ICRRU). 

Section 6 is about the experimental study results and 

Section 7 concludes the paper. 

 

II. Resource allocation System Format 
Studies reveal that the networks can be 

disintegrated into connected autonomous systems, 

which are under separate administrative control [9]. 

These autonomous systems are generally treated as 

clusters. By this way the underlying topology of the 

widely distributed system as a cluster based general 

graph is modeled by us. For scaling the system, we 

presume that there is a data server in each and every 

cluster. In this research, we take into consideration 

only the data model placement on the computational 

clusters, and the model assignment inside each 

cluster can be treated separately. We presume that 

the actual copy of the entire set of N resources that 

are to be accessed by users is put up at a primary 

data server that is indicated as O. Let OD  indicate 

the N resources on the data server O, then, 

1 2{ , ,..., }O ND d d d and | OD | = N. Whenever 

applications use data saved in this primary sever, 

they generally follow a shortest path tree routing to 

the data source that is positioned at the primary 

server O [9]. Study reveals that almost all routings 

are stable in days or weeks and so the routing paths 

can be looked upon as a tree topology that is rooted 

at the primary server O. So, we take into 

consideration replication the widely distributed 

system as a tree graph, indicated as T, rooted at the 

primary server O. To expedite efficient data accesses 

by users in the Internet, a subset of resources in OD  

are modeled on computational clusters in T.  

Let xD  indicate the resources on a data 

server x, then xD  ⊆ OD , and | xD | is  the number 

of modeled resources in xD . Take a set of resources 

Ω, let R(Ω) indicate the resident set of Ω that is the 

set of computational clusters hold Ω or a superset of 

Ω, i.e. R(Ω) = {x∈T | Ω ⊆ xD }.The divided system 

bolsters both read and update requests and each 

request can have access to an random number of 

resources in OD . For each and every data server x 

in T, there are a number of clients that are connected 

to it. The requests that are given by these clients can 

be seen as requests from the data server x. 

Presuming that clients can give both read and update 

requests. Let t indicate a transaction, it can be a read 

transaction or an update transaction. Let D (t) 

indicate the set of resources read or updated by t, D 

(t) ⊆ OD , and D (t) is designated as a transaction-

data set of t. For a transaction t accessing D (t) given 

by a data server v, if D (t) ⊆ VD , then t is served 



V.Siva Kumar, Dr. G.Prakash Babu / International Journal of Engineering Research and 

Applications (IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.299-305 

300 | P a g e  

locally. Contra wise, t is send to the closest data 

server, which can serve t.  

For an update transaction t, the data server 

that performs t requires to send the update to other 

computational clusters through the edges in a tree 

that only possess of all those computational clusters 

*x in T, where D (t) ∩ *xD  ≠ φ. Our aim is to 

optimally allocate the models resources in OD  to 

computational clusters in T in such a way that 

aggregate access cost is minimized for a given client 

access pattern. We define a model placement that is 

having the minimal cost as an optimal model 

placement of OD  (OptPl ( OD )). Observe that 

optimal placement solutions may not be unique. 

Take a data set Ω, R (Ω) in an OptPl ( OD ) is an 

optimal resident set of Ω. During this research, we 

don’t take into consideration node capacity 

constraint, message losses, node failures, and the 

consistency maintenance issues. The communication 

cost that is brought up by model placement and de-

allocation is also not taken into consideration. 

 

III. Operation Based limited Replication 

rate format 
During this section, we make definition of 

operation based limited replication rate formats for 

correlated resources in a tree graph, depending on 

the cost models that are defined in [Tum06a]. Take 2 

computational clusters x and y, where data server y 

is the parent data server of x. Here, we only 

emphasize model allocation decisions at y and 

model de-allocation decision at x. This is because 

model allocation and de-allocation models and 

approaches can be applied in a similar fashion to 

other computational clusters in tree T. Take a set of 

resources Ω, Ω ⊆ OD . If Ω is modeled to x, a read 

transaction t, D (t) ⊆ Ω, can be served locally and 

one message can be saved. We take into 

consideration this as one unit of advantage for 

modeling Ω on x. But, because of the replication of 

Ω on x an update transaction t, D (t) ∩ Ω ≠ φ, 

requires to be send to x. We regard this as one unit 

of cost put up by modeling Ω on x.  

            We define update_a (Ω, x) as the cost if Ω is 

modeled from x’s parent data server (y) to x, where 

update_a(Ω, x) = Σ|W(S)|, where (S ∩ Ω ≠ φ) ∧ (S ∩ 

xD  = φ)  

         We define read_a(Ω,x) as the additional 

advantage if R is modeled to x, where  

                Read_a(Ω, x) = Σ|Q(S)|, where (S ⊆ Ω ∪ 

xD ) ∧ (S ∩ Ω ≠ φ) 

            Now, we define cost_a(Ω, x) as the data 

object access cost for modeling Ω at x from y, where  

            cost_a(Ω, x) = update_a(Ω, x) – read_a(Ω, x) 

Let 
a

optS  indicates the set which minimizes 

cost_a(Ω, x),  

i.e. 
a

optS  = arg min (cost_a(Ω, x)). The transaction 

based partial replication models  
a

optS  to x if cost_a 

(
a

optS , x) < 0. 

              In ICRDU, a node x can only de-allocate a 

data set Ω if and only if x is the leaf node of R(Ω) 

depending on the knowledge of the model on its 

child nodes, and x has held the model of Ω for since 

the end of last time period. We indicate xDd  as the 

data set on x in such a way that x is the leaf node of 

R( xDd ) and x has held the model of xDd  since 

the end of last time period. A set of resources, Ω ⊆ 

Ddx, may require de-allocation from x if modeling 

Ω is not going to benefit in terms of communication 

cost. Let update_d(Ω, x) indicate the de-allocation 

advantage for de-allocating Ω. In essence, the de-

allocation advantage of Ω comprises all update 

transactions from y, accessing a subset of resources 

in Ω. update_d(Ω, x) = Σ|W(S)|, where (S ⊆ Ω) ∧ (Ω 

⊆ xDd ) ∧ (S ≠ φ)Let read_d(Ω, x) indicate the de-

allocation cost. In essence, the de-allocation cost of 

Ω comprises all read transactions that are issued by 

x, accessing a subset of xDd  and some resources in 

Ω. read_d(Ω, x) = Σ|Q(S)|, where (S ∩ Ω ≠ φ) ∧ (S 

⊆ xD ) ∧ (Ω ⊆ xDd ). The model de-allocation 

access cost_d(Ω, x), is the dissimilarity between read 

cost and update advantage for de-allocating Ω from 

x.cost_d(Ω, x) = read _d(Ω, x) – update_d(Ω, x)Let 
d

optS  indicate the set taht minimizes cost_d(Ω, x), 

i.e. 
d

optS  = arg min(cost_d(Ω, x)). The transaction 

based partial replication de-allocates 
d

optS  from x if 

cost_d (
a

optS , x) < 0. 

 

IV. ICRDU Algorithm 
From [13], the model placement problem in 

T can be resolved by designating models in each 

subtree respectively, and the placement of models on 

each data server in T can also be done independently 

to its neighboring computational clusters in T. 

Moreover, the set of resources on v, VD , is a subset 

of wD , where w is the parent data server of v in T. 

The model placement on v can be treated only 

dependent on w and they are not dependent on other 

computational clusters. By this way, the model 

placement problem can be resolved by a distributed 

optimal partial replication (ICRDU) algorithm 

(including ICRDUA and ICRDUD, in Fig. 1). At the 

end of time period,τi, parent data server y creates 
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model allocation decision for its child data server x 

by utilizing ICRDUA, depending  on its knowledge 

of the models on its child data server x that is got 

from the end of last time period i -1.At the time of 

getting the models that are allocated by y, data 

server x creates model de-allocation decision for 

itself by utilizing ICRDUD. In ICRDUD, data server 

x can only de-allocate a set of resources Ω from x 

only if x is a leaf data server of R(Ω), and it has hold 

the model of resources in Ω since the end of time 

periodτi-1. Let 
a

optS  (y, x, i ) indicate the data set 

calculated by ICRDUA by data server y for its child 

x at the end of i . Let 
d

optS  (x, i ) indicate the 

data set calculated by ICRDUD by data server x for 

itself at the end of i . See that in for averting 

replication oscillation, ICRDU need that model de-

allocation decision must be made for x after x has 

obtained model from its parent data server y in the 

same time period i . Moreover, in ICRDUA and 

ICRDUD, we  require calculating the lower bound 

cost for each new transaction-data 

union TranListIndexS S . One easy way to calculate 

the lower bound cost is read_a ( superS , x) – 

update_a (( TranListIndexS S ), x), 

where
. 1

sup

TranList Length

er i TranListIndex iS S S

  , and Si is the 

data set accessed by TranList[i], TranListIndex ≤ i ≤ 

n. 

 Min Cost: cost_a(
a

oprS ( , , ), ),iy x x initialized to 

;  

Min Cost_d: cost_d(
a

oprS ( , , ), ),iy x x initialized 

to ;  

S: the contained set during the search, initialized to 

;  

Lower Bound Cost( newS )& Lower Bound 

Cost_d( newS ): 

Defined following the algorithm 

Tran List: the set of distinct transactions that access 

data; 

Tran List Index: initialized to 0; 

If(TranListIndex<TranList.Length){ 

TranListIndexS =TranList; 

[TranlistInded].getDataObjectSet() 

newS S  ;TranListIndexS  

 If(LowerBoundCost( newS )<MinCost) 

ICRRU-A( ,newS TransListIndex+1);} 

 ICRRU-A (S, TranListIndex+1);} 

else if(cost a(S, x)<Min Cost) { 

        MinCost=cost a(S, x); 

       aopt
S ( , , )iy x  = S - ;McD } 

if (TranListIndex<TranList.Length) { 

        TranListIndexS = TranList; 

 [TranListIndex].getDataObjectSet(); 

        newS S  ;TranListIndexS  

 If(LowerBoundCost_d( newS )MinCost_d){ 

          ICRRU-A ( ,newS TransListIndex+1);} 

          ICRRU-A (S, TranListIndex+1);} 

Else if(cost_d(S,x) MinCost_d) { 

          MinCost_d=cost_d(S,x); 

          aopt
S ( , )ix  = S; } 

 

Fig 1: ICRDU Algorithm 

            Theorem 1 Let L indicate the tree level. 

ICRDU stabilizes and converges to optimal in 2L 

time periods. Proof: The proof is removed because 

of space limitation. Kindly refer [13] for the full 

proof.  

 

V. ICRRU Algorithm  
ICRRU since the run time of OPR 

algorithms develops exponentially with the number 

of transactions; we construct a intra cluster resource 

replication and utilization replication algorithms 

ICRRU, in which the heuristic Expansion-Shrinking 

algorithms (discussed in [12]) is utilized. 

,a

heuS * 
a

heuS ** 
a

heuS .S: data sets and initialized to 

;  

 * * YL ; a record log vector and initialized to ;   

Make a copy of YL for cost computing; 

 While* YL      

for all data set recorded in * YL  choose the 

data set S such that
a

heuS S is minimal: 

if ( ** )a

heuS S   delete the record with S 

from* YL . 

else if cost a(S, x) < 0 && ** a

heuS S    

then ;a a

heu heuS S S   

else if (cost a(S, x) >= 0 

&& ) ( )a a

heu heuS S S S    

then S
a
htU = S";w S; 

else if ( cost_a(S, x) >= 0 && S n = (S c 

 then
a

heuS remains unchanged; 

if the size of
a

heuS  has been increased, 

 then delete the record with S from * YL , and 
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 move all records from** YL  to* YL .  

Else move the record with S from * YL to ** YL . 

*
a

heuS =
a

heuS ; 

move all records from** YL  to * YL , and 
a

heuS  ; 

Assume that*
a

heuS has been allocated 

to (* * )a

x x heuD D S  , and re-do log reduction 

in* YL . 

while* YL    

for all data set recorded in* YL  

choose the data set S with
a

heuS S is minimal; 

if cost_a ( * ) cos _ ( * )a a

y x heu y x heuD D S S x t a D D S S x        

;a a

heu heuS S S   

if the size of has been increased,  

then delete the record with S from* YL   

and move all records from* YL  to* YL .  

else move the record with S from* YL  to** YL . 

** * ;a a

heu y x heuS D D S    

If (cost(**
a

heuS , x)<0) **
a

heuS = ; ; 

a

heuS =**
a

heuS * :a

heuS  

Fig 2: ICRRU algorithm for Model 

allotment(ICRRU-A) 

 

The heuristic Expansion-Shrinking 

algorithms now utilize the cost functions that are 

defined in Section 3. Moreover, in order to make 

ICRRU stabilize, we combine the Set-Expansion and 

Set-Shrinking algorithms. In both algorithms, the 

data server first performs the Set-Expansion 

algorithm and calculates a data set, which is a subset 

of the optimal data set that is calculated by the 

optimal algorithms. Now, it performs the Set-

Shrinking algorithm presuming that the data set 

calculated by the Set-Expansion algorithm is already 

designated to the child data server or de-allocated 

from itself. Finally, we merge the data sets 

calculated by the two algorithms as the final data set 

to be designated from y to x or de-allocated from x. 

The model allotment process of ICRRU algorithm 

(ICRRU-A) and the model withhold for ICRRU 

algorithm (ICRRU-W) are indicated in Fig. 2 and 3, 

respectively. ICRRU is defined as given below. At 

the end of time period, τi, parent data server y 

creates model allocation decision for its child data 

server x by performing ESRA, depending on its 

knowledge of the models on its child data server x 

got from the end of last time period 1i  . After 

getting the models from y, data server x performs 

ESRD and makes model de-allocation decision for 

itself. At this point, data server x can only de-

allocate a set of resources Ω from x only if x is a leaf 

data server of R(Ω), and it has held the model of 

resources in Ω since the end of time period 1i  . 

Observe that for averting replication oscillation, 

ICRRU needs that model de-allocation decision 

must be made for x after x has obtained model from 

its parent data server y during same time period i .  

Theorem 2 Let L indicates the tree level. ICRRU 

stabilizes in at most 2L time periods.  

Proof: The proof is removed because of space 

confinement. Kindly refer [13] for the full proof. 

.d

heuS * ,d

heuS  ** .d

heuS S: data sets and initialized to 

; ** xL temporary record log vector and 

initialized to ;  

Make a copy of Lx for cost computing: 

while (* )xL    

for all data set recorded in* xL  choose 

    the data set S such that
d

heuS S is minimal; 

if ( ** )d

heuS S   delete the record with S 

from* xL  

else if cost_d ( , ) 0 & & d

heuS x S S      

       then ;d d

heu heuS S S   

else if (COST d ( , ) cos _ ( , )d d

heu heuS S x t a S x   

       then ;d d

heu heuS S S   

else if ( 

cost_d ( , ) 0&& ) ( )d d

heu heuS x S S S S     

then
d

heuS  remains unchanged, 

if the size of has been increased 

      then delete the record with S from* xL and 

move all records from** xL to* xL  

else          move the record with S 

from* xL to** xL  

* ;d d

heu heuS S  

move all records from** xL to* xL and = 

;d

heuS   

Assume* d

heuS  has been de-allocated from x 

(* * )d

x x heuD D S  and re-do log reduction 

in** xL  

while* xL   

    for all data set recorded in* BCL , 
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        choose the data set S with
d

heuS S minimal: 

if 

cost_d (* , ) cos _ (* , )d d

x heu x heuD S S x t d D S x     

;d d

heu heuS S S    

If the size of 
d

heuS has been increased, then 

delete the record with S from* xL  

and move all records from** xL to* xL  

else          move the record with S 

from* xL to** xL . 

** * ;d d

heu x heuS D S   

If(cost_d( (** , ) 0)** ;d d

heu heuS x S    

** ;d d d

heu heu heuS S S                          

Fig 3: ICRRU algorithm for model withhold 

(ICRRU-W) 

 

VI. Simulation Results 
In the simulation, comparison of the 

ICRRU algorithm  with the commonly utilized 

distributed frequency-based partial replication 

(DFPR) scheme is done for studying its performance 

and effectiveness on message saving. Observe that 

the frequency based algorithm defined in [12] can 

easily be acclimatized to the distributed solution, 

DFPR that is fairly direct that each and every node 

makes local decision depending on the access 

frequency. The tree network that we chose 

comprises 20 nodes with height of 6. Initially, the 

root node O (that indicates cluster HMSC) hosts all 

the resources in data set OD . Each and every node x 

in the tree is haphazardly allocated a partial set of 

the resources xD  ⊆ OD . The requirement is that 

xD  ⊆ yD  if y is an ancestor of node x in the tree 

network. The metric that we take into consideration 

is the product of the number of messages and the 

numbers of hops these messages are send in order to 

process the requests in the tree network. Going by 

example, if a request that is issued locally can be 

served locally, then the number of message is 

counted as 0. In the case of the request being served 

at its parent, then one message is taken into count.  

In this simulation, we utilize one PC 

platform for simulating 20 server clusters and the 

period of execution for each and every experiment 

spans 10 time periods. The simulated distributed 

algorithm requires retaining the history logs for 

every request (most of the information is not 

required in a real system). Because of the excessive 

I/O, the simulation process becomes very time-

consuming (observe that the time is not because of 

the algorithm itself). Helping to avert prejudiced 

access patterns, multiple access patterns are 

produced haphazardly and the data collection 

process is redone for each and every pattern. In order 

to balance between the confidence level of the 

experimental results and the time for the simulation 

study, we select repeating the procedure 100 times 

(i.e., producing 100 distinct access patterns). 

Whenever the number of resources and the number 

of transactions increase, the system is likely to 

overload and we have to further decline the 

repetition to 10 times (i.e., utilizing only 10 distinct 

access patterns). The final data given in the 

following subsections are the average of these trials. 

 

6.1 Transaction Generation   

We presume that the resources accessed by 

most of the transactions follow various patterns. 

Moreover, because of access locality, we presume 

that the patterns will be stable for some time periods. 

In this experimental study, we first produce a series 

of transactions and scrutinize the resources they 

access. The set of resources accessed by a 

transaction is defined as a resource bundle. We 

produce transactions till M distinct resource bundles 

are identified. Observe that the resource bundles 

may have overlapping resources but no two resource 

bundles are identically same. For producing a 

transaction, the number of resources to be accessed 

by the transaction, indicated as μ, is first ascertained. 

μ is surrounded by TS and follows a Zipf 

distribution. More specially, the chance of a 

transaction having data set size μ is proportional to 

1/ SZ
,
 where SZ  is the skew parameter of the Zipf 

distribution [13]. Now, the μ resources are 

ascertained. Let NS indicate the total number of 

resources we have taken into consideration in the 

experimental study. 

Each and every data object is ranked. The 

chance that a data object is accessed by a transaction 

is proportional to1/ DZ
r  (also a Zipf distribution), 

where DZ  is the skew parameter. Lastly, if a 

transaction is read only or update is ascertained by 

the ratio, R/W, in a uniform distribution. Here R is 

the total number of read transactions given by MCP  

and W is the aggregate number of update 

transactions given by nodes other than MCP . From 

the first batch of transactions produced, we get M 

resource bundles and utilize them as the basis in 

order to formulate an access distribution. The M 

resource bundles are separated into 2 clusters, 

comprising the read cluster having 1M  resource 

bundles for the read transactions and the write 

cluster having 2M  resource bundles for the update 

transactions, where 1M  + 2M  = M and 1M / 2M  
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= R/W. For each and every cluster, 0.5 1M  (or 

0.5 2M ) virtual resource bundles are appended and 

the pre-generated 1M  (or 2M ) resource bundles  

along with the virtual resource bundles are ranked. 

The transactions are produced in the similar way as 

talked about in [12]. Regarding simulation, we 

presume that in a time limit T, NT  transactions are 

given from each data server in the tree.  

In this manner, in each time period, all 

computational clusters issue NT  transactions that are 

haphazardly produced depending on the same access 

pattern. For making the model allocation decision 

for a child data server, each and every data server 

records the number of read transactions that are sent 

from the child data server and the number of update 

transactions received to the child data server. In a 

similar fashion recording is also done in order to 

make the model de-allocation decision for a child 

data server. In case of a read transaction being issued 

locally or sent from its children can be served 

locally, then the transaction is recorded by the data 

server records in its local log. Apart from that it also 

records the update transactions spread from its 

parent in the local transaction log. After the time 

period, a model allocation decision is done for each 

and every child data server depending on the 

transaction log that is recorded for that child data 

server and resources are reproduced and assigned to 

the child data server if required. Now, All 

computational clusters make the de-allocation 

decision depending on its local transaction log. 

Performance data are calculated depending on the 

allocated transactions and the model set at each data 

server in each time period, just before it gets another 

model set from its parent. Observe that in this 

simulation, the number of resources selected is small 

as the amount of memory needed for recording logs 

for each data server in each time period. A much 

larger number of resources can be selected in case 

the ICRRU is operated in a real system, as indicated 

in [12]. 

 

6.2 The Stabilization 

Comparison of the intra cluster resource 

replication and utilization algorithm with the 

distributed frequency-based algorithm is done for 

observing the stability of the two algorithms. Fig. 4 

gives the number of message necessary for 

processing every transaction that is issued in the 

system for the 2 algorithms. The number of 

messages needed in the system drops very speedily 

in the first 4 time periods for both algorithms. The 

percentage of the number of messages declined at 

the 1st time period is much greater compared to that 

of the 2nd time period, which is instead greater than 

that of the 3rd time period, so on and so forth. After 

the completion 4th time period, the number of 

messages that are required in the system remains 

stable for both algorithms, less than 40% messages 

are required. At any time period, the ICRRU 

requires less number of messages than the ICRDU 

algorithm but the difference is negligible. 

 
Fig 4: The performance of the cost stabilization by 

ICRDU and ICRRU 

 

6.3 Scalability in terms of Resources and 

Transactions proportionality 

Comparison of the intra cluster resource 

replication and utilization algorithm ICRRU with the 

distributed frequency-based algorithm DFPR is done 

and calculate the effect of NS (the number of 

resources in OD ) on their performance. The 

parameters in this experiment are set as given here: 

DZ  = 0.2, SZ  = 0.5, R/W = 0.9, ST  = 3, NT  = 50 

* SN . M and NS changes from 10 to 100 (M is 

adjusted in order to make sure that we have access to 

almost all resources). Fig. 5 indicates the number of 

messages necessary for processing all the 

transactions given by the system for the two 

algorithms. If SN  increases, the number of 

messages necessary for the two algorithms increases 

as the number of transaction also increases. But, the 

difference of the message necessary for the 2 

algorithms will be remained in a stable way (the 

number of message necessary for resource discovery 

and replication with ICRRU&ICRDU is 17% of that 

needed for only resource discovery[16]), even 

though the variation in the number of messages 

increases. 

 
Fig 5: Scalability of resource discovery and 

usage[16] and ICRRU&ICRDU 
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VII. Summary 
In this paper, we scrutinize the dynamic 

designation of correlated resources in computational 

clusters. We model the topology of the network that 

is formed by the computational clusters in the 

distributed system as a tree. Initially we show that 

model designation decisions can be done locally for 

each and every model site in a tree network, using 

data access knowledge of its neighbors. Now, we 

develop a new replication cost model for correlated 

resources in Internet environment. Depending on the 

cost model and the algorithms that are used in 

previous research, we have put in effort to develop a 

inter cluster resource discovery and utilization 

algorithm (ICRDU) for correlated data in internet 

environment. ICRDU has 2 sub algorithms, 

ICRDUA and ICRDUD, and it is indicated that 

ICRDU stabilizes and converges in 2L time periods. 

Here, L is the height of the tree.  

Now, an intra cluster resource replication 

and utilization algorithm (ICRRU) is now developed 

for making model placement decisions in an 

efficient manner. The ICRRU has 2 sub algorithms, 

namely, ICRRU for model allotment and ICRRU for 

model withhold, and it is indicated that ICRRU 

stabilize in 2L time periods. The algorithm gets near 

optimal solutions for the correlated data model and 

produces significant performance gains. The 

simulation results indicate that the intra cluster 

resource replication and utilization allocation 

algorithm outperforms the general resource 

discovery and utilization schemes in a significant 

way. 
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