
Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

269 | P a g e

Building A High Availability - Openstack

Deepak Mane
GCP – IT Performance Management Tata Consultancy Services Hadapsar, Pune INDIA

ABSTRACT
 High Availability is an important component to

provide Zero downtime , zero outage coverage for

Openstack components . it also provides automated

failover and switchover .

 Openstack is a private cloud platform has lack

of inbuilt high availability functions this can be

implemented by opensource solution by Pacemaker

and Corosync software.

 This paper provided clear concepts of High

availability requirements, solution approach ,

Openstack components , detailed implementation

approach using PCS shell and LCMC. It also

summarizes various tools to manage pacemaker and

Corosync clusters

KEYWORDS: Cloud Computing , Openstack, High

Availability, Corosync , Pacemaker , PCS, keystone, nova ,

glance, LCMC

.

I. Requirement for High Availability
 High Availability systems, fundamentally, seek to

minimize two things:

 System downtime — the unavailability of a user-facing

service beyond a specified maximum amount of time,

and

 Data loss — the accidental deletion or destruction of

data.

 Budget - Each high availability solution has an

associated cost. The cost for the solution must be

compared to the benefit achieved for your business.

When asked about a high availability solution, most

customers will say that they want continuous

availability with zero downtime. While this is

technically possible, the cost of the protection offered

by the solution may be too great.

 Uptime requirements- Up-time requirements refers to

the total amount of time that the system is available for

end-use applications. The value is stated as a percent

of total scheduled working hours.

 Outage coverage -What kind of outage is the business

trying to protect against? Backup window reduction,

planned maintenance, unplanned outages, or site

disasters are events to consider when choosing a high

availability solution.

 Resilience requirements -The business must identify

what it is that needs to be protected when the system

hosting the application experiences an outage. The

resilience requirements are the set of applications, data

and system environments required to be preserved

across an outage of the production system. These

entities remain available through a failover even when

the system currently hosting them experiences an

outage.

 Automated failover and switchover -The business must

define how much control is given up to automation

during unplanned outages

 Distance requirements -Distance between systems, or

geographic dispersion, has benefits but is gated by

physical and practical limits. For a disaster recovery

solution, there are always benefits in having

geographic dispersion between the systems. Typically,

the greater the distance between the systems, the

greater the protection you will have from area wide

disasters. However, this distance will come with

application environment impacts.

 Number of backup systems -Different data resilience

technologies offer differing numbers of possible

backup systems and copies of application data.

 Access to a secondary copy of the data - Different data

resilience technologies have different restrictions to the

backup data set. Access to the backup data set

requirements indicates the level of access that is

required to secondary copies of the data for other work

activity off-loaded from primary copies, such as saves

and queries/reports. You should consider the

frequency, duration, and what type of access is needed

for the backup copy of the data.

 System performance - Implementing high availability

may have performance implications. The requirements

of the business may determine what data resilience

technology is required.

 Data resilience method comparison - This table

provides a brief description of the major characteristics

of the solution that generates a copy of the data onto

auxiliary storage.

 It is important to understand that most high

availability systems can guarantee protection against these

issues only in the face of a single failure event. They are

also expected to protect against cascading failures, where

an originally singular failure deteriorates into a series of

consequential failures High-availability systems typically

achieve uptime of 99.99% or more, meaning less than

roughly an hour of cumulative downtime per year. From

this, it follows that highly-available systems are generally

expected to keep recovery times in the face of a failure on

the order of 1-2 minutes, sometimes significantly less.

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsuptime.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsoutage.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsresilience.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsautofail.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsdistance.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsnumberbackup.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqs2ndaccess.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsperf.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzarj/rzarjhareqsdatarep.htm

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

270 | P a g e

II. High Availability Solution – Openstack
 Openstack infrastructure high availability relies on

the Pacemaker cluster stack, the stateof-the-art high

availability and load balancing stack for the Linux

platform. Pacemaker is storage- and application-agnostic,

and is in no way specific to Openstack. Pacemaker relies on

the Corosync messaging layer for reliable cluster

communications. Corosync implements the Totem single-

ring ordering and membership protocol and provides UDP

and InfiniBand based messaging, quorum, and cluster

membership to Pacemaker.

 Pacemaker interacts with applications through

resource agents (RAs), of which it supports over 70

natively. Pacemaker can also easily use third-party RAs.

An Openstack high availability configuration uses existing

native Pacemaker RAs (such as those managing MySQL

databases or virtual IP addresses), existing third-party RAs

(such as for RabbitMQ), and native Openstack RAs (such

as those managing the Openstack Identity and Image

 We will provide detailed solution approach for

High availability – Openstack

III. Openstack – Introduction
 Openstack is a collection of open source software

projects that enterprises/service providers can use to setup

and run their cloud compute and storage infrastructure.

Rackspace and NASA are the key initial contributors to

the stack. Rackspace contributed their "Cloud Files"

platform (code) to power the Object Storage part of the

Openstack, while NASA contributed their "Nebula"

platform (code) to power the Compute part. Openstack

consortium has managed to have more than 150 members

including Canonical, Dell, Citrix etc.

• Nova - Compute Service

• Swift - Storage Service

• Glance - Imaging Service

• Keystone - Identity Service

• Horizon - UI Service

Figure 1: Simple Openstack Architecture

3.1 Openstack Compute Service (Nova)

 Nova is the Computing Fabric controller for the

Openstack Cloud. All activities needed to support the life

cycle of instances within the Openstack cloud are handled

by Nova. This makes Nova a Management Platform that

manages compute resources, networking, authorization,

and scalability needs of the Openstack cloud. But, Nova

does not provide any virtualization capabil- ities by itself;

instead, it uses libvirt API to interact with supported

hypervisors. Nova exposes all its capabilities through a

web services API that is compatible with the EC2 API of

Amazon Web Services.

Functions and features of Nova are

• Instance life cycle management

• Management of compute resources

• Networking and Authorization

• REST-based API

•Asynchronous eventually consistent communication

• Hypervisor agnostic: support for Xen, XenServer/XCP,

KVM, UML, VMware vSphere and Hyper-V

3.2 Openstack Image Service (Glance)

 Openstack Imaging Service is a lookup and

retrieval system for virtual machine images. It can be

configured to use any one of the following storage

backbends:

• Local filesystem (default)

• Openstack Object Store to store images

• S3 storage directly

• S3 storage with Object Store as the intermediate for S3

access.

• HTTP (read-only)

Functions and features of Glance are

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

271 | P a g e

• Provides imaging service

3.2 Openstack Storage requirement (Swift)

 Openstack Imaging Service is a lookup and

retrieval system for virtual machine images. It can be

configured to use any one of the following storage

backbends:

• Local filesystem (default)

• Openstack Object Store to store images

• S3 storage directly

• S3 storage with Object Store as the intermediate for S3

access.

• HTTP (read-only)

• Provides imaging service

 Swift provides a distributed, eventually consistent virtual

object store for Openstack. It is analogous to Amazon Web

Services - Simple Storage Service (S3). Swift is capable of

storing billions of objects distributed across nodes. Swift

has built-in redundancy and failover management and is

capable of archiving and media streaming. It is extremely

scalable in terms of both size (several petabytes) and

capacity (number of objects).

Functions and Features

• Storage of large number of objects

• Storage of large sized objects

• Data Redundancy

• Archival capabilities - Work with large datasets

• Data container for virtual machines and cloud apps

• Media Streaming capabilities

• Secure storage of objects

• Backup and archival

• Extreme scalability

3.3 Openstack Identity Service (Keystone)

 Keystone provides identity and access policy

services for all components in the Openstack family. It

implements its own REST based API (Identity API). It

provides authentication and authorization for all

components of Openstack including (but not limited to)

Swift, Glance, Nova. Authentication verifies that a request

actually comes from who it says it does. Authorization is

verifying whether the authenticated user has access to the

services he/she is requesting for.

Figure 2: Keystone process

 Keystone provides two ways of authentication.

One is username/password based and the other is token

based. Apart from that, keystone provides the following

services:

• Token Service (that carries authorization information

about an authenticated user)

• Catalog Service (that contains a list of available services

at the users’ disposal)

• Policy Service (that let’s keystone manage access to

specific services by specific users or groups).

3.4 Openstack Administrative Web-Interface (Horizon)

 Horizon the web based dashboard can be used to

manage /administer Openstack services. It can be used to

manage instances and images, create keypairs, attach

volumes to instances, manipulate Swift containers etc.

Apart from this, dashboard even gives the user access to

instance console and can connect to an instance through

VNC. Overall, Horizon features the following:

• Instance Management - Create or terminate instance, view

console logs and connect through VNC, Attaching

volumes, etc.

• Access and Security Management - Create security

groups, manage keypairs, assign floating IPs, etc.

• Flavor Management - Manage different flavors or

instance virtual hardware templates.

• Image Management - Edit or delete images.

• View service catalog.

• Manage users, quotas and usage for projects.

• User Management - Create user, etc.

• Volume Management - Creating Volumes and snapshots.

• Object Store Manipulation - Create, delete containers and

objects.

• Downloading environment variables for a project.

IV. High Availability Solution Components
4.1 Pacemaker

 Pacemaker is a cluster resource manager. It

achieves maximum availability for your cluster services

(aka. resources) by detecting and recovering from node and

resource-level failures by making use of the messaging and

membership capabilities provided by your preferred cluster

infrastructure (either Corosync or Heartbeat).

Pacemaker’s key features include:

 Detection and recovery of node and service-level

failures

 Storage agnostic, no requirement for shared

storage

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

272 | P a g e

 Resource agnostic, anything that can be scripted

can be clustered

 Supports STONITH for ensuring data integrity

 Supports large and small clusters

 Supports both quorate and resource driven clusters

 Supports practically any redundancy configuration

 Automatically replicated configuration that can be

updated from any node

 Ability to specify cluster-wide service ordering,

colocation and anti-colocation

 Support for advanced service types

o Clones: for services which need to be

active on multiple nodes

o Multi-state: for services with multiple

modes (eg. master/slave,

primary/secondary)

 Unified, scriptable, cluster management tools.

4.1.1 Pacemaker - Internal components

Pacemaker itself is composed of four key components

(illustrated below in the same color scheme as the previous

diagram):

 CIB (aka. Cluster Information Base)

 CRMd (aka. Cluster Resource Management

daemon)

 PEngine (aka. PE or Policy Engine)

 STONITHd

 The CIB uses XML to represent both the cluster’s

configuration and current state of all resources in the

cluster. The contents of the CIB are automatically kept in

sync across the entire cluster and are used by the PEngine

to compute the ideal state of the cluster and how it should

be achieved.

 This list of instructions is then fed to the DC

(Designated Co-coordinator). Pacemaker centralizes all

cluster decision making by electing one of the CRMd

instances to act as a master. Should the elected CRMd

process, or the node it is on, fail… a new one is quickly

established.

The DC carries out the PEngine’s instructions in the

required order by passing them to either the LRMd (Local

Resource Management daemon) or CRMd peers on other

nodes via the cluster messaging infrastructure (which in

turn passes them on to their LRMd process).

Figure 3: Pacemaker internals

4.2 Corosync – Introduction

 The Corosync Cluster Engine is a group

communication system with additional features for

implementing high availability within applications.

The project provides four C programming interfaces

features:

 A closed process group communication model

with virtual synchrony guarantees for creating

replicated state machines.

 A simple availability manager that restarts the

application process when it has failed.

 A configuration and statistics in-memory database

that provide the ability to set, retrieve, and receive

change notifications of information.

 A quorum system that notifies applications when

quorum is achieved or lost.

4.2.1 Corosync Architecture

The software is composed of an executive binary which

uses a client-server communication model between libraries

and service engines. Loadable modules, called service

engines, are loaded into the Corosync Cluster Engine and

use the services provided by the Corosync Service Engine

internal API.

The services provided by the Corosync Service Engine

internal API are:

 An implementation of the Totem Single Ring

Ordering and Membership [1] protocol providing

the Extended Virtual Synchrony model [2] for

messaging and membership.

 The croup high performance shared memory IPC

system.[3]

 An object database that implements the in memory

database model.

http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Corosync_%28project%29#cite_note-1
http://en.wikipedia.org/wiki/Corosync_%28project%29#cite_note-2
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Corosync_%28project%29#cite_note-3
http://en.wikipedia.org/wiki/In_memory_database
http://en.wikipedia.org/wiki/In_memory_database
http://en.wikipedia.org/wiki/In_memory_database

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

273 | P a g e

 Systems to route IPC and Totem messages to the

correct service engines.

Additionally Corosync provides several default service

engines that are used via C Application Programming

Interfaces:

 cpg - Closed Process Group

 sam - Simple Availability Manager

 confdb - Configuration and Statistics database

 quorum - Provides notifications of gain or loss of

quorum

4.3 Resource Agents

 A resource agent is a standardized interface for a

cluster resource. In translates a standard set of operations

into steps specific to the resource or application, and

interprets their results as success or failure.

Resource Agents have been managed as a separate Linux-

HA sub-project since their 1.0 release, which coincided

with the Heartbeat 2.99 release. Previously, they were a

part of the then-monolithic Heartbeat project, and had no

collective name. Later, the Linux-HA Resource Agents and

the RHCS Resource Agents sub-projects have been

merged. The joint upstream repository is now

https://github.com/ClusterLabs/resource-agents

Pacemaker supports three types of Resource Agents,

 LSB Resource Agents,

 OCF Resource Agents,

 legacy Heartbeat Resource Agents

4.3.1 Supported Operations

Operations which a resource agent my perform on a

resource instance include:

 start: enable or start the given resource

 stop: disable or stop the given resource

 monitor: check whether the given resource is

running (and/or doing useful work), return status

as running or not running

 validate-all: validate the resource's configuration

 meta-data: return information about the resource

agent itself (used by GUIs and other management

utilities, and documentation tools)

V. High Availability – Architecture type
 The most common size for an HA cluster is a two-

node a cluster, since that is the minimum required to

provide redundancy, but many clusters consist of many

more, sometimes dozens of nodes. Such configurations can

sometimes be categorized into one of the following models:

 Active/active — Traffic intended for the failed

node is either passed onto an existing node or load

balanced across the remaining nodes. This is

usually only possible when the nodes utilize a

homogeneous software configuration.

 Active/passive — provides a fully redundant

instance of each node, which is only brought

online when its associated primary node fails. This

configuration typically requires the most extra

hardware.

 N+1 — provides a single extra node that is

brought online to take over the role of the node

that has failed. In the case of heterogeneous

software configuration on each primary node, the

extra node must be universally capable of

assuming any of the roles of the primary nodes it

is responsible for. This normally refers to clusters

which have multiple services running

simultaneously; in the single service case, this

degenerates to active/passive.

 N+M — in cases where a single cluster is

managing many services, having only one

dedicated failover node may not offer sufficient

redundancy. In such cases, more than one (M)

standby servers are included and available. The

number of standby servers is a tradeoff between

cost and reliability requirements.

 N-to-1 — allows the failover standby node to

become the active one temporarily, until the

original node can be restored or brought back

online, at which point the services or instances

must be failed-back to it in order to restore high

availability.

 N-to-N — A combination of active/active and

N+M clusters, N to N clusters redistribute the

services, instances or connections from the failed

node among the remaining active nodes, thus

eliminating

VI. Configuration tools
 To configure Pacemaker and Corosync there are 2

types of configuration tools supported

• Command line tools

• Gui Tools

6.1 Command line interfaces

crmsh – The original configuration shell for Pacemaker.

Written and maintained by SUSE, it may be used either as

an interactive shell with tab completion, for single

commands directly on the shell’s commands line or as

batch mode scripting tool.

 pcs – An alternate vision for a full cluster lifecycle

configuration shell and web based GUI. Handles everything

from cluster installation through to resource configuration

and status.

6.2 GUI tools

 Pygui – The original GUI for Pacemaker written

in Python by IBM China. Mostly deprecated on SLES in

favor of Hawk

 Hawk – Hawk is a web-based GUI for managing and

monitoring Pacemaker HA clusters. It is generally intended

to be run on every node in the cluster, so that you can just

http://en.wikipedia.org/wiki/Application_Programming_Interfaces
http://en.wikipedia.org/wiki/Application_Programming_Interfaces
http://en.wikipedia.org/wiki/Application_Programming_Interfaces
https://savannah.nongnu.org/projects/crmsh/
https://github.com/feist/pcs

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

274 | P a g e

point your web browser at any node to access it. It is

documented as part of the SUSE Linux Enterprise High

Availability Extension documentation

 LCMC – The Linux Cluster Management Console

(LCMC) is a GUI with an innovative approach for

representing the status of and relationships between cluster

services. It uses SSH to let you install, configure and

manage clusters from your desktop.

 pcs – An alternate vision for a full cluster lifecycle

configuration shell and web based GUI. Handles everything

from cluster installation through to resource configuration

and status.

6.3 Others Add-on

 booth – The Booth cluster ticket manager extends

Pacemaker to support geographically distributed clustering.

It does this by managing the granting and revoking of

'tickets' which authorizes one of the cluster sites, potentially

located in geographically dispersed locations, to run certain

resources.

VII. Implementation High Availability using PCS
 PCS Shell - PCS will continue the tradition of

having a regression test suite and discoverable 'ip'-like

hierarchical "menu" structure, however unlike the shell we

may end up not adding interactivity.

Both projects are far from complete, but so far PCS can:

- Create Corosync/pacemaker clusters from scratch

- Add simple resources and add constraints

- Create/Remove resource groups

- Set most pacemaker configuration options

- Start/Stop pacemaker/Corosync

- Get basic cluster status

7.1 Adding Openstack resources in Corosync and

pacemaker resources

7.1.1 PCS -installation

$ yum install -y pcs

7.1.2 Setup

Start and enable the daemon by issuing the

following commands on each node.

systemctl start pcsd.service

systemctl enable pcsd.service

 While pcs can be used locally without setting up

these user accounts, this tutorial will make use of these

remote access commands, so we will set a password for the

hacluster user. Its probably best if password is consistent

across all the nodes.

As root, run:

passwd hacluster

password:

7.1.3 Configuring Corosync

 Using pcs with the pcs daemon greatly simplifies

this process by generating corosync.conf across all the

nodes in the cluster with a single command. The only thing

required to achieve this is to authenticate as the pcs user

hacluster on one of the nodes in the cluster

Execute this commands on node-1 and node-2

pcs cluster auth node-1 node-2

Username: hacluster

Password:

node-1: Authorized

node-2: Authorized

pcs cluster setup mycluster node-1 node-2

node-1: Succeeded

node-2: Succeeded

7.1.4 Start the Cluster

 Now that corosync is configured, it is time to start

the cluster. The command below will start corosync and

pacemaker on both nodes in the cluster. If you are issuing

the start command

pcs cluster start --all

node-1: Starting Cluster...

node-2: Starting Cluster..

or

An alternative to using the pcs cluster startall command is

to issue either of the below commands on each node in the

cluster by hand.

pcs cluster start

Starting Cluster...

or

systemctl start corosync.service

systemctl start pacemaker.service

7.1.5 Adding keystone resource to pacemaker

You may now proceed with adding the Pacemaker

configuration for Keystone resource.Connect to the

Pacemaker cluster with pcs resource create and add the

following cluster resources:

pcs resource create p_keystone ocf:openstack:keystone \

params config="/etc/keystone/keystone.conf"

os_password="secret"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s

7.1.6 Adding glance resources to pacemaker

pcs resource create p_glance-api ocf:openstack:glance-api

\

https://github.com/feist/pcs
https://github.com/ClusterLabs/booth

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

275 | P a g e

params config="/etc/glance/glance-api.conf"

os_password="secrete"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s"

pcs resource create p_glance-registry

ocf:openstack:glance-registry \

params config="/etc/glance/glance-registry.conf"

os_password="secrete"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s

7.1.7 Adding Cinder resources to pacemaker

 pcs resource create p_cinder-api

ocf:openstack:cinder-api \

params config="/etc/cinder/api-paste.conf"

os_password="secrete"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s"

pcs resource create p_cinder-volume ocf:openstack:cinder-

volume \

params config="/etc/cinder/cinder.conf"

os_password="secrete"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s

pcs resource create p_cinder-schedule

ocf:openstack:cinder-schedule \

params config="/etc/glance/cinder-api.conf"

os_password="secrete"

os_username="admin" os_tenant_name="admin"

os_auth_url="http://192.168.42.

103:5000/v2.0/" \

op monitor interval="30s" timeout="30s

7.1.8 Adding Nova resources to pacemaker

 Pcs resource create p_nova_api ocf:openstack

:nova-api \ params config="/etc/nova/nova.conf" \ op

monitor interval="5s" timeout="5s" pcs resource create

p_scheduler ocf:openstack:nova-scheduler \params config=

"/ etc/nova/nova.conf" \ op monitor interval="30s"

timeout="30s"

pcs resource create p_novnc ocf:openstack:nova-

vnc \

params config="/etc/nova/nova.conf" \ op monitor

interval="30s" timeout="30s"

pcs resource create p_nova-cert ocf:openstack:nova-cert \

params config="/etc/nova/nova.conf" \

op monitor interval="30s" timeout="30s"

pcs resource create p_nova-consoleauth

ocf:openstack:nova-consoleauth params

config="/etc/nova/nova.conf" \

 op monitor interval="30s" timeout="30s"

pcs resource create p_novn-conductor

ocf:openstack:nova-conductor \

 params config="/etc/nova/nova.conf" \

 op monitor interval="30s" timeout="30s"

pcs resource create p_nova-network

ocf:openstack:nova-network \

 params config="/etc/nova/nova.conf" \

 op monitor interval="30s" timeout="30s"

7.1.9 Adding Quantum resources to pacemaker

pcs resource create ocf:openstack:quantum-server \

os_password="secrete" os_username="admin"

os_tenant_name="admin" \

keystone_get_token_url="http://192.168.42.103:5000/v2.0/

" \

op monitor interval="30s" timeout="30s"

7.1.10 Results – PCS Shell

Figure 4 : PCs status

Figure 5 : Openstack services – status

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

276 | P a g e

VIII. Implementation High Availability using

LCMC
 The LCMC is a GUI application that configures,

manages and visualizes high-availability clusters.

Specifically it manages clusters that use one or more of

these components: Pacemaker, Corosync, Heartbeat,

DRBD, KVM, XEN and LVM

LCMC (Linux Cluster Management Console) by Rasto

Levrinc is a Pacemaker GUI written in Java. Formerly

known as DRBD MC. It uses SSH to connect to the Linux

cluster from your desktop computer, or it can be embedded

in a web-page as an applet. See the website for more

information

8.1 Check Corosync and Pacemaker status

Figure 6: Pacemaker and Corosync status

8.2 Openstack Services- Availability

Figure 7 : Availability of Openstack services

8.3 Resource types in Pacemaker/Corosync

8.3.1 Primitive

 First, is this Primitive resources of the most

commonly used. It is the basis for all resource definitions.

 A resource to be used in the Act-Standby normal

configuration, this can move a node in one place

somewhere. Therefore, you can use the resources that it is

sufficient to move in only one node of a cluster-wide

resource if failure and to fail over to another node. You

will want to define this resource usually if you want to HA

clustering something like a mail server or database.

Figure 8 : Primitive resource

8.3.2 Clone

 The Clone resource is used when you want to

operate with multiple nodes Primitive resources.

Definition method is the flow to define the Primitive first, is

to Clone of it for that.

 If you want to run on more than one node at a

certain application, when you try to achieve in only

Primitive, you must be defined by the number of nodes that

you want to move, but it can be moved by simply defining

the Clone one resource in the case of Clone .

 Use as a typical example, there is a (following RA) pingd

resource agent to be used for monitoring of communication

networks. In Act-Standby configuration that provides a

service over the network, Primitive resources Act has failed

and failing it over to the Standby node, it does not make

sense network of Standby node you are off. When

monitoring the network at the node in order to avoid a

situation in which these, is allowed to operate on all nodes

pingd RA, does not provide the service, the network has

gone out of order, the service does not fail over to that node

Here is how to use the normal to like.

 It should be noted that the implementation of RA, because

there is no difference Primitive, the Clone, as a separate,

RA that can be defined in Primitive can Clone of behavior

comes is guaranteed.

Figure 9 : Clone resources

8.3.3 Master / Slave

 The Master / Slave resource, in which further development

of the Clone resource, use the resources that a parent-child

relationship in the Clone resources. Definition method is

the flow to define the Primitive first, is to Master / Slave of

it.

 The typical use, there is a RA of DRBD to use for

a replication of data. In DRBD, there is a condition called

Secondary and Primary, reading and writing of data,

receive data for replication from the Primary In Secondary

in Primary, and writes it to disk. Therefore, it is necessary

to running on multiple nodes DRBD, necessary to

distinguish the status of the Secondary and Primary further

comes out. I realize using the Master / Slave of Pacemaker

this.

Deepak Mane / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.269-277

277 | P a g e

 The operation by adding start and stop operation

of resources in the Master / Slave, is mounted on the RA

Primitive, of Clone for, start, that stop, was promoted to the

parent promote, that demote, demote to children in RA

Because that must be implemented, it is not possible to

Master / Slave of as an RA for the Clone and Primitive.

Figure 10 : Master-Slave resources

 Screenshots of HA Openstack using LCMC

8.3.4 HA for MySQL

Figure 11 : MySQL HA Availability

8.3.5 HA for NOVA components

Figure 12 : Nova high Availability

8.3.6 HA for Swift components

Figure 13 : Swift High Availability

8.3.7 HA for Cinder Components

Figure 14 : Cinder – High Availability

IX. Conclusion
 While Pacemaker and Corosync is designed to

provide High availability for all components of Openstack

on physical servers and virtual servers also

This solution is zero investment since it is available from

opensource community Corosync and pacemaker is

lightweight process with respect to performance since it is

consumes 1 or 2% CPU utilization. It also supports

automated failover and switchover within 2 seconds .data

and system environments preserved across an outage of the

production system. These entities remain available through

a failover even when the system currently hosting them

experiences an outage

References
[1] http://www.sebastien-

han.fr/blog/2012/07/02/openstack-nova-components-

ha/

[2] https://github.com/mseknibilel/OpenStack-Grizzly-

Install-

Guide/blob/master/OpenStack_Grizzly_Install_Guid

e.rst

[3] http://clusterlabs.org/doc/en-US/Pacemaker/1.1-

pcs/html/Clusters_from_Scratch/index.html

[4] http://www.6tech.org/2013/03/linux-firewall-cluster-

with-pacemaker-and-corosync/

[5] http://www.linux-ha.org/wiki/Resource_agents

[6] https://github.com/madkiss/openstack-resource-

agents/tree/master/ocf

[7] https://wiki.openstack.org/wiki/Main_Page

[8] http://docs.openstack.org/trunk/openstack-

ha/content/ch-intro.html

[9] http://blog.scottlowe.org/2013/04/17/openstack-

summit-2013-openstack-high-availability-in-grizzly-

and-beyond/

http://www.sebastien-han.fr/blog/2012/07/02/openstack-nova-components-ha/
http://www.sebastien-han.fr/blog/2012/07/02/openstack-nova-components-ha/
http://www.sebastien-han.fr/blog/2012/07/02/openstack-nova-components-ha/
https://github.com/mseknibilel/OpenStack-Grizzly-Install-Guide/blob/master/OpenStack_Grizzly_Install_Guide.rst
https://github.com/mseknibilel/OpenStack-Grizzly-Install-Guide/blob/master/OpenStack_Grizzly_Install_Guide.rst
https://github.com/mseknibilel/OpenStack-Grizzly-Install-Guide/blob/master/OpenStack_Grizzly_Install_Guide.rst
https://github.com/mseknibilel/OpenStack-Grizzly-Install-Guide/blob/master/OpenStack_Grizzly_Install_Guide.rst
http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html/Clusters_from_Scratch/index.html
http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html/Clusters_from_Scratch/index.html
http://www.6tech.org/2013/03/linux-firewall-cluster-with-pacemaker-and-corosync/
http://www.6tech.org/2013/03/linux-firewall-cluster-with-pacemaker-and-corosync/
http://www.linux-ha.org/wiki/Resource_agents
https://github.com/madkiss/openstack-resource-agents/tree/master/ocf
https://github.com/madkiss/openstack-resource-agents/tree/master/ocf
https://wiki.openstack.org/wiki/Main_Page
http://docs.openstack.org/trunk/openstack-ha/content/ch-intro.html
http://docs.openstack.org/trunk/openstack-ha/content/ch-intro.html
http://blog.scottlowe.org/2013/04/17/openstack-summit-2013-openstack-high-availability-in-grizzly-and-beyond/
http://blog.scottlowe.org/2013/04/17/openstack-summit-2013-openstack-high-availability-in-grizzly-and-beyond/
http://blog.scottlowe.org/2013/04/17/openstack-summit-2013-openstack-high-availability-in-grizzly-and-beyond/

