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ABSTRACT 
Little solar panels and other parts make up solar home systems (SHS), which are designed to power a single 

house. For those living without access to a national power grid in developing countries, this is a more financially 

viable option. To prioritizing the deployment of public and private resources and tracking the fulfilment of 

universal electrification objectives, it is crucial that stakeholders have access to reliable data on individual SHS 

installations, such as information like position and power capacity. Despite the proliferation of research that 

using satellite imagery and computer vision to detect solar panels, many of these tool’s struggle to properly 

locate numerous SHS due to poor image quality. Here, we analyze the cost-performance tradeoff of using 

automatic SHS identification using UAV data instead of satellite imagery.  

We look at three specific issues: I how reliable is SHS detection using drones; (ii) how much does it cost to 

acquire drone data compared to satellite photos; and (iii) how much does it cost to obtain drone data? To test the 

capacity of deep learning models to maybe other SHS, even those that are too tiny to be consistently identified 

in satellite imagery, we gather and make accessible high-resolution drone images of SHS captured under a broad 

variety of real-world settings. The results suggest that UAV photography may be an alternative to identify very 

small SHS from the perspectives of both accuracy rate and economic expenses of data collecting. Data obtained 

by UAVs might potentially be used to aid power access planning strategies, which would help accomplish 

sustainable development goals and monitor progress towards those goals. 

Keywords:Electrification, Solar Home System, Deep Learning, Machine Learning, Cost Optimization 

 

I. INTRODUCTION 
The objective of the competition [1] was 

to create a baseload, scheduling constraint, and 

Solar Home System cost prediction-aware 

algorithm for the month of November 2012. 

Python, which has tools for forecasting and 

optimization, was chosen as the language to 

develop the solution. Python helped simplify the 

connection between these two processes. As a first 

step, we used a visual representation of the 

available building load and solar production data to 

identify gaps in the data and identify repeating 

patterns that could indicate seasonal or cyclical 

changes. It was discovered that there were less 

blanks in the solar power generating data, as 

opposed to the construction data, which was 

riddled with missing information. This meant that 

proper data cleaning techniques like imputation and 

deletion have to be used to make the data viable for 

prediction analysis. 

Considering the obvious dissimilarities 

between the construction and solar patterns, two 

distinct families of prediction tools were created. 

The results of several studies comparing various 

approaches of forecasting reveal that ensemble 

methods are superior to those of the individual 

methods. As a result, the vote regressor from the 

Python sklearn package was used to make load 

predictions for the buildings.This regressor model, 

instead of making predictions using a single 

estimator, uses an average of estimates from many 

estimators fitted to the same data. The best results 

for this dataset came from a combination of tree-

based approaches like random forest (RF) and the 

gradient boosting (GB) technique. In addition to 

these approaches, STL decomposition was included 

to better forecast the cyclic and seasonal 

fluctuations in building loads. 

A cost-minimizing scheduling method was 

the focus of the competition's second round. Binary 

variables, such as whether time a certain job is 

active, are required to represent the restrictions of 

this scheduling issue. As this was an integer-based 

issue, it was modelled using mixed-integer 

programming (MIP). It was clear from the problem 

statement that there would be many obstacles to 

overcome. 

 For planning out a month's worth of 

events, a granularity of 15 minutes 

requires vectors with a size of 2880. 
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Increases in activity level have a 

multiplicative effect on complexity. 

 A squaring component in the peak power 

cost makes this a mixed integer quadratic 

programming issue (MIQP) 

 All events were to be held within business 

hours for maximum efficiency. The peak 

power period, which represents a 

significant proportion of the total energy 

expenditure, is impacted because of this as 

well. 

These difficulties significantly impacted whether 

the issue could be solved. We also discovered that 

scheduling non-recurring operations yielded a 

maximum value of about sixteen thousand 

dollar which may not justify the additional expense 

and calculation necessary to plan such chores. So, 

the following two procedures were employed to 

reduce the complexity of the issue: 

 The issue was modelled using just 

periodic actions. 

 By capping the monthly peak power 

component and eliminating it from the 

target, the issue was transformed into a 

mixed integer linear programme (MILP). 

Hence, the procedure was broken down into four 

stages: gathering and processing data, predicting 

building loads, anticipating solar production, and 

solving the optimum scheduling issue [4]. 

 

II. RELATED WORK 
Large solar Pv systems may be visible in 

satellite imagery, and this is especially true in 

comparison to very small arrays. No previous 

studies have concentrated on smaller photovoltaic 

panels that are being deployed for all of those 

travelling to transition to access to energy for the 

first time, which may be 100W or less, but new 

studies demonstrates the opportunities of 

automatically charting Solar PV arrays using 

satellite technology and intelligent systems for 

facilities ranging from individual residential SHS 

(5-10kW [7] to utility-scale (>10MW [13]). 

Traditional machine learning methods like 

vector machines (SVM), decision trees (DT), and 

random forests [7] weren't enough for early 

attempts in solar panel segmentation, therefore 

human engineers manually crafted characteristics 

like mean, variance, text ons, and colour statistics 

of pixels. Using deep neural networks (DNN), 

Yuan et al. [13] were able to determine which solar 

panels were located from above. Progress in using 

convolutional neural networks (CNNs) [12] on 

large-scale image datasets like ImageNet [12] has 

also boosted the field of solar panel segmentation 

(i.e., pixel-wise categorization). In [11], a CNN 

that had been taught to classify images was used to 

conduct a rudimentary kind of solar panel 

segmentation. Two of the first real segmentation 

convolutional neural networks (CNNs) for PV 

recognition were SegNet [5] and activity map-

based techniques [11]. To improve model 

identification performance [8, they also quickly 

embraced U-net designs [6]. 

For some time now, PV systems and solar 

farms have been monitored by unmanned aerial 

vehicles (UAVs). While theoretically feasible, in 

practise this has only been achieved for solar panel 

management in large solar farms where the 

locations of the solar PV have already been known. 

Unmanned air vehicle-based solar panel 

segmentation has been used to evaluate solar farm 

projects by using textural features and a clustering 

algorithm [8]. 

Infrared photography was used in previous 

drone investigations [13] of solar panel fault 

identification to locate specific issues with the 

arrays. There are some cases where satellite 

imagery can be used to monitor solar PV farms, 

such as when monitoring the impact of particulate 

matter deposition on generation efficiency [3]. 

However, this is an exception rather than the rule, 

as solar PV monitoring typically requires UAV 

data due to high good image requirements. In 

several cases, both optical and thermal cameras 

have been used. Thermal imaging cameras are used 

to look for temperature differences that may 

indicate damaged solar cells [4]. By analyzing 

optical UAV imagery, damaged or sand solar cells 

in solar and wind farms may be found [9]. These 

drone-based probes kept their photographic 

evidence to themselves. 

 

III. DATASETS 
Adding nuance to energy network 

research is an emerging area of study that involves 

describing data in an ontology paradigm so that the 

inherent relationships among data in an electricity 

network may be represented in human language. 

After thorough study, many ontologies for 

intelligent energy real applications have been 

developed. When it comes to improving energy 

demand and response, Daniele et al. [6] developed 

an ontology known as SAREF4EE. With the goal 

of improving coordination between different kinds 

of smart energy, Lefrancois [7] developed SEAS. 

Our work draws on prior ontologies for wise 

energy systems, but we highlight the ease with 

which cross-domain impacts (such the climate 

domain) may be included, as well as the 

importance of decentralized home energy systems. 

The climatic data collected utilized by our model to 

simulate the effects of climate change was defined 
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using both Wu's [8] CA and Janowicz's [9] SOSA 

ontologies. 

To the best of our knowledge, there are no 

drone datasets including annotated photographs of 

solar panels, much alone extremely modest (100W) 

solar panels. The most important publicly 

accessible UAV-based datasets are summarized in 

the appendix; however, due to the absence of solar 

panel annotations, these datasets cannot be used to 

train automated systems to detect solar PV cells in 

UAV footage. 

 

Altitude GSD #Img #Vid #Annoted 

PV 

51m 1.8cm 56 8 216 

62m 2.2cm 64 8 290 

72m 2.6cm 48 9 235 

82m 2.9cm 63 9 298 

93m 3.4cm 43 9 215 

101m 3.6cm 48 10 235 

111m 4.1cm 57 5 290 

121m 4.5cm 49 11 240 

 

Table – 1:Specifics about the data set used. Listed 

with the altitude is the appropriate GSD. In-

Gamma: Pictures. videos, or "vids" for short. 

There are a total of 423 pictures, 60 videos, and 

2010 solar panels with annotations. 

 

Specifics about the data set used. Listed with the 

altitude is the appropriate GSD. In-Gamma: 

Pictures. videos, or "vids" for short. There are a 

total of 423 pictures, 60 videos, and 2013 solar 

panels with annotations:  

1. Sufficient resolution and resolution at ground 

sampling distance (GSD). In actuality, the GSD of 

drone images might fluctuate widely due to 

variables like technology and elevation shift. Thus, 

it is important for our dataset to include images 

with a variety of image GSDs that are adequate to 

simulate a range of real-world situations and enable 

the detection of SHS. 

2. Panels of solar energy that are both varied and 

generic. Since the physical appearance of solar 

panels can vary depending on a number of factors 

(polycrystal vs. monocrystal, size, and aspect 

ratio), we took care in selecting our solar panels to 

ensure that they represent a wide range of potential 

configurations found in real-world installations in 

low-income regions. 

3. 90-degree camera orientation and variable 

speeds: We'd want our dataset to include more than 

one flight speed so that we may examine the 

resilience of solar panel identification and the cost 

of data gathering (which relates to flying speed). 

 

IV. SYSTEM MODELS 
As a starting point for our investigation, 

we will use the micro grid system model shown in 

Fig. 1. This model examines the average home's 

contribution to the utility district's solar energy 

distribution network. The use of batteries to store 

electrical energy is also accounted for in the model. 

This system is managed by the Central Energy 

Manager (CEM) shown in the diagram. This 

domestic micro-grid may also, if necessary, take 

electricity from the grid, which is often believed to 

derive mostly from fossil-fuel resources, and at 

current market pricing. Residential power 

consumption per hour was calculated using real 

data collected from a utility serving homes in 

southwest Ohio. 

These presumptions are put into practise. 

Connected to the load circuits are the solar 

generators and batteries; this arrangement makes it 

feasible to simultaneously draw electricity from all 

three sources (the grid, the batteries, and the 

generators). Second, it is assumed that a controller 

is available that, given advance notice of expected 

demands and solar output, can optimally adjust the 

proportion of power supplied by these sources at 

any given moment. The ideal power split between 

these sources at all times is the one that results in 

the lowest annual cost of energy provision in this 

configuration. 

 
Figure No.1:The System, shown in a single line. 

 

The optimization problem takes as inputs 

the average hourly power consumption by 

residential customers (Dt), the hourly cost of 

electricity (Ct), and the hourly solar energy output 

from the panels (kilowatt-volt-hours per square 

metre) (St). The cost of power rises in tandem with 

peak demand, as seen in the image. Battery charge 

and discharge efficiency, (Beff), battery and solar 

panel lifespan, and levelized cost are also 

considered. 
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A typical house in Dayton, Ohio has been 

simulated. Solar radiation received each hour was 

gathered from [18], whereas hourly demand and 

the cost of generating power were gathered from 

[3]. Relevant optimization problem variables are: 

 Pt = Hourly power output from the PV to 

sustain the load directly. 

 Lt = Excess power that cannot be used 

because there is not enough demand for 

electricity to fully use the available battery 

capacity. 

 PCt = Transfer of energy from the solar 

panels to the storage batteries. 

 Bt = Discharge of Battery Power 

 PVsize = square metres of solar panel 

area. 

 Bsize = maximum capacity of the battery 

bank (kWh). 

Using either the public power grid, solar panels, or 

a battery bank may fulfil this need, as seen in Fig. 

1. 

𝐷𝑡 = 𝐺𝑡 + 𝑃𝑡 + 𝐵𝑡               - (1) 

The energy generated by the solar panels is split 

into three categories at any given instant: that 

which is utilised to power loads (Pt), that which is 

used to charge the batteries (PCt), and that which is 

wasted if neither PCt nor Pt can be used (Lt). Input 

energy is proportional to the amount of sunlight, 

the efficiency of the solar panels, and the area 

covered. 

𝑆𝑡 ∗ 𝑃𝑉𝑠𝑖𝑧𝑒 ∗ 𝑃𝑉𝑒𝑓𝑓 = 𝑃𝑡 + 𝑃𝐶𝑡 + 𝐿𝑡                 - (2) 

The amount of energy available in the battery bank 

at any one moment (Et) is proportional to the 

difference between the total amount of energy 

supplied to the system and the total amount of 

energy drawn from the batteries up to that point. 

𝐸𝑡 = 𝐸𝑡−1 + 𝐵𝑒𝑓𝑓 ∗ 𝑃𝐶𝑡−1 − 𝐵𝑡−1 + 𝐸𝑜 ⇒ 

Et =  t−1
i=1 (Beff ∗ PCi − Bi) + Eo                              

- (3) 

where Eo is the amount of energy that was 

originally stored in the batteries. 

 

V. COST OPTIMIZATION 

METHODOLOGY 
After developing the model of the system, 

the major goal of this study is to determine how to 

implement real-time pricing in a way that 

minimizes the cost of delivering energy to a home. 

In essence, the goal of this optimization is to 

ascertain the optimal number of solar collectors and 

batteries (if any) to provide the client with the 

cheapest possible energy. The optimization 

considers the impact of variations in the capital 

expenditure for solar panels and batteries. The 

optimization issue is broken down into two stages 

for the sake of computation. The first stage is to 

determine the size PV system and battery capacity 

would provide the lowest power bill, and the 

second is to calculate the highest return on 

investment given that data. One-step optimization 

solutions would make the issue nonlinear. It was 

not feasible to identify the optimum solution in a 

single step due to the enormous quantity of input 

data and the length of time necessary for the 

optimization to execute. Using python 

programming, we have simulated the system and 

applied its optimizations. 

 

5.1: Minimize Electricity Bill 

With a certain size of solar panels and 

storage capacity, this section details the mechanism 

by which electricity costs are reduced. The 

following issues need to be addressed at this stage 

in light of the uncertainty surrounding costs, 

demand, solar radiation, and component efficiency: 

How much of the power produced by the solar 

panels should be sent straight to the loads and how 

much should be stored in the batteries at all times? 

When should the batteries be drained, for how 

long, and by what percentage? 

This process identifies the optimal solar panel area 

and battery capacity to provide the lowest cost per 

unit of electricity per hour. 

 

5.1.1:  Objective Function: Electricity cost for the 

period t is calculated as follows, taking into 

account the real-time price of power and the 

quantity of energy drawn from the grid at each 

instant in time: 

C =  

t

i=1

 Gt ∗ Ct  

The goal is to find the lowest possible power cost 

for a certain time period, hence we must rewrite 

Eqns. 2 and 1 as follows. 

Gt = Dt − DVsize ∗ PVeff ∗ St + Lt + PCt − Bt  

The resulting objective function to be reduced is: 

C =  

t

i=1

  Dt − DVsize ∗ PVeff ∗ St + Lt + PCt

− Bt ∗ 𝐶𝑡  

 

5.1.2:Constraints 

a. Grid:Gt, the amount of electricity used from the 

grid, is expected to be non-zero at all times. In 

other words, the sun's rays will be utilised to either 

power appliances directly or charge the storage 

device. The following follows from Eq. 

Dt − DVsize ∗ PVeff ∗ St + Lt + PCt − Bt ≥ 0 

b. Batteries:The energy contained in the batteries is 

non-zero in all cases. The restriction, using Eqn. 3, 

will be: 
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𝑡−1

𝑖=1

 𝑃𝐶𝑖 − 𝐵𝑖 + 𝐸𝑜 ≥ 0

⇒ 𝐵𝑒𝑓𝑓 ∗  

𝑡−1

𝑖=1

𝑃𝐶𝑖 −  

𝑡−1

𝑖=1

𝐵𝑖

≥ 𝐸0 

c. Size of the Battery:The capacity of the battery 

bank is restricted. The batteries can only hold so 

much power before they explode. The following 

restrictions are derived from Eqn. 

𝐸𝑡 ≤ 𝐸𝑚𝑎𝑥 ⇒ 𝐵𝑡 ≤ 𝐵𝑒𝑓𝑓 ∗  

𝑡−1

𝑖=1

𝑃𝐶𝑖 −  

𝑡−1

𝑖=1

𝐵𝑖

≥ 𝐸0 
d. Battery Discharge:A battery can't discharge 

more energy in eachtime period than it has stored. 

When Eqn. 3 is considered, the following 

restriction emerges: 

𝐵𝑡 ≤ 𝐵𝑚𝑎𝑥 ⇒ 𝐵𝑡 ≤ 𝐵𝑒𝑓𝑓 ∗  

𝑡−1

𝑖=1

𝑃𝐶𝑖 −  

𝑡−1

𝑖=1

𝐵𝑖

+ 𝐸0 
The optimization process has been repeated 72 

times, once per hour. Hence, the CEM optimises 

the system based on the available stored energy at 

time t and the predicted data for the subsequent t + 

72 hours. As soon as the optimization is complete, 

the system's state will be locked in for time t, and 

the subsequent optimization will cover the interval 

from t+1 to t+73. With this way, the system can 

regulate the charging and draining of the batteries 

autonomously. 

 

VI. MAXIMIZING INVESTMENT 

RETURN 
By determining the minimal electricity bill 

(C) over a range of solar PV area and battery 

capacity, the optimal solar collector area and 

battery capacity for delivering the least expensive 

energy over a certain time may be determined. We 

show you how to calculate the ROI for a certain 

investment. 

 

 
Figure No. 2 - Cash flow from solar panels' 

benefits and expenditures during their lifespan 

Under the assumptions of a 25-year solar panel 

lifetime and a 5-year battery lifetime, capital costs 

per square foot of solar concentrator and per 

kilowatt-hour of battery capacity, annual inflation, 

and desired return on investment, the cash flow of 

cost and benefit over the life - time of the solar 

cells is as illustrated in Fig. 2. (assumed zero). 

What is the investor's present value? 

𝑝 =  

𝑛

𝑎=1

 𝑃𝑎  𝐹𝑎 ,𝑖 ,𝑎  

Where, 

a = is the year in which a projected value is 

provided 

i = interest rate 

Fa = Future Vale 

Pa = Present Value 

Each year's net future value Fa is calculated by 

subtracting the annual cost that was capitalised 

from the amount that was saved. Capital 

expenditures for solar panels and batteries are 

proportional to their size and per-unit pricing. 

Because of this, we can define the present value for 

each year as follows: 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑎
= 𝑃𝑉𝑠𝑖𝑧𝑒 + 𝑃𝑉cos 𝑡 + 𝐵𝑠𝑖𝑧𝑒

+ 𝐵cos 𝑡  

𝑆𝑎𝑣𝑒𝑑 𝑀𝑜𝑛𝑒𝑦𝑎 = 𝑓 𝑃𝑉𝑠𝑖𝑧𝑒 ,𝐵𝑠𝑖𝑧𝑒   

Now, here's how we get to Pa, the present value of 

future cash flows: 

𝑃𝑎 =
𝑆𝑎𝑣𝑒𝑑𝑀𝑜𝑛𝑒𝑦𝑎 − 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑒𝑑𝑐𝑜𝑠𝑡𝑎

(1 + 𝑖)𝑎
 

 

6.1: Power Cost Reduction with Increased Use of 

Fixed Solar Area and Battery Storage- 

The findings are displayed for a single 

case where the total area of the solar panels was 17 

square feet and the maximum capacity of the 

battery bank was 8 kWh. As shown in Fig. 3, the 

system switches to using solar or absorption rates 

to fulfil the loads when the cost of matrix power is 

high but switches back to using the grid when the 

cost of map electricity is low, while using solar 

energy to recharge the batteries. In Fig. 3, we can 

see the fluctuation in battery life over the length of 

a day (d). As the system has received forecast 

information showing that the sky would be overcast 

and that not sufficient energy can be gathered, the 

peak demand for the next day will be met by the 

energy contained between 7160 and 7170. 
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Figure No. 3 – Simulation Result 

 
Figure No. 4 – Initial VS Cost Optimization 

 

The year-long optimal solution is shown 

in Fig. 4. With efficient utilisation of solar energy, 

the starting power expense of $1335 might be 

reduced to $835. Of course, the research does not 

consider the capital expenses of the solar panels 

and batteries currently. 

 

VII. CONCLUSION 
The system demonstrates how to optimize 

costs for customers if real-time price of electricity 

is implemented. As it was anticipated in this 

analysis that the current producing capacity is static 

and all energy generated from the generating 

electricity is stored locally, the overall effect 

exhibited by this refinement is that of peak shaving. 

Users may expect to save money, and society as a 

entire (utilities) can expect to save money as well 

because of the decreased peak times and the 

corresponding reduced need for additional peaking 

capacity. The results also show how important it is 

to reduce the overall cost of storage devices in 

order to make the suggested solution economically 

feasible. 
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