
Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1408 | P a g e

EMBEDDED SOFTWARE DESIGN & IMPLEMENTATION

FOR PLATFORM STABILIZATION USING MEMS

Selva Vasanth M
Department Of ECE, M.E Embedded System, Sathyabama University,Chennai-119,

Tamil Nadu, India

ABSTRACT
 Platform stabilization is more important

in most of the large scale applications like the oil

well and nuclear product based processing

machines and systems. So stabilization of that

machinery is more important, failing to do so

may cause a major damage to the society and

which may even lead to an accident. Hence to

avoid those kinds of accidents and damage,

manual monitoring of those large systems and

making necessary changes is practically

impossible. This can be fully automated using the

MEMS technology which will be more accurate

and reliable in stabilizing the platform thereby

making the whole system safe. Outcome of the

project will be a cost effective method of

stabilizing a platform and making the needful

changes so that the platform or any system is

stable. The process is automated by using MEMS

technology and with the help of Microcontroller.

Keywords: MEMS(Micro Electro Mechanical

Systems), Microcontroller, Automation.

I. INTRODUCTION
 MEMS (Micro electro Mechanical systems)

have their applications in Modern cell phones,

accelerometers and widely as many kinds of

electronic sensors. Their small size and its accuracy

make it an important tool in many modern day

applications. In my project we are using an

accelerometer sensor for calculating displacement of

big platforms and stabilize them by driving the

motors that counter acts for the displacement.

Accelerometer is used to calculate the acceleration

in terms of g- force (Gravitational force). By

knowing the g- force we can find acceleration in any

particular axis. We are using LIS302-DL

accelerometer sensor that can be interfaced through

I2C bus. This can be fully automated using the

MEMS (Micro Electro Mechanical Systems)

technology which will be more accurate and reliable

in stabilizing the platform thereby making the whole

system safe. The main idea behind this technology is

measuring the acceleration with respect to the

direction of the gravitational force from a device

which is placed at a fixed position in the system and

by reading the data from the MEMS

device, the angle of all 3 axes is found with respect

to the gravitational force for every one second.

 When there is a change in the value of the

angle which will be detected by the microcontroller

which communicates with the MEMS device. When

a tilt or change in position of any of the axes is

detected the microcontroller is programmed in such

a way to drive 3 motors which are connected to the

output of the microcontroller. The monitoring

process is continuous and every second’s change is

responded by the controller and the output to drive

the motors to stabilize the platform. Renesas

M16C/65 Microcontroller is used as the heart of the

system for the automating the whole process.

LIS302DL is the accelerometer which is used to

sense the acceleration of the system.

II. BLOCK DIAGRAM AND

EXPLANATION

Fig. 1.Block Platform stabilization using MEMS

and Microcontroller.

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1409 | P a g e

Fig. 2. Graphical representation of the MEMS

device which obeys at the rate of 2.5V and their

output modulation (proposed by ST-Micro

Systems (LIS302DL)).

Fig.1 illustrates that the MEMS device which is just

mean time connected with the Analogy to Digital

Converter for more accuracy and this is fed in to the

controller for processing. In this mean time the

MEMS device which illustrates that it produces the

reading in the range of 0-255 readings in a time scale

based on the value of sensory production in all the

X, Y and Z-axis slotted in the Fig.2. They are

capable of producing the output sequentially through

the I2C communication network. And the incoming

values are stored in the buffer calculated and

processed in the meantime and also in a regular time

scale. Whenever there is a request from the

controller the MEMS device have to initialize and

produces the output through the I2C bus. And the

value change remains periodically according to their

state if there is any deflection found in that value’s

the controller gets alerted and to drive the motor

with the help of motor driver circuits. Here in this

project proposal can be made with the help of

simulation instead of the motor driver and control.

III. HARDWARE DESCRIPTION
Micro Electro Mechanical Systems (MEMS)

 Accelerometer (LIS302DL):

 The LIS302DL is an ultra-compact low-

power three axes linear accelerometer. It includes a

sensing element and an IC interface able to provide

the measured acceleration to the external world

through I2C/SPI serial interface. The sensing

element, capable of detecting the 17 acceleration, is

manufactured using a dedicated process developed

by ST to produce inertial sensors and actuators in

silicon. The IC interface is manufactured using a

CMOS process that allows designing a dedicated

circuit which is trimmed to better match the sensing

element characteristics. The LIS302DL has

dynamically user selectable full scales of ± 2g/± 8g

and it is capable of measuring accelerations with an

output data rate of 100 Hz or 400 Hz.A self-test

capability allows the user to check the functioning of

the sensor in the final application. The device may

be configured to generate inertial wake-up/free-fall

interrupt signals when a programmable acceleration

threshold is crossed at least in one of the three axes.

Thresholds and timing of interrupt generators are

programmable by the user. The LIS302DL is

available in plastic Thin Land Grid Array package

(TLGA) and it is guaranteed to operate over an

extended temperature range from -40 °C to +85 °C.

The LIS302DL belongs to a family of products

suitable for a variety of applications:

 Free-fall detection, Motion activated

functions, gaming and virtual reality input devices,

Vibration monitoring and compensation

Features
The LIS302DL have many important and

useful features. Features of the MEMS IC

LIS302DL are listed below:

1.8 V compatible IOs

 8g dynamically selectable full

Scale.

-test

Block Diagram
 The LIS302DL MEMS architecture

includes Multiplexer, Analog to Digital Converter

and Control unit. The input for the MEMS is taken

from the movement of the object in which it is

mounted. And the output is given to the master

device by using I2C interface or SPI interface. The

Block Diagram of the LIS302DL in Figure .3 as

follows

Fig. 3. Block Diagram of LIS302Dl proposed by

ST Microsystems.

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1410 | P a g e

RENESAS M16/C65 MICROCONTROLLER

Features
The M16C/65 Group microcomputer

(MCU) incorporates the M16C/60 Series CPU core

and flash memory, employing sophisticated

instructions for a high level of efficiency. This MCU

has 1 Mbyte of address space (expandable to 4

Mbytes), and it is capable of executing instructions

at high speed. In addition, the CPU core boasts a

multiplier for high-speed operation processing.

Power consumption is low, and the M16C/65 Group

supports operating modes that allow additional

power control. The MCU also uses an anti-noise

configuration to reduce emissions of electromagnetic

noise and is designed to withstand electromagnetic

interference (EMI). By integrating many of the

peripheral functions, including the multifunction

timer and serial interface, the number of system

components has been reduced.

Block Diagram

Fig .4 The Block Diagram of the 100 pin M16C/65

proposed by RENUSAS.

 The M16C/65 Group includes 128-pin,

100-pin, and 80-pin packages. In this project we use

100 pin IC package. The Block Diagram of the 100

pin M16C/65 is shown in Figure 4.

Fig .5 The Pin Assignment of the 100 pin

M16C/65 (RENUSAS)

I2C INITIALIZATION

I2C Introduction
I2C (Inter-Integrated Circuit) generically

referred to as "two-wire interface" is a multi-master

serial single-ended computer bus invented by Philips

that is used to attach low-speed peripherals to a

motherboard, embedded system, cellphone, or other

electronic device. In my project I used to

Operations
I2C uses only two bidirectional open-drain

lines, Serial Data Line (SDA) and Serial Clock

(SCL), pulled up with resistors. Typical voltages

used are +5 V or +3.3 V although systems with other

voltages are permitted. The I2C reference design

has a 7-bit address space with 16 reserved addresses,

so a maximum of 112 nodes can communicate on

the same bus. Common I2C bus speeds are the 100

kbit/s standard mode and the 10 kbit/s low-speed

mode, but arbitrarily low clock frequencies are also

allowed. Recent revisions of I2C can host more

nodes and run at faster speeds (400 kbit/s Fast mode,

1 Mbit/sFast mode plus or Fm+, and 3.4 Mbit/s High

Speed mode). These speeds are more widely used on

embedded systems than on PCs. There are also other

features, such as 16-bit addressing.Note that the bit

rates quoted are for the transactions between master

and slave without clock stretching or other hardware

overhead. Protocol overheads include a slave

address and perhaps a register address within the

slave device as well as per-byte ACK/NACK bits.

So the actual transfer rate of user data is lower than

those peak bit rates alone would imply. For example,

if each interaction with a slave inefficiently allows

only 1 byte of data to be transferred, the data rate

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1411 | P a g e

will be less than half the peak bit rate. The

maximum number of nodes is limited by the address

space, and also by the total bus capacitance of 400

pF, which restricts practical communication

distances to a few meters.

Message Protocols
I2C defines three basic types of messages, each of

which begins with a START and ends with a STOP:

slave;

slave;

least two reads and/or writes to one or more slaves.

In a combined message, each read or write begins

with a START and the slave address. After the first

START, these are also called repeated START bits;

repeated START bits are not preceded by STOP bits,

which is how slaves know the next transfer is part of

the same message. Any given slave will only

respond to particular messages, as defined by its

product documentation.Pure I2C systems support

arbitrary message structures. SMBus is restricted to

nine of those structures, such as read word N and

write word N, involving a single slave. PMBus

extends SMBus with a Group protocol, allowing

multiple such SMBus transactions to be sent in one

combined message. The terminating STOP indicates

when those grouped actions should take effect. For

example, one PMBus operation might reconfigure

three power supplies (using three different I2C slave

addresses), and their new configurations would take

effect at the same time: when they receive that

STOP.

 In practice, most slaves adopt

request/response control models, where one or more

bytes following a write command are treated as a

command or address. Those bytes determine how

subsequent written bytes are treated and/or how the

slave responds on subsequent reads. Most SMBus

operations involve single byte commands. A sample

schematic with one master (a microcontroller), three

slave nodes (an ADC, a DAC, and a

microcontroller), and pull-up resistors (Rp) is shown

in Fig.6

Fig.6 A sample schematic of I2C Connection

Timing Diagram

 Data transfer is initiated with the START

bit (S) when SDA is pulled low while SCL stays

high. Then, SDA sets the transferred bit while SCL

is low (blue) and the data is sampled (received)

when SCL rises (green). When the transfer is

complete, a STOP bit (P) is sent by releasing the

data line to allow it to be pulled up while SCL is

constantly high. The timing diagram of I2C Bus is

given in Figure 7

Fig.7 The timing diagram of I2C Bus.

I2C Operations in MEMS

 The transaction on the bus is started

through a START (ST) signal. A START condition

is defined as a HIGH to LOW transition on the data

line while the SCL line is held HIGH. After this has

been transmitted by the Master, the bus is considered

busy. The next byte of data transmitted after the start

condition contains the address of the slave in the

first 7 bits and the eighth bit tells whether the Master

is receiving data from the slave or transmitting data

to the slave. When an address is sent, each device in

the system compares the first seven bits after a start

condition with its address. If they match, the device

considers itself addressed by the Master.

Table .1 SAD+Read/Write patterns

 The Slave ADdress (SAD) associated to the

LIS302DL is 001110xb. SDO pad can be used to

modify less significant bit of the device address. If

SDO pad is connected to voltage supply LSb is ‘1’

(address 0011101b) else if SDO pad is connected to

ground LSb value is ‘0’ (address 0011100b). This

solution permits to connect and address two different

accelerometers to the same I2C lines. How the

SAD+Read/Write bit pattern is composed, listing all

the possible configurations are explains in Talbe 3.1

Data transfer with acknowledge is mandatory. The

transmitter must release the SDA line during the

acknowledge pulse. The receiver must then pull the

data line LOW so that it remains stable low during

the HIGH period of the acknowledge clock pulse. A

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1412 | P a g e

receiver which has been addressed is obliged to

generate an acknowledge signal after each byte of

data has been received.

 The I2C embedded inside the LIS302DL

behaves like a slave device and the following

protocol must be adhered to. After the start condition

(ST) a salve address is sent, once a slave

acknowledge (SAK) has been returned, a 8-bit sub-

address will be transmitted: the 7 LSb represent the

actual register address while the MSB enables

address auto increment. If the MSb of the SUB field

is 1, the SUB (register address) will be automatically

incremented to allow multiple data read/write. The

slave address is completed with a Read/Write bit. If

the bit was ‘1’ (Read), a repeated START (SR)

condition will have to be issued after the two sub-

address bytes; if the bit is ‘0’ (Write) the Master will

transmit to the slave with direction unchanged. The

MEMS configuration settings are given in Figure 8

Fig.8 The MEMS configuration settings

I2C Operations in M16C/65

 As mentioned earlier the M16C/65 MCU a

is more complicated device. The following

configuration settings can implemented with the help

of the data sheet only.

IV. Detection of Start and Stop

Conditions
 Whether a start or a stop condition has been

detected is determined. A start condition detect

interrupt request is generated when the SDAi pin

changes state from high to low while the SCLi pin is

in the high state. A stop condition detect interrupt

request is generated when the SDAi pin changes

state from low to high while the SCLi pin is in the

high state. Because the start and stop condition

detect interrupts share an interrupt control register

and vector, check the BBS bit in the UiSMR register

to determine which interrupt source is requesting the

interrupt.

Output of Start and Stop Conditions
 A start condition is generated by setting the

STAREQ bit in the UiSMR4 register (i = 0 to 2, 5 to

7) to 1 (start).

A restart condition is generated by setting the

RSTAREQ bit in the UiSMR4 register to 1 (start). A

stop condition is generated by setting the STPREQ

bit in the UiSMR4 register to 1 (start). The output

procedure is as follows.

bit to 1 (start).

(output).

3.2.4.3 Arbitration
Un matching of the transmit data and SDAi

pin input data is checked in synchronization with the

rising edge of SCLi. Use the ABC bit in the UiSMR

register to select the point at which the ABT bit in

the UiRB register is updated. If the ABC bit is 0

(update per bit), the ABT bit is set to 1 at the same

time un matching is detected during check, and is set

to 0 when not detected. If the ABC bit is set to 1, if

un matching is ever detected, the ABT bit is set to 1

(un matching detected) at the falling edge of the

clock pulse of the 9th bit. If the ABT bit needs to be

updated per byte, set the ABT bit to 0 (undetected)

after detecting acknowledge for the first byte, before

transmitting/receiving the next byte.

Setting the ALS bit in the UiSMR2 register to 1

(SDA output stop enabled) causes an arbitration-lost

to occur, in which case the SDAi pin is placed in the

high-impedance state at the same time the ABT bit is

set to 1 (un matching detected).

Transmit/Receive Clock
The CSC bit in the UiSMR2 register is used

to synchronize an internally generated clock

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1413 | P a g e

(internal SCLi) and an external clock supplied to the

SCLi pin. If the CSC bit is set to 1 (clock

synchronization enabled), if a falling edge on the

SCLi pin is detected while the internal SCLi is high,

the internal SCLi goes low, at which time the value

of the UiBRG register is reloaded with and starts

counting the low-level intervals. If the internal SCLi

changes state from low to high while the SCLi pin is

low, counting stops, and when the SCLi pin goes

high, counting restarts. In this way, the UARTi

transmit/receive clock is equivalent to AND of the

internal SCLi and the clock signal applied to the

SCLi pin. The transmit/receive clock works from a

half cycle before the falling edge of the internal

SCLi 1st bit to the rising edge of the 9th bit. To use

this function, select an internal clock for the

transmit/receive clock.The SWC bit in the UiSMR2

register determines whether the SCLi pin is fixed

low or freed from low-level output at the falling

edge of the 9th clock pulse. If the SCLHI bit in the

UiSMR4 register is set to 1 (enabled), SCLi output is

turned off (placed in the high-impedance state) when

a stop condition is detected.When the SWC2 bit in

the UiSMR2 register is set to 1 (0 output), a low-

level signal can be forcibly output from the SCLi pin

even while transmitting or receiving data. When the

SWC2 bit is set to 0 (transmit/receive clock), a low-

level signal output from the SCLi pin is cancelled,

and the transmit/ receive clock is input and output.If

the SWC9 bit in the UiSMR4 register is set to 1

(SCL hold low enabled) when the CKPH bit in the

UiSMR3 register is 1, the SCLi pin is fixed low at

the falling edge of the clock pulse next to the 9th.

Setting the SWC9 bit to 0 (SCL hold low disabled)

frees the SCLi pin from low-level output.

SDA Output
The data written to bits 7 to 0 (D7 to D0) in

the UiTB register is output in descending order from

D7. The 9th bit (D8) is ACK or NACK. Set the

initial value of SDAi transmit output when IICM is 1

(I2C mode) and bits SMD2 to SMD0 in the UiMR

register are 000b (serial interface disabled).Bits DL2

to DL0 in the UiSMR3 register allow addition of no

delays or a delay of 2 to 8 UiBRG count source

clock cycles to the SDAi output. Setting the SDHI

bit in the UiSMR2 register to 1 (SDA output

disabled) forcibly places the SDAi pin in the high-

impedance state. Do not write to the SDHI bit at the

rising edge of the UARTi transmit/ receive clock.

This is because the ABT bit may inadvertently be set

to 1 (detected).

SDA Input
When the IICM2 bit is 0, the 1st to 8th bits

(D7 to D0) of received data are stored in bits 7 to 0

in the UiRB register. The 9th bit (D8) is ACK or

NACK.When the IICM2 bit is 1, the 1st to 7th bits

(D7 to D1) of received data are stored in bits 6 to 0

in the UiRB register and the 8th bit (D0) is stored in

bit 8 in the UiRB register. Even when the IICM2 bit

is 1, the same data as when the IICM2 bit is 0 can be

read, provided the CKPH bit is 1. To read the data,

read the UiRB register after the rising edge of 9th bit

of the clock.

ACK and NACK
If the STSPSEL bit in the UiSMR4 register

is set to 0 (start and stop conditions not generated)

and the ACKC bit in the UiSMR4 register is set to 1

(ACK data output), the value of the ACKD bit in the

UiSMR4 register is output from the SDAi pin.

If the IICM2 bit is 0, a NACK interrupt request is

generated if the SDAi pin remains high at the rising

edge of the 9th bit of transmit clock pulse. An ACK

interrupt request is generated if the SDAi pin is low

at the rising edge of the 9th bit of the transmit clock.

If ACKi is selected to generate a DMA1 or DMA3

request source, a DMA transfer can be activated by

detection of an acknowledge.

Initialization of Transmission/Reception
If a start condition is detected while the

STAC bit is 1 (UARTi initialization enabled), the

serial interface operates as described below.The

transmit shift register is initialized, and the contents

of the UiTB register are transferred to the transmit

shift register. In this way, the serial interface starts

sending data when the next clock pulse is applied.

However, the UARTi output value does not change

state and remains the same as when a start condition

was detected until the first bit of data is output in

synchronization with the input clock. The SWC bit

is set to 1 (SCL wait output enabled). Consequently,

the SCLi pin is pulled low at the falling edge of the

9th clock pulse.

Schematic of I2C Initialization
The device core is supplied through Vdd

line while the I/O pads are supplied through Vdd_IO

line. Power supply decoupling capacitors (100 nF

ceramic, 10 μF Al) should be placed as near as

possible to the pin 6 of the device (common design

practice). All the voltage and ground supplies must

be present at the same time to have proper behavior

of the IC. It is possible to remove Vdd maintaining

Vdd_IO without blocking the communication

busses, in this condition the measurement chain is

powered off. The functionality of the device and the

measured acceleration data is selectable and

accessible through the I2C/SPI interface. When

using the I2C, CS must be tied high. The functions,

the threshold and the timing of the two interrupt pins

(INT 1 and INT 2) can be completely programmed

by the user though the I2C/SPI interface. The

Schematic of I2C Initialization is shown in Figure 9

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1414 | P a g e

Fig.9 The Schematic of I2C Initialization with

MEMS-LIS302DL

I2C Initialization Flow Chart
The step by step process of the I2C

initialization process for the context estimation using

MEMS is given in the Figure 10

Fig.10 I2C Initialization Flow Chart

Work View
In this topic discusses the software tools

used for this project and the step by step

implementation of the project work

High Performance Embedded Workshop
For coding and compiling purposes in this

project we used “The High-performance Embedded

Workshop (HEW)”. It provides a GUI-based

integrated development environment for the

development and debugging of embedded

applications for Renesas microcontrollers. HEW, a

powerful yet easy to use tool suite, features an

industry standard user interface and is designed

using a modular approach seamlessly incorporating

device family-specific C/C++ compilers and the

debugger elements for various debugging platforms

including emulators and evaluation boards. HEW

enables the use of the right tool for each process.

HEW supports multiple tool chain integration

enabling development for any number of projects

under a single user interface. The working

environment of HEW is given in Figure 11.

Fig.11 The working environment of HEW

MOT2BIN

The code generated using HEW is in the

format of MOT (.mot). But we need the HEX (.hex)

file format. For this purpose we used MOT2BIN

converter. It convert MOT files to FDT4 DATA

files.

 MAD EDIT

Form MOT2BIN we got the FDT4 DATA

files. For converting this FDT4 DATA files to HEX

files and for the editing of the HEX files we used

Mad Edit. The working environment of Mad Edit is

given in Figure 12

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1415 | P a g e

Fig.12 The working environment of Mad Edit

Hyper Terminal
The interface between the system and MCU

is based on the serial communication only. For

writing or downloading programs on the MCU we

need one serial data controller, for that purpose we

used the “Hyper Terminal”. The working

environment of Hyper Terminal is given in Figure

13.

Fig.13 The working environment of Hyper

Terminal

V. RESULTS AND DISCUSSION
 The Results that follows shows that the

working of the complete system without any flaw

and making the system efficient for using in real

time. The MEMS device (shown in figure 14) is

used to identify the inclination of the device with

respect to the line of action of the acceleration due to

gravity and also the values of all the other 3 axes

such a the x,y,z are used to make the platform

stabilized.

Fig.14 MEMS device in my board

Initially calibration is done based on the exact

inclination of the platform so that which is the

reference position that needs to be maintained by the

system at any given point of time. So this reference

value is stored in the memory of the micro

controller. This initial setting can be changed

according to the environment. The values that are

taken from the MEMS device every single second is

then stored in an external flash memory so that the

reading can be taken at an instant time for more than

one week. If required this data can be transmitted to

a server through GPRS. Once the value that are

received seems to be shifted from the original value

that needs to be maintained the external 3 axis

motors that are mounted to the base of the system is

driven in the appropriate direction opposite to the

direction of shift of the system so that the system

comes back to the original state. The values are

constantly monitored to make the process very

effective. The 3 axis values are finalized and verified

using Hyper Terminal is given in figure 15&16 as

follows.

MEMS

LIS302DL

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1416 | P a g e

Fig.13 HYPERTERMINAL showing results of all X,

Y, and Z axis

Fig.14 HYPERTERMINAL showing results of all

X, Y, and Z axis

VI. CONCLUSION
 Platform Stabilization Using MEMS

Technology is successfully implemented. Creating

driver software for the interface between MEMS and

the RENESAS M16C/65 Micro Computer based on

the Inter Integrated Circuit Bus (I2C) technology is

the main part of this project. This driver software is

created and tested successfully. The Platform

Stabilization is obtaining in the form of three

dimensional manners (X-axis, Y-axis, Z-axis) from

the Micro Electro Mechanical Systems (MEMS).We

use a complex Micro Computer of RENESAS

M16c/65 series for interfacing the sensor in I2C

mode.I2C Bus is allow to use a multiple node to

connect in its path. In this technique, to reduce the

usage of Microcontrollers units. In real time Sensor

are slow as compared to clock frequency of

Microcontroller, So reading a MEMS device at a

particular time of interval is good that we don’t lose

any data. Thus a I2C bus prove its efficiency. The

main drawback is that the motor that needs to be

driven should be more efficient and powerful to

stabilize very large sized platforms. Therefore

platform stabilization using MEMS was successfully

implemented by using a MEMS(Micro Electro

Mechanical System) and RENESAS M16c/65. In

future this can be implemented in many other

applications such as AUTO NAVIGATION

SYSTEM IN FLIGHTS, and ROBOTS.

REFERENCES

Selva Vasanth M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1408-1417

1417 | P a g e

[1] J.F. Leonard, H. F. Durrant-Whyte, (1991)

"Mobile robot localization by tracking

geometric beacons", IEEE Transactions

Robotics and Automations Vol. 7 No. 3, pp

376-382.

[2] L. Kleeman, (1989) "Ultrasonic

autonomous robot localization system",

IEEE international conference Intelligent

Robots and Systems '89 Tsukuba, JAPAN,

pp.212-219 .

[3] K. Hyyppa, (1989) "Lulea turbo turtle

(LTT)", IEEE international conference

Intelligent Robots and Systems '89

Tsukuba, JAPAN, pp.620-623 September

1989.

[4] http://documentation.renesas.com/eng/prod

ucts/.../rej03b0257_16c65ds.pdf

[5] www.renesas.com/products/.../m16c/m16c6

0/m16c65/m16c65_root.

[6] http://en.wikipedia.org/wiki/Microelectrom

echanical_systems

[7] www.memx.com/

[8] www.csa.com/discoveryguides/mems/overv

iew.php

[9] http://en.wikipedia.org/wiki/I%C2%B2C

[10] http://en.wikipedia.org/wiki/G-

force#Horizontal_axis_g-force

[11] www.i2c-bus.org/

[12] http://www.u-blox.com/en/evaluation-tools-

a-software/u-center/u-center.html

[13] Optimal Estimation of Position and

Heading for Mobile Robots Using

Ultrasonic Beacons and Dead-reckoning.

[14] SCA3000 Accelerometer in Speed,

Distance and Energy Measurement.

[15] Datasheets: M16C/65 series

