
D.Venkata Kishore, C.Ram Kumar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1152-1155

1152 | P a g e

Design and Implementation of Pipelined FFT Processor

*D.Venkata Kishore, **C.Ram Kumar
*Lecturer, ECE Department, JNTUA College of Engineering Pulivendula

**Lecturer, ECE Department, JNTUA College of Engineering Pulivendula

Abstract
It is important to develop a high-

performance FFT processor to meet the

requirements of real time and low cost in many

different systems. So a radix-2 pipelined FFT

processor based on Field Programmable Gate

Array (FPGA) for Wireless Local Area Networks

(WLAN) is proposed. Unlike being stored in the

traditional ROM, the twiddle factors in our

pipelined FFT processor can be accessed directly.

A novel simple address mapping scheme is also

proposed. The FFT processor has two pipelines,

one is in the execution of complex multiplication

of the butterfly unit, and the other is between the

RAM modules, which read input data, store

temporary variables of butterfly unit and output

the final results. Finally, the pipelined 64-point

FFT processor can be completely implemented

within only 67 clock cycles.

Keywords-FFT; FPGA; address mapping

I. INTRODUCTION
Fast Fourier Transform (FFT) processor is

widely used in different applications, such as

WLAN, image process, spectrum measurements,
radar and multimedia communication services [1].

However, the FFT algorithm is a demanding task

and it must be precisely designed to get an efficient

implementation. If the FFT processor is made

flexible and fast enough, a portable device equipped

with wireless transmission system is feasible.

Therefore, an efficient FFT processor is required for

real-time operations [2] and designing a fast FFT

processor is a matter of great significance.

In the past twenty years, FPGA has

developed rapidly and gradually become universal.
Compared with design flow of traditional ASIC,

designs based on FPGA have the advantages of

flexibility and high performance price ratio. Many

researchers have studied on pipelined FFT based on

FPGA [3], [4], [5]. For instance, in [3], they

proposed an approach to design an FFT processor

for wireless applications, but his design has too

many clock cycles and isn’t fast enough. In

comparison to their designs, we propose a simple

and feasible pipelined implementation of a 32-bit

64-point FFT processor based on FPGA for WLAN.

This paper is organized as follows. In the
next section, we introduce a basic radix-2 FFT

algorithm to briefly discuss which decimation is

better to the system, a three-multiplication method,

and a novel address mapping scheme which reduces

delay and increases the speed of the system. In

section III, the pipelined FFT architecture is

proposed and each unit is also illustrated. Section IV

is the implementation of the 64-point FFT processor

based on FPGA, and hardware resources are

explicitly listed out. The last section gives the
conclusion.

II. FFT ALGORITHM AND ADDRESS

MAPPING SCHEME
A. Radix-2 FFT Algorithm

The FFT algorithm can compute the

Discrete Fourier Transform (DFT) effectively.
Given a sequence {x(n)} of N complex numbers, we

can compute its DFT, another sequence {X(k)} of N

complex numbers, according to the following

formula [6]

N-1

 N

X(k) = ∑ x(n)W nk , k= 0,1,……,N-1. (1)

n = 0

And according to the different way to

decimate, it can be divided into two types, DIF

(Decimation in Frequency) and DIT (Decimation in
Time). The DIF algorithm is easier to design than

DIT. And considering the finite word length effect,

DIF has much more advantages than DIT, such as

reducing the additive noise, which is introduced by

the multiplication when it is implemented with the

fixed point [7] and reducing the complexity of the

whole system. Consequently, we use the DIF

algorithm to design radix-2 FFT module and most of

current FFT processors are also based on this

algorithm [8].

B. Three-multiplication Method

It’s undeniable that complex multiplication

is the dominant factor affecting the speed and the

throughput of FFT processor. Computing a complex

multiplication requires four real multipliers and two

real adders. As we all know, the hardware area of a

real multiplier is larger than that of a real adder in

FPGA. So we should do our best to convert the

complex multiplication into addition and subtraction

to optimize the whole performance as high as

possible. Having taken into account all operands are

32-bit complex numbers, the difference of two

D.Venkata Kishore, C.Ram Kumar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1152-1155

1153 | P a g e

inputs X m (i) and X m (j) can be

expressed by z1 = x1 + jy1 and the twiddle

factor WN
ek = exp(2n π)can be expressed by

 N

z 2 = x2 + jy 2 . So the product of them can be also

expressed by z = x + jy . That’s to say, the 16-bit real

part x of the product is equivalent to x1 x2 − y1 y2
and the 16-bit imaginary part y is equivalent to x1 y

2 + x2 y1 .

Therefore, we can transform the product z

easily as the following equations

x = x1 (x 2 + y 2) − y 2 (x1 + y1), (2)

y = x1 (x 2 + y 2) − x 2 (x1 − y1). (3)

Obviously, using this factorization scheme,

the system has some advantages [9]. The number of

real multiplications is reduced from four to three.

And addition has less consumption than
multiplication. So the system power consumption is

also reduced. In this study, we can save sixteen

embedded multiplier 9-bit elements in FPGA. As for

this 64-point FFT processor, the numerical values of

x2 + y2 , x1 − y1 , x1 + y1 , x2 and y2 can be gotten

before they participate in the real multiplication.

C. The Novel Address Mapping Scheme

In this paper, the block size of our system

is 64 points. Having considered the properties of

radix-2 64-point FFT, it needs to read 8 operands
from memories at a time so as to achieve a high-

speed FFT. As we all know, parallel accessing data

is crucial to a system [10]. Thus, these 8 operands in

our design are located in different row or column of

memory blocks and this arrangement ensures that 8

conflict-free memory accesses can be performed in

parallel. Initially, we use 8 32-bit dual-port

memories to store 64 operands in sequence. And

then a new linear shift conflict-free address mapping

scheme is adopted to change the addresses of

operands. The primary two-dimensional addresses

of operands will be mapped to new ones.
For instance, we assume that the original

two-dimensional coordinate is (a, b), in which a and

b represent the address of the data in one memory

and the number of the 8 memories, respectively.

Then, we obtain a new conflict-free address (A, B)

by means of the following equations

A=b, (4)

B=(a+b)%8. (5)

In our design, it can be ensured that no

memory location is read from or written to at the

same time, and this new mapping scheme is

feasible, effective and simple.

III. THE PIPELINED FFT PROCESSOR

ARCHITECTURE
For high throughput systems, pipelined

architecture is a good choice, and it is also an ideal

method to implement high-speed long-size FFT

owing to its regular structure and simple control.

The performance of pipelined FFT processor can be

improved by optimizing the structure and saving

hardware resources. The block diagram of our

proposed FFT processor is illustrated in Fig.1. It

consists of four essential units. Control unit, the

kernel of the FFT processor, harmonizes the whole

system. Butterfly unit (BU), which has three-stage

pipelined structure, carries out the complex
multiplication. Two dual-port RAMs are used to

store and output data. And AGU, the abbreviation

Fig 1. The pipelined FFT architecture.

of address generator unit, produces 8 3-bit read

addresses and write addresses.

A. Control Unit

Control unit, which generates all control

signals for the whole system, is responsible for

operation control of the processor. A 48-bit signal

w_con controls the whole FFT processor. And this

signal w_con generates two parameters, write_en

and read_en, to control AGU. It also generates sel1
and sel2 signals to select data from two RAMs, each

of which is made up of 8 32-bit registers. The BU

and the remaining parts are controlled by w_con as

well. This control unit harmonizes all steps of the

FFT processor based on a 7-bit counter.

B. The DIF Butterfly Unit

For FFT algorithm, the central component

is the BU that calculates the sum and difference of

two input data, and plays an extremely important

role in computing the product of the difference and

twiddle factors.

D.Venkata Kishore, C.Ram Kumar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1152-1155

1154 | P a g e

We only use 11 factors W0
64 , W

1
64 , W

2
64 , W

3
64 ,

W4
64, W5

64 , W6
64 , W7

64 , W8
64 , W16

64 , W24
64 to

express all 32 factors that we need in this FFT

processor owing to the nk fact that the twiddle factor

W N can be separated into two components. For

instance, W24
64 can be derived from the product of

W4
64 and W24

64 . Moreover, the value of W0
64 is a

constant 1, and for W16
64 , only a negative sign is

needed to add to the real part of the relevant data,

and then to inverse the real part and imaginary part.

So we can eliminate these two factors, that’s to say,

actually we just need 9 twiddle factors. In addition,

we use 16-bit fixed point decimal to express these 9

twiddle factors. Although the fixed point decimal

arithmetic isn’t precise enough, it can satisfy the

requirements of general systems.

Fig 2. Block diagram of BU.

Due to the fact that the multiplication of

twiddle factors and corresponding data is very

important, three-stage pipeline structure is used

for the complex multiplication to obtain a high

speed computation. The architecture of BU is shown

in Fig. 2.

In the BU, both of the complex inputs are

32 bits, including 16-bit real part and 16-bit

imaginary part. The sum of them needs to be scaled

down by a factor of 2 to avoid arithmetic overflow,

and the same operation is applied to the difference
of them. On the other hand, the factor W0

64 and the

first parameter con_s of the second multiplexer are

not involved in the complex multiplier, and they

can be used as a constant 1, just as Fig.2 has

depicted. Thus, the power consumption of the

complex multiplier can be reduced and the hardware

resources will be saved. There’re some points to be

emphasized. The difference and twiddle factors are

both 32 bits, so the result of the first complex

multiplier will be 64 bits. But because we adopt the

fixed point decimal computation, we should

intercept it to a 32-bit parameter f_mult as the input

of the second complex multiplier.

The most remarkable advantage in this unit

is that we use 3 32-bit registers to realize the three-

stage pipeline of butterfly transform, using register1

to store the difference, register2 to store the
intercepted result of second stage f_mult and

register3 to store the final result cmul_b.

C. The RAM Unit

The RAM1 and RAM2 are made up of 8

32-bit registers respectively. And data is always

written to the outside memories from RAM2, and it

is always read to RAM1 from the outside memories.

Then let introduce the key algorithm used in this

unit. Considering the properties of 64-point FFT, we

can use the radix-2 DIF 8-point FFT as a whole unit,

so there

Fig 3 The example of radix-2 8-point FFT.

are only two stages to accomplish the 64-point FFT.

And these two stages are identical to the six stages

of the standard radix-2 DIF 64-point FFT. System

parallel reads 8 32-bit operands from outer
memories to RAM1 at a time, and we need only

read sixteen times. An example of this algorithm is

shown in Fig.3.

The pipeline in RAM units is briefly

discussed as follows. Firstly, system reads 8

operands from outer memories and writes them to

RAM1, and then the results will be stored in RAM2

after they are computed. Meanwhile, system reads

the next 8 operands. Subsequently, system will

access operands from RAM1 or RAM2 to compute

these 16 operands. Furthermore, within a single

clock four butterfly computations will be executed
simultaneously. The final results of these 16

operands will be all stored in RAM2, and then they

are written to outer memories. At the same time,

another 8 operands will be read. Accordingly, only

76 clock cycles are needed to complete this radix-2

DIF 64-point FFT.

D. AGU

Compared with other units, AGU is also

quite important. It will create 8 read and 8 write

addresses, which determine the data access to outer
memories.

D.Venkata Kishore, C.Ram Kumar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.1152-1155

1155 | P a g e

In this FFT processor, we adopt the in-

place computation method so as to make it a more

simplified and faster system. That’s to say, we write

the results into where they are read. In contrast to

the sequence of 64 input operands configured by

address mapping, the final output sequence of this

FFT processor are in bit-reversed order and need to
be adjusted to normal order. And we can make these

appropriate adjustments before the FFT

computation. So, although we adjust the sequence of

inputs or outputs, the performance of our FFT

processor won’t be degraded.

IV. HARDWARE RESOURCES
The functional simulation and timing

simulation are successfully made. The main

hardware resources of this design are given as
follows. The device is the EP2C70F896C6 of

Cyclone II family. The total logic elements are

562/68,416 (8%), the total pins are 563/622(91%)

and the total embedded multiplier 9-bit elements are

48/300(16%). Meanwhile, the clock frequency is

31.69MHz. As in [3], they proposed a fixed-point

l6-bit 64-point FFT processor with 92 clock cycles

in total, but our clock cycles is 67. And our FFT

processor has a higher speed and lower power

consumption.

V. CONCLUSION
This paper proposes a novel radix-2 FFT

processor based on FPGA for WLAN, using Verilog

HDL as hardware description language and Quartus

II as design and synthesis tool. To achieve high-

throughput, pipelined architectures have been used

in the butterfly unit and the dual-port RAM. The

dedicated parallel-pipelined FFT processor

architecture can process input data at high speed,
and the whole system performance can be greatly

improved due to adopting a novel simple address

mapping scheme. For radix-two system, this

mapping scheme is better and simpler than most of

others. The design is implemented on a FPGA chip.

And this pipelined FFT completes a complex 64-

point FFT within 2.1μs. The hardware testing result

explains that it can meet the requirements of the

WLAN.

REFERENCES
[1] J. A. C. Bingham, “Multicarrier modulation

for data transmission: an idea whose

time has come,” IEEE Communication

Magazine, vol. 28, no. 5, pp. 5-14, May

1990.

[2] J. Palicot and C. Roland, “FFT: a basic

function for a reconfigurable receiver,”

10th International Conference on

Telecommunications, vol. 1, pp. 898-902,

March 2003.
[3] Min Jiang, Bing Yang, Yiling Fu, et al.,

“Design Of FFT processor with Low

Power complex mutliplier for OFDM-

based high-speed wireless applications,”

International Symposium on

Communications and Information

Technology, vol. 2, pp. 639-641, Oct.

2004.

[4] Kai Zhong, Hui He, and Guangxi Zhu, “An
ultra-high speed FFT processor,”

International Symposium on Signals,

Circuits and Systems, vol. 1, pp. 37 -

40, July 2003.

[5] Hongjiang He and Hui Guo, “The

Realization of FFT Algorithm based on

FPGA Co-processor,” Second International

Symposium on Intelligent

Information Technology Application, vol.

3, pp. 239-243, Dec. 2008.

[6] J. G. Proakis and D. G. Manolakis,

“Introduction to Digital Signal Processing,”
New York: Macmillan, 1988.

[7] R. B. Perlow and T. C. Denk, “Finite word

length design for VLSI FFT processors,”

Conference Record of the Thirty-Fifth

Asilomar Conference on Signals, Systems

and Computers, vol. 2, pp. 1227– 1231,

Nov. 2001.

[8] J. W. Cooky and J. W. Tukey, “An

algorithm for the machine

calculation of complex Fourier series,”

Math. of Comp., vol. 19, No. 90, pp.
297-301, April 1965.

[9] S. Oraintara, Y. J. Chen, and T. Q. Nguyen,

“Integer fast Fourier transform,” IEEE

Trans. Acoustics, Speech, Signal

Processing, vol. 50, No. 3, pp. 607-618,

March 2002.

[10] J. H. Takala, T. S. Jarvinen, and H. T.

Sorokin, "A Conflict-free parallel memory

access scheme for FFT processors,"

International Symposium on Circuits and

Systems, vol. 4, pp. 524-527, May

2003

