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Abstract 
Statistical Process Control (SPC) 

techniques are employed to monitor production 

processes over time to detect changes. The basic 

fundamentals of statistical process control and 

control charting were proposed by Walter 

Shewhart. Shewhart   chart can be used for 

monitoring both the mean and the variance of a 

process, however sensitivity of chart to shifts 

in the variance is often considered inadequate. 

So, it is common to use the chart coupled with 

either R chart or S chart, to monitor changes in 

mean and variance of process.  This paper 

presents the application of univariate control 

chart for monitoring hot metal making process 

in a blast furnace of a steel industry for 

continuous quality improvement. 
 

Key Words - Control Chart, Regression Analysis, 
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Introduction 
Statistical process control is defined as the 

application of statistical techniques to control a 

process. SPC is concerned with quality of 

conformance. There are a number of tools available 

to the quality engineer that is effective for problem 

solving process. The seven quality tools are 

relatively simple but very powerful tools which 
every quality engineer should aware. The tools are: 

flow chart, run chart, process control chart, check 

sheet, pareto diagram, cause and effect diagram, 

and scatter diagram (Juran&Gryna, 1998) [1]. 

The primary function of a control chart is 

to determine which type of variation is present and 

whether adjustments need to be made to the 

process. Variables data are those data which can be 

measured on a continuous scale. Variable data are 

plotted on a combination of two charts- usually a  

chart and a range (R) chart. The  chart plots 

sample means. It is a measure of between-sample 

variation and is used to assess the centering and 

long term variation of the process. The range chart 

measure the within sample variation and asses the 

short term variation of the process. 

 

 

A control chart is a statistical tool used to 

distinguish between variation in a process resulting 

from common causes and variation resulting from 

special causes. It presents a graphic display of 

process stability or instability over time. Every 
process has variation. Some variation may be the 

result of causes which are not normally present in 

the process. This could be special cause variation. 

Some variation is simply the result of numerous, 

ever-present differences in the process. This is 

common cause variation. Control Charts 

differentiate between these two types of variation. 

One goal of using a Control Chart is to achieve and 

maintain process stability. Process stability is 

defined as a state in which a process has displayed 

a certain degree of consistency in the past and is 
expected to continue to do so in the future. This 

consistency is characterized by a stream of data 

falling within control limits based on plus or minus 

3 Sigma (standard deviation) of the centerline. 

Control charts are useful, i) To monitor process 

variation over time ii) To differentiate between 

special cause and common cause variation iii) To 

assess the effectiveness of changes to improve a 

process iv) To communicate how a process 

performed during a specific period. There are 

different types of control charts, and the chart to be 

used is determined largely by the type of data to be 
plotted. Two important types of data are: 

Continuous (measurement) data and discrete (or 

count or attribute) data. Continuous data involve 

measurement. Discrete data involve counts 

(integers). For continuous data that are  chart, R 

chart are often appropriate.  

 

SPC is founded on the principle that a 

process will demonstrate consistent results unless it 

is performed inconsistently. Thus, we can define 

control limits for a consistent process and check 

new process outputs in order to determine whether 

there is a discrepancy or not. In the manufacturing 

arena, it is not difficult to figure out the 

relationship between product quality and the 

corresponding production process. Therefore we 

can measure process attributes, work on them, 
improve according to the results and produce high 
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quality products. There is a repetitive production of 

the same products in high numbers and this brings 

an opportunity to obtain large sample size for the 

measured attributes. Moreover, the product is 

concrete, and the attributes and variables to be 

measured are easily defined. Consequently, the 

only difficulty left is to define correct attributes and 
collect data for utilizing the tools of Statistical 

Process Control. 

 

Literature review 
Many businesses use Univariate Statistical 

Process Control (USPC) in both their 

manufacturing and service operations. Automated 
data collection, low-cost computation, products and 

processes designed to facilitate measurement, 

demands for higher quality, lower cost, and 

increased reliability have accelerated the use of 

USPC. 

 

A more modern approach for monitoring 

process variability is to calculate the standard 

deviation of each subgroup and use these values to 

monitor the process standard deviation 

(Montgomery & Runger, 2003)[2]. Samanta and 

Bhattacherjee (2004)[3] analyzed quality 
characteristic through construction of the Shewart 

control chart for mining applications. Woodall and 

Faltin, F. W. (1993) [4] presented an overview and 

perspective on control charting. The role of SPC in 

understanding, modeling, and reducing variability 

over time remains very important.  Weller (2000) 

[5] discussed some practical applications of 

Statistical Process Control. Mohammed (2004) [6] 

adopted Statistical Process Control to improve the 

quality of health care. Mohammed et al.,(2008) [7]  

illustrated  the selection and construction of four 
commonly used control charts(xmr-chart, p-chart, 

u-chart, c-chart) using examples from healthcare. 

Grigg et al., (1998)[8] presented a case study 

Statistical Process Control in fish product 

packaging. Srikaeo, K., & Hourigan, J.A. (2002) 

[9] discussed the use Statistical Process Control to 

enhance the validation of critical control points 

(CCPs) in shell egg washing. Rashed (2005) [10] 

made a performance Analysis of Univariate and 

Multivariate Quality Control Charts for Optimal 

Process Control. Statistical Process Control 
involves measurements of process performance that 

aim to identify common and assignable causes of 

quality variation and maintain process performance 

within specified limits. (Mukbelbaarz, 2012)[11]. 

Sharaf El-Din et al (2006) [12], made a comparison 

of the univariate out-of-control signals with the 

multivariate out-of-control signals using a case 

study of Steel making. 

 

Methodology 
3.1 Identification of critical process variables 

Generally, not all quality attributes and 

process variables are equally important. Some of 

them may be very important (critical) for quality of 
the product performance and some of them may be 

less important. The practitioners should know what 

input variables need to be stable in order to achieve 

stable output, and then these variables are 

appropriately to be monitored. The critical process 

variable of the process may be identified by 

Regression Analysis. Regression analysis is a 

statistical technique for estimating the relationships 

among variables in process and to predict a 

dependent variable(s) from a number of input 

variables. 

T-Statistics is an aid in determining 
whether an independent variable should be 

included in a model or not.  A variable is typically 

included in a model if it exceeds a pre-determined 

threshold level or ‘critical value’. Thresholds are 

determined for different levels of confidence. For 

e.g. to be 95% confident that a variable should be 

included in a model, or in other words to tolerate 

only a 5% chance that a variable doesn’t belong in 

a model, a T-statistic of greater than 1.98 (if the 

coefficient is positive) or less than -1.98 (if the 

coefficient is negative) is considered statistically 
significant. 

 

3.2 Construction of Control Charts  

To produce with consistent quality, 

manufacturing processes need to be closely 

monitored for any deviations in the process. Proper 

analysis of control charts that are used to determine 

the state of the process not only requires a thorough 

knowledge and understanding of the underlying 

distribution theories associated with control charts, 

but also the experience of an expert in decision 
making. There are many different types of control 

chart and the chart to be used is determined largely 

by the type of data to be plotted. This paper 

formulates Shewhart mean ( ) and R- Chart for 

diagnosis and interpretation. 

 

Case study 
The hot metal production process in Blast 

Furnace of an integrated Steel Plant is shown in 

Fig. 1. The purpose of a blast furnace is to 

chemically reduce and physically convert iron 

oxides into liquid iron called "hot metal". The blast 
furnace is a huge, steel stack lined with refractory 

brick, where the inputs are iron ore, sinter, coke 

and limestone are dumped into the top, and 

preheated air (sometimes with Oxygen Enrichment) 

is blown into the bottom.  
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Fig.1: Process flow diagram of Hot Metal process 

in Blast Furnace 

In which, inputs like sinter, coke are pre-

processed before using in Blast Furnace. The hot 

air that was blown into the bottom of the furnace 

ascends to the top after going through numerous 

chemical reactions. These raw materials require 6 

to 8 hours to descend to the bottom of the furnace 
where they become the final product of liquid iron 

and slag. The output liquid iron known as hot metal 

drained from the furnace at regular intervals from 

the bottom through tap hole. 

 

The hot metal with lower silicon and 

Sulphur contents is required for the production of 

Steel at Steel Melt Shop. Blast Furnace is supposed 

to supply the hot metal with the following 

composition to reduce defectives in Steel making at 

Steel Melt Shop (SMS). 
Silicon (Si)  = 0.3 - 0.60% 

Manganese (Mn)   = 0.0 - 0.25%  

Phosphorous (P)    = 0.0 - 0.15% 

Sulphur (S)   = 0.0 - 0.04% 

 

To produce desired quality hot metal, it is 

essential to identify the critical process variable 

from the given inputs and optimize them. 

 

The various inputs for this process are 

Blast Volume (M3/Min), Blast Pressure (Kg/cm2), 

Blast Temperature (0C), Steam (t/hr.), Oxygen 
Enrichment(%), Oxygen (M3/hr.), Ash, Moisture, 

Volatile  material, Fe(%),FeO (%), SiO2(%), 

Al2O3(%), CaO (%), MgO (%), Mn (% ), SiO, 

Sulpher (S), Phosphorus(P), Manganese (Mn), 

Silica(Si), MnO (%) etc. The production data with 

370 observations grouped by 46 days was collected 

for the study. 

 

Results & Discussion 
5.1 Identification of critical process variables 

In order to understand the relationship 

between the input and output variables of the hot 

metal, the data is analyzed and Regression analysis 

has been carried out with the help of MINITAB 

software. In the analysis, each output variable is 

tested individually to find out relationship between 

input process variables. A set of data containing 

observations on 370 samples were analyzed. The 

regression equation for each output variable is as 

follows: 

 

(1) The regression equation for Silicon to 

input variables is  
Si = - 36.8 - 0.000016 Blast Volume (M3/Min) + 

0.864 Blast Pressure (Kg/cm2)- 0.830 Top Pressure 

(Kg/cm2) - 0.00130 Blast Temp (oC) + 0.00413 

Steam (t/hr) + 0.0402 % Oxygen Enrichment - 

0.000014 Oxygen (M3/hr.) + 0.420 Ash - 0.154 

Moist + 0.524 VM + 0.389 FC - 0.0165 %Fe + 

0.0397 %FeO- 0.372 %SiO2 + 0.793 %Al2O3 + 

0.0609 %CaO - 0.0220 %MgO + 0.973 %Mn- 4.16 

SiO2 

 

Table 1. T & P values for Silicon. 

Predictor T p 

Constant -0.47 0.636 

Blast Volume  -0.24 0.811 

Blast Pressure  1.89 0.06 

Top Pressure  -1.75 0.08 

Blast Temp  -3.34 0.001 

Steam (t/hr) 1.18 0.239 

Oxygen Enrichment 0.69 0.493 

Oxygen  -0.85 0.397 

Ash 0.55 0.586 

Moist -1.06 0.291 

VM 0.67 0.501 

FC 0.5 0.616 

%Fe -0.24 0.814 

%FeO 2.55 0.011 

%SiO2 -3.66 0.000 

%Al2O3 3.36 0.001 

%CaO 1.1 0.271 

%MgO -0.33 0.739 

%Mn 3.19 0.002 

SiO2 -3.09 0.002 

(2) The regression equation for Manganese to 

input variables is  

Mn = - 7.00 + 0.000012 Blast Volume (M3/Min) - 

0.0169 Blast Pressure (Kg/cm2) - 0.0141 Top 

Pressure (Kg/cm2) + 0.000314 Blast Temp (oC) + 
0.000390 Steam (t/hr) - 0.0115 % Oxygen 

Enrichment + 0.000003 Oxygen (M3/hr.) + 0.0622 

Ash - 0.0049 Moist + 0.106 VM + 0.0746 FC - 

0.00946 %Fe  + 0.00173 %FeO - 0.0406 %SiO2 + 

0.0784 %Al2O3 + 0.0166 %CaO - 0.0233 %MgO  

+ 0.141 %Mn - 0.187 SiO2 
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Table 2. T & P values for Manganese. 

Predictor T p 

Constant -0.73 0.465 

Blast volume  1.43 0.154 

Blast Pressure  -0.3 0.765 

Top Pressure -0.24 0.81 

Blast Temp 6.55 0.000 

Steam (t/hr) 0.9 0.367 

Oxygen Enrichment -1.59 0.113 

Oxygen  1.54 0.125 

Ash 0.65 0.513 

Moist -0.27 0.787 

VM 1.11 0.269 

FC 0.78 0.435 

%Fe -1.1 0.274 

%FeO 0.9 0.369 

%SiO2 -3.23 0.001 

%Al2O3 2.69 0.007 

%CaO 2.44 0.015 

%MgO -2.87 0.004 

%Mn 3.74 0.000 

SiO2 -1.13 0.261 

 

(3) The regression equation for Sulpher to 

input variables is  

S = - 0.88 + 0.000009 Blast Volume (M3/Min) - 

0.0490 Blast Pressure (Kg/cm2) + 0.0459 Top 

Pressure (Kg/cm2) + 0.000013 Blast Temp (oC) - 

0.00116 Steam (t/hr) - 0.00924 % Oxygen 

Enrichment + 0.000002 Oxygen (M3/hr.) + 0.0088 

Ash + 0.0102 Moist - 0.0075 VM + 0.0076 FC + 

0.00305 %Fe - 0.00090 %FeO + 0.00167 %SiO2 + 
0.0120 %Al2O3 - 0.00326 %CaO + 0.00840 %MgO 

+ 0.0575 %Mn - 0.0846 SiO2 

 

Table 3. T & P values for Sulpher. 

Predictor T p 

Constant -0.16 0.874 

Blast Volume 1.86 0.064 

Blast Pressure -1.51 0.132 

Top Pressure 1.37 0.173 

Blast Temp 0.49 0.626 

Steam -4.66 0.000 

Oxygen Enrichment -2.22 0.027 

Oxygen  2.15 0.032 

Ash 0.16 0.872 

Moist 0.98 0.328 

VM -0.14 0.892 

Predictor T p 

FC 0.14 0.89 

%Fe 0.61 0.539 

%FeO -0.81 0.418 

%SiO2 0.23 0.818 

%Al2O3 0.72 0.474 

%CaO -0.83 0.406 

%MgO 1.8 0.073 

%Mn 2.66 0.008 

SiO2 -0.89 0.377 

 

(4) The regression equation for Phosphorous 

to input variables is  

P = - 3.16 + 0.000023 Blast Volume (M3/Min) - 

0.0421 Blast Pressure (Kg/cm2) + 0.0115 Top 

Pressure (Kg/cm2) - 0.000071 Blast Temp (oC) + 

0.000868 Steam (t/hr) - 0.00572 % Oxygen 
Enrichment + 0.000000 Oxygen (M3/hr.) + 0.0323 

Ash - 0.0026 Moist + 0.0276 VM + 0.0358 FC - 

0.00458 %Fe - 0.00238 %FeO + 0.00923 %SiO2 - 

0.0139 %Al2O3 + 0.00114 %CaO - 0.0114 %MgO  

- 0.0404 %Mn + 0.182 SiO2 

 

Table 4. T & P values for Phosphorus. 

Predictor T p 

Constant -0.43 0.668 

Blast Volume 3.62 0.000 

Blast Pressure -0.97 0.332 

Top Pressure 0.26 0.798 

Blast Temp -1.93 0.055 

Steam 2.61 0.009 

Oxygen Enrichment -1.03 0.304 

Oxygen 0.14 0.887 

Ash 0.44 0.659 

Moist -0.19 0.853 

VM 0.37 0.708 

FC 0.49 0.626 

%Fe -0.69 0.491 

%FeO -1.61 0.109 

%SiO2 0.95 0.341 

%Al2O3 -0.62 0.536 

%CaO 0.22 0.828 

%MgO -1.83 0.067 

%Mn -1.4 0.163 

SiO2 1.42 0.155 

 

It is also necessary to examine the 

dependency between these variables and also find 

the critical process variables (p value < 0.05) which 
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may influence the quality of hot metal. The ‘p’ and 

‘T’ values from the Table 1 to Table 4 of the 

regression analysis are tabulated in Table 5 for 

which ‘p’ value is less than 0.05. It is predicted 

from the above, the critical process variables which 

may influence the quality of Hot metal in this 

process are Blast Volume, Blast Pressure, Steam, 
Oxygen Enrichment, Oxygen, %FeO, %MgO, 

%Mn, SiO2 and %Al2O3. 

The T-statistic values for the above critical 

process variables are also higher than the threshold 

values (i.e. plus or minus 1.98 for 95 % confidence 

level) indicating their significance presence of 

dependence which may influence the quality of Hot 

metal. 

 

Table 5. Diagnosis of critical process variables 

Predictor Variable T p 

Blast Volume 3.62 0.000 

Blast Pressure -3.34 0.001 

Steam (t/hr) 2.61 0.009 

Oxygen Enrichment -2.22 0.027 

Oxygen 2.15 0.032 

%FeO 2.55 0.011 

%MgO 2.44 0.015 

%Mn 2.66 0.008 

SiO2 -3.09 0.002 

%Al2O3 3.36 0.001 

 

5.2 Control limits and construction of Control 

charts 

The data has been analyzed using  chart 

with customary plus/minus three sigma control 

limits to identify the problematic observations. The 

individual Control charts for the critical process 

variables are drawn and shown (Fig.2 to Fig. 11). 

 
Chart of Blast Volume is shown in 

Fig.2 and the observations on the days of 9, 25 and 

45falls outside the control limits, indicating an 

unstable process. Test Results for  Chart of Blast 

Pressure is shown in Fig.3 and the observations on 

the days of 9, 25, 45 and 46 falls outside the control 

limits, indicating an unstable process. Test Results 

for  Chart of Steam is shown in Fig.4 and the 

observations on the days of 6, 15, 25, 32, 35and 45 

falls outside the control limits, indicating an 

unstable process. Test Results for  Chart of % 

Oxygen Enrichment is shown in Fig. 5 and the 

observations on the days of 7, 35, 36, 37, 38, and 

45 falls outside the control limits, indicating an 

unstable process. Test Results for  Chart of 

Oxygen is shown in Fig. 6 and the observations on 

the days of 7, 35, 36, 37, 38, and 45 falls outside 

the control limits, indicating an unstable process. 

Test Results for  Chart of % FeO is shown in Fig. 

7 and the observations on the days of 5, 13, 14, 17, 

18, and 22 falls outside the control limits, 

indicating an unstable process. Test Results for  

Chart of %MgO is shown in Fig. and the 

observations on the days of 10, 20, 21, 22, 29, 30, 

34, 35, 40, 42, and 45 falls outside the control 
limits, indicating an unstable process. Test Results 

for  Chart of %Mn is shown in Fig. 9 and the 

observations on the days of 31, 32, 33, 34, 35, 40, 

45 and 46 falls outside the control limits, indicating 

an unstable process. Test Results for  Chart of 

SiO2is shown in Fig. 10 and the observations on the 

days of 1, 12, 13, 14, 30, 33 and 46 falls outside the 

control limits, indicating an unstable process. Test 

Results for  Chart of %Al2O3is shown in Fig. 11 

and the observations on the days of 15, 19, 20, 40, 

42, 45 and 46 falls outside the control limits, 

indicating an unstable process. 

The input values for Blast Volume, Blast 

Pressure, Steam, Oxygen Enrichment and Oxygen 

remain unchanged for the entire day and there is no 

difference in sample range with in a day. Hence the 
significance of R- Chart does not exist for these 

variables.  It is evident from the R-Chart drawn for 

the above variables in the Fig. 2 to Fig. 6 that many 

of the observations fall outside control limits, 

hence ignored.  

Whereas the input values of other 

variables like %FeO, %MgO, %Mn, SiO2, and 

%Al2O3 may vary for each observation and 

corresponding R- Charts were drawn and shown in 

the Fig.7 to Fig.11 respectively. The out of control 

limit points for MgO is on 46th day, for Mn is on 
10th day, for SiO2 is on 3rd and 30th day and for 

%Al2O3 is on 4th , 8th , 10th , 37th  and 46th days. 
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Figure 2.  Xbar-R Chart of Blast Volume  
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Figure 3.  Xbar-R Chart of Blast Pressure  
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Figure 4.  Xbar-R Chart of Steam  
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Figure 5.  Xbar-R Chart of %  Enrichment  
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Figure 6.  Xbar-R Chart of Oxygen  
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Figure 7.  Xbar-R Chart of % FeO  
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Figure 8.  Xbar-R Chart of % MgO  
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5.3 Results and discussion 

Even if the variation in input variables 

were known but the exact reason was difficult to 

identify due to complexities in Blast Furnace 

Process. Blast furnace slag composition has very 

important behavior on its physicochemical 
characteristics which affects the degree of 

desulphurization, smoothness of operation, coke 

consumption, hot metal productivity and its quality.  

Al2O3, MgO and CaO that entered with 

the iron ore, pellets, sinter or coke Si with the coke 

ash and Sulphur enters through coke. In the normal 

practice of blast furnace, slag is generally 

accounted for by adjusting the overall composition 

of CaO, SiO2, Al2O3 and MgO components. Since 

the limestone (flux) is melted to become the slag 

which removes Sulphur and other impurities, the 

blast furnace operator may blend the different 
grades of flux to produce the desired slag chemistry 

and produce optimum hot metal quality. High top 

pressure in Blast Furnaces can decrease % of Si in 
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hot metal. An increase in the Fe content of sinter 

may optimizes the Carbon/ Sulpher ratio and 

decrease in Al2O3 content in hot metal. Manganese 

reaction is always accompanied by silica reaction. 

By adding additional SiO2 can reduce % Mn 

content in hot metal. By implementing these steps 

may lead to reduce the defectives in the output and 
improves the quality of hot metal 

 

Conclusion 
This paper explores monitoring of 

variables that effects hot metal making in an 

integrated steel plant. In the first phase critical 

process variables that affect the quality of hot metal 
are identified through regression analysis. From the 

study the variables namely, Blast Volume, Blast 

Pressure, Steam,% Enrichment, Oxygen, %FeO, 

%MgO, %Mn, SiO2, and %Al2O3 are identified as 

critical process variables. Subsequently  and R-

Charts are drawn to monitor these critical process 

variables. 

When the more number of variables are 

correlated with each other, univariate control charts 

are difficult to manage and analyze because of the 

large numbers of control charts of each process 

variable. An alternative approach is to construct a 

single multivariate T2 control chart that minimizes 

the occurrence of false process alarms. Hence this 

study may be extended to multivariate control 

charts that monitor the relationship between the 

variables and identifies real process changes which 
are not detectable through univariate charts. 
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